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Abstract

A labeling f : V (G) → {1, 2, . . . , d} of the vertex set of a graph G is said
to be proper d-distinguishing if it is a proper coloring of G and any nontrivial
automorphism of G maps at least one vertex to a vertex with a different label. The
distinguishing chromatic number of G, denoted by χD(G), is the minimum d such
that G has a proper d-distinguishing labeling. Let χ(G) be the chromatic number
of G and D(G) be the distinguishing number of G. Clearly, χD(G) > χ(G) and
χD(G) > D(G). Collins, Hovey and Trenk [6] have given a tight upper bound on
χD(G) − χ(G) in terms of the order of the automorphism group of G, improved
when the automorphism group of G is a finite abelian group. The Kneser graph
K(n, r) is a graph whose vertices are the r-subsets of an n element set, and two
vertices of K(n, r) are adjacent if their corresponding two r-subsets are disjoint. In
this paper, we provide a class of graphs G, namely Kneser graphs K(n, r), whose
automorphism group is the symmetric group, Sn, such that χD(G)− χ(G) 6 1. In
particular, we prove that χD(K(n, 2)) = χ(K(n, 2)) + 1 for n > 5. In addition, we
show that χD(K(n, r)) = χ(K(n, r)) for n > 2r + 1 and r > 3.

1 Introduction

In 1996, Albertson and Collins [2] invented the distinguishing number of a graph. It
is the smallest number of colors with which the vertices of a graph can be labeled so
that every non-trivial automorphism of the graph moves a label. Since then this concept
has been studied extensively, including the recent work on the distinguishing number of
planar graphs by Arvind, Cheng and Devanur [3]; augmented cubes and hypercube powers
by Chan [4]; Cartesian products of complete graphs by Imrich, Jerebic and Klavžar [9];
infinite graphs by Imrich, Klavžar and Trofimov [11]; and locally finite trees by Watkins
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and Zhou [17]. The concept has been extended beyond graphs by Tymoczko [12] and
Klavžar, Wong and Zhu [13].

In 2006, Collins and Trenk [7] created the distinguishing chromatic number of a graph.
It is the smallest number of colors with which the vertices of a graph can be labeled so
that no two adjacent vertices have the same color and the only automorphism of the graph
that preserves color classes is the trivial automorphism. Their paper proved versions of
Brooks’ Theorem for both the distinguishing number and the distinguishing chromatic
number. Collins, Hovey and Trenk [6] proved further bounds on the distinguishing chro-
matic number using the automorphism group of a graph, while Choi, Hartke and Kaul [5]
provided bounds on the distinguishing chromatic number of Cartesian products of graphs.
Weigand and Jacobson [16] gave the distinguishing and distinguishing chromatic numbers
of generalized Petersen graphs.

Let f : V (G) → {1, 2, . . . , d} be a labeling of the vertex set of a graph G. Then
the labeling f is called a proper d-coloring if any two adjacent vertices have different
labels. The chromatic number of G, denoted by χ(G), is the minimum d such that G has
a proper d-coloring. Albertson and Collins introduced the definition of a distinguishing
labeling and the distinguishing number of a graph in [2], inspired from Frank Rubin’s key
problem [14]: Given a ring of keys with similar shape, how many colors are needed to
distinguish them? A labeling f : V (G) → {1, 2, . . . , d} is called d-distinguishing if the
only automorphism of G which preserves all vertex labels is the trivial automorphism,
that is, any nontrivial automorphism of G must map at least one vertex to a vertex with
a different label. The distinguishing number of G is the minimum d such that G has a
d-distinguishing labeling, and denoted by D(G).

In the definition of distinguishing labeling of a graph, there is no need to require
that two adjacent vertices receive different colors. To study the problem of how to store
reactive chemicals so that the chemicals are uniquely identified by their storage bins, and
also arranged in a way that prevents chemical reactions, Collins and Trenk introduced the
definition of a proper distinguishing labeling, and the distinguishing chromatic number of
a graph.

Definition 1. [7] A labeling f : V (G) → {1, 2, . . . , d} of the vertex set of a graph G is
said to be proper d-distinguishing if it is both a proper d-coloring and a d-distinguishing
labeling of G. The distinguishing chromatic number of G, denoted by χD(G), is the
minimum d such that G has a proper d-distinguishing labeling.

From the definition, χD(G) > χ(G) and χD(G) > D(G). It is easy to see that
χD(G) 6 χ(G) · D(G), by assigning ordered pairs to the vertices of G, where the first
component represents proper coloring, and second component represents distinguishing
labeling. It is tempting to believe, however, that in many cases, χD(G) should only be a
little bit bigger than χ(G), or be bounded by the addition of a constant to the chromatic
number. Let Gt be the Cartesian product of t copies of G. Choi, Hartke and Kaul [5]
have shown that for t > tG, χD(Gt) 6 χ(Gt) + 1 = χ(G) + 1, where tG is a constant that
depends on G. In particular, for t > 5, χD(Kt

n) 6 n + 1. On the other hand, let G ◦H
be the lexicographic product of G and H, see [10]. Let G1 = C2k ◦Km for k > 4. Tang
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[15] showed that
χD(G1) = χ(G1) ·D(G1)− 1.

In addition, let G2 = C2k+1 ◦Km for k > 3,

χD(G2) = χ(G2) ·D(G2)− 2−D(G2) + d(D(G2)− 1)/ke.

From these latter examples, we see that for some classes of graphs, the distinguishing
chromatic number may be bounded close to its maximum value. However, the chromatic
number of C2k ◦Km is 2 and the chromatic number of C2k+1 ◦Km is 3, so these are very
special cases.

Recently, Collins, Hovey and Trenk [6] have provided two upper bounds on χD(G)−
χ(G) based on the automorphism group of G, and each of them is tight:

(i) If aut(G) is finite of order pi11 p
i2
2 · · · p

ik
k where the pi’s are distinct primes, then

χD(G)− χ(G) 6 i1 + i2 + · · ·+ ik;
(ii) If aut(G) is a finite abelian group written as aut(G) = Z

p
i1
1
× Z

p
i2
2
× · · · × Z

p
ik
k

where the pi’s are distinct primes, then χD(G)− χ(G) 6 k.
We are interested in bounds on the distinguishing chromatic number, and in the con-

struction of infinite families of graphs that achieve those bounds. We will provide a class
of graphs G whose automorphism group is the symmetric group Sn and χD(G)−χ(G) 6 1.
Let n and r be positive integers with 1 6 r 6 n

2
. Let [n] denote the set of integers from 1

to n. The Kneser graph K(n, r) is a graph whose vertices are the r-subsets of [n]. A vertex
corresponding to the r-subset {i1, i2, . . . , ir} is denoted by v{i1,i2,...,ir} where i1, i2, . . . , ir
are integers from [n]. Two vertices v{i1,i2,...,ir} and v{j1,j2,...,jr} of K(n, r) are adjacent if
their corresponding two r-subsets {i1, i2, . . . , ir} and {j1, j2, . . . , jr} are disjoint. When
r = 1, the Kneser graph K(n, 1) is the complete graph Kn. When n = 2r, K(2r, r) is
a set of disjoint edges. When n = 2r + 1, the Kneser graph K(2r + 1, r) is also called
the odd graph. It is known that the chromatic number of K(n, r) is n − 2r + 2, and
the automorphism group of K(n, r) is Sn, see [8], and that the distinguishing number of
K(n, r) is 2 for n > 6 and r > 2, see [1].

In this paper, we show that χD(K(n, r)) − χ(K(n, r)) 6 1 for all n > 2r + 1. In
particular, we show that χD(K(n, 2))−χ(K(n, 2)) = 1 for n > 5, and that χD(K(n, r)) =
χ(K(n, r)) for n > 2r + 1 and r > 3. This answers a question raised by Weigand and
Jacobson [16].

2 The distinguishing chromatic number of K(n, 2)

In this section, we prove that the distinguishing chromatic number of K(n, 2) equals n−1
(where n > 5), which is its chromatic number n− 2 plus 1. We first introduce some basic
definitions and notations.

Definition 2. Let S be an independent set of K(n, r) with at least two vertices. Then
every pair of vertices in S have nonempty intersection. If the intersection of all vertices
in S is {i}, a single element set containing the integer i, then we call S a 1-pattern with
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the intersection {i}. On the other hand, if the intersection of all vertices in S is an empty
set, then we call S a 0-pattern.

It is well-known [8] that any maximum independent set of K(n, r) (where n > 2r+ 1)
is a 1-pattern with size

(
n−1
r−1

)
. We use M{i} to represent the maximum independent

set of K(n, r) such that the intersection of all its vertices is {i}. When r = 2, any
independent set of K(n, 2) with two or more vertices is either a 1-pattern or a 0-pattern.
Moreover, any 0-pattern independent set of K(n, 2) is a set of three vertices with the form
{v{i,j}, v{i,k}, v{j,k}} where i, j, k are three pairwise different integers from [n].

Lemma 3. For any proper (n− 2)-coloring of K(n, 2) where n > 5, each color class has
size at least 2.

Proof. Let φ be a proper (n−2)-coloring of K(n, 2) with color classes Ci for 1 6 i 6 n−2.
Suppose that φ has one color class of size one, say Cn−2 = {v{n−1,n}}. Then no color class
of φ is a 1-pattern with the intersection {n − 1} or {n}. Otherwise, we can add the
vertex v{n−1,n} into such a color class, and so χ(K(n, 2)) 6 n− 3. This is a contradiction.
Therefore, we can assume that any 1-pattern color class with the intersection {i} satisfies
1 6 i 6 n− 2.

Let S = {v{i,n−1} | 1 6 i 6 n − 2} ∪ {v{i,n} | 1 6 i 6 n − 2}. Then at most two
vertices from S can be contained in the same color class of φ: either v{i,n−1}, v{i,n}, or
v{i,n−1}, v{j,n−1}, or v{i,n}, v{j,n} for some 1 6 i 6= j 6 n − 2. It follows that each of n − 2
color classes of φ contains some vertices of S. This is impossible since S ⊆ K(n, 2)\Cn−2.
Therefore, |Ci| > 1 for 1 6 i 6 n− 2.

Lemma 4. For any proper (n− 2)-coloring of K(n, 2) where n > 5, there is exactly one
color class that is a 0-pattern while all other color classes are 1-patterns.

Proof. Let φ be a proper (n−2)-coloring of K(n, 2) with color classes Ci for 1 6 i 6 n−2.
By Lemma 3, |Ci| > 2 for each 1 6 i 6 n− 2. So Ci is either a 0-pattern or 1-pattern. If
all color classes of φ are 0-patterns, then |V (K(n, 2))| = | ∪16i6n−2 Ci| = 3(n − 2). This
is not possible since |V (K(n, 2))| =

(
n
2

)
> 3(n − 2) for n > 5. Hence, φ has at least one

color class that is a 1-pattern. If all color classes of φ are 1-patterns, then without loss of
generality, we can assume that Ci ⊆M{i} for 1 6 i 6 n−2. It follows that vertex v{n−1,n}
is not contained in any color class of φ. This is a contradiction. So φ has at most n − 3
color classes that are 1-patterns.

Assume that C1, C2, . . . , Ck are 1-patterns of φ. Then 1 6 k 6 n − 3. Without loss
of generality, we can assume that Ci ⊆ M{i} for 1 6 i 6 k. Note that |M{i}| = n − 1,
|M{i1} ∩M{i2}| = 1 and |M{i1} ∩M{i2} ∩M{i3}| = 0 for distinct i1, i2, i3. Hence, by the
principle of inclusion-exclusion:

| ∪k
i=1 Ci| 6 | ∪16i6k M{i}| =

k∑
i=1

|M{i}| −
∑

16i1,i26k

|M{i1} ∩M{i2}|

= k(n− 1)−
(
k

2

)
= (n− 1) + (n− 2) + · · ·+ (n− k).
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Now each 0-pattern color class has size 3, and these are Ck+1, Ck+2, . . . , Cn−2. Thus

| ∪n−2
i=k+1 Ci| = 3(n− 2− k).

The set of all vertices in K(n, 2) is equal to the union of all color classes, hence(
n

2

)
= | ∪k

i=1 Ci|+ | ∪n−2
i=k+1 Ci|

6 (n− 1) + (n− 2) + · · ·+ (n− k) + 3(n− k − 2).

Note that(
n

2

)
= (n− 1) + (n− 2) + · · ·+ (n− k) + (n− k − 1) + · · ·+ 3 + 2 + 1.

Hence, 3(n − k − 2) > (n − k − 1) + · · · + 3 + 2 + 1, which implies that k > n − 4,
and φ has at least n − 4 color classes that are 1-patterns and so at most two color
classes that are 0-patterns. So Ci’s (1 6 i 6 n − 4) are 1-patterns of φ which have
intersections {1}, {2}, . . . , {n − 4} respectively. Consider vertices v{n−3,n−2}, v{n−3,n−1},
v{n−3,n}, v{n−2,n−1}, v{n−2,n}, v{n−1,n}. None is contained in any of the 1-pattern color
classes Ci for 1 6 i 6 n− 4, and the subgraph induced by these vertices is isomorphic to
K(4, 2), a disjoint union of three edges. It is easy to check that any proper 2-coloring of
K(4, 2) has a 0-pattern color class and a 1-pattern color class, each of size 3. It follows
that exactly one of Cn−3 and Cn−2 is a 0-pattern.

Remark. Lemma 4 is not true for Kneser graphs K(n, r) when r > 3. For example,
the following table provides a proper 3-coloring of K(7, 3) where each color class is a
0-pattern. In the table, we use ijk to represent the vertex v{i,j,k} briefly.

C1 = {123, 124, 125, 126, 127, 134, 135, 136, 137, 234, 235, 236, 237}
C2 = {145, 146, 147, 245, 246, 247, 345, 346, 347, 567}
C3 = {156, 157, 167, 256, 257, 267, 356, 357, 367, 456, 457, 467}

Theorem 5. Let n > 5. Then χD(K(n, 2)) = χ(K(n, 2)) + 1 = n− 1.

Proof. We first show that χD(K(n, 2)) > n − 2. Let φ be a proper (n − 2)-coloring of
K(n, 2) with color classes Ci for 1 6 i 6 n − 2. By Lemma 4, we can assume that
Ci ⊆ M{i} is a 1-pattern where 1 6 i 6 n − 3, and Cn−2 = {v{n−2,n−1}, v{n−2,n}, v{n−1,n}}
is a 0-pattern. Since the automorphism group of K(n, 2) is Sn by [8], we can consider an
automorphism of K(n, 2) as a permutation of [n]. Let σ be an automorphism of K(n, 2)
which fixes each i for 1 6 i 6 n− 3 and permutes {n− 2, n− 1, n}. Then σ is nontrivial
and preserves all the color classes of φ.

We now show that χD(K(n, 2)) 6 n−1. Define a proper (n−1)-coloring ψ of K(n, 2)
with color classes Di for 1 6 i 6 n− 1:

D1 = M{1} \ {v{1,n}},
Di = M{i} \ ∪j<iM{j}, for 2 6 i 6 n− 2,

Dn−1 = {v{n−1,n}, v{1,n}}.
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We claim that ψ is also distinguishing. Note that for any 1-pattern color class with the
intersection {i} in K(n, 2), the integer i appears at least twice while each of other integers
appears at most once. All color classes of ψ are 1-patterns: Di (1 6 i 6 n − 2) is a 1-
pattern with the intersection {i}, and Dn−1 is a 1-pattern with the intersection {n}. Let
σ be an automorphism of K(n, 2) which preserves the above color classes. To preserve
color class Di (1 6 i 6 n − 2), σ fixes integer i (1 6 i 6 n − 2), and to preserve color
class Dn−1, σ fixes integer n. It follows that σ fixes integer n− 1 and so σ is trivial.

3 The distinguishing chromatic number of K(n, r),

where n > 2r + 1 and r > 3

In this section, we show that the distinguishing chromatic number of K(n, r) (where
n > 2r+ 1 and r > 3) is equal to its chromatic number n− 2r+ 2. We start with the odd
graph, K(2r + 1, r), where r > 3. We choose a partition of its vertex set C1 ∪ C2 ∪ C3 as
follows.

C1 = M{1},

C2 = M{2} \M{1},
C3 = [M{1} ∪M{2}]c.

Table 1: Occurrences of each integer i in color classes C1, C2, C3 of K(2r + 1, r)
i C1 C2 C3

1
(

2r
r−1

)
0 0

2
(
2r−1
r−2

) (
2r−1
r−1

)
0

3 6 i 6 2r + 1
(
2r−1
r−2

) (
2r−2
r−2

) (
2r−2
r−1

)
Lemma 6. The coloring {C1, C2, C3} is a proper 3-coloring but not a distinguishing
coloring of K(2r + 1, r).

Proof. It is easy to see that both C1 and C2 are independent sets since each vertex of C1

contains the integer 1, and each vertex of C2 contains the integer 2. Since each vertex of
C3 is a r-subset of 2r−1 integers from {3, 4, . . . , 2r+1}, any two vertices of C3 must have
a nonempty intersection. Then C3 is also an independent set. Therefore, {C1, C2, C3} is a
proper 3-coloring of K(2r+ 1, r). On the other hand, this is not a distinguishing coloring
by Table 1. Let σ ∈ S2r+1 be a nontrivial permutation which fixes integer 1 and integer
2 and permutes integers 3, 4, . . . , 2r + 1, then σ preserves each color class C1, C2, C3.

Example 7. A proper and distinguishing 3-coloring of K(7, 3) which is derived from a
proper 3-coloring of K(7, 3) in Lemma 6 shows that χD(K(7, 3)) = 3.
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In the following tables, we represent the vertex v{i,j,k} by ijk briefly. Table 2 provides
a proper 3-coloring {C1, C2, C3} of K(7, 3) by Lemma 6. We remove vertices v{1,2,5} and
v{1,3,4} from C1 and add the former to C2, and latter to C3. Then we switch vertex v{2,3,4} ∈
C2 with vertex v{5,6,7} ∈ C3. Finally, we switch vertex v{2,4,7} ∈ C2 with vertex v{3,5,6} ∈
C3. We obtain a coloring {D1, D2, D3} of K(7, 3) in Table 3, where we underline those
vertices moved around from coloring {C1, C2, C3}. It is easy to check that {D1, D2, D3}
is a proper 3-coloring.

Table 2: A proper 3-coloring of K(7, 3)

C1 = {123, 124, 125, 126, 127, 134, 135, 136, 137, 145,
146, 147, 156, 157, 167}

C2 = {234, 235, 236, 237, 245, 246, 247, 256, 257, 267}
C3 = {567, 467, 457, 456, 367, 357, 356, 347, 346, 345}

Table 3: A proper and distinguishing 3-coloring of K(7, 3)

D1 = {123, 124, 126, 127, 135, 136, 137, 145,
146, 147, 156, 157, 167}

D2 = {567, 235, 236, 237, 245, 246, 356, 256, 257, 267, 125}
D3 = {234, 467, 457, 456, 367, 357, 247, 347, 346, 345, 134}

The coloring {D1, D2, D3} is distinguishing by Table 4, which contains the number
of occurrences of integers 1 6 i 6 7 in each color class. Since all rows are pairwise dif-
ferent, the only automorphism of K(7, 3) which preserves color classes must be trivial.

Table 4: Occurrences of each integer i in color classes D1, D2, D3 of K(7, 3)

i D1 D2 D3

1 13 1 1
2 4 9 2
3 4 4 7
4 4 2 9
5 4 7 4
6 5 6 4
7 5 4 6
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Similar to the idea of Example 7, we will construct a proper and distinguishing 3-

coloring {D1, D2, D3} of K(2r+1, r) from the proper 3-coloring {C1, C2, C3} of K(2r+1, r)

in Lemma 6 by rearranging vertices among C1, C2, C3. We list some special vertices of

K(2r + 1, r) to clarify notations in this section. Those vertices are denoted as xj (where

1 6 j 6 r − 1), and y1, y2, z1, z2.

xj = v{1,2; 4+j,4+j+1,...,r+1; 2r−j,2r−j+1,...,2r−1},

for 1 6 j 6 r − 3.

xr−2 = v{1,2; r+2,r+3,...,2r−1},

xr−1 = v{1; 3,4,...,r+1},

y1 = v{2,3,4,...,r+1},

y2 = v{2; 4,5,...,r+1; 2r+1},

z1 = v{r+2,r+3,...,2r−1,2r,2r+1},

z2 = v{3; r+2,r+3,...,2r−1,2r}.

Examples

• If r = 3, then the above listed vertices are

x1 = v{1,2; 5}, x2 = v{1; 3,4}

y1 = v{2,3,4}, y2 = v{2; 4; 7},

z1 = v{5,6,7}, z2 = v{3; 5,6}.

• If r = 5, then the above listed vertices are

x1 = v{1,2; 5,6; 9}, x2 = v{1,2; 6; 8,9},

x3 = v{1,2; 7,8,9}, x4 = v{1; 3,4,5,6},

y1 = v{2,3,4,5,6}, y2 = v{2; 4,5,6; 11},

z1 = v{7,8,9,10,11}, z2 = v{3; 7,8,9,10}.

Theorem 8. χD(K(2r + 1, r)) = χ(K(2r + 1, r)) = 3 for r > 3.

Proof. It is known that χD(K(2r+1, r)) > χ(K(2r+1, r)) = 3. To show that χD(K(2r+
1, r)) 6 3, we construct a proper and distinguishing 3-coloring of K(2r + 1, r) with color
classes D1, D2, D3 as the following.

D1 = C1 \ {xj|1 6 j 6 r − 1},
D2 = (C2 \ {y1, y2}) ∪ {xj|1 6 j 6 r − 2} ∪ {z1, z2},
D3 = (C3 \ {z1, z2}) ∪ {xr−1} ∪ {y1, y2}.
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Table 5: Occurrences of each integer i in the set of vertices {xj|(1 6 j 6 r− 2)}, {xr−1},
{y1, y2}, and {z1, z2}.

i {xj|1 6 j 6 r − 2} {xr−1} {y1, y2} {z1, z2}
1 r − 2 1 0 0
2 r − 2 0 2 0

3 0 1 1 1

4 0 1 2 0
5 1 1 2 0
6 2 1 2 0
...

...
...

...
...

r − 1 r − 5 1 2 0
r r − 4 1 2 0

r + 1 r − 3 1 2 0

r + 2 1 0 0 2
r + 3 2 0 0 2
r + 4 3 0 0 2

...
...

...
...

...
2r − 3 r − 4 0 0 2
2r − 2 r − 3 0 0 2
2r − 1 r − 2 0 0 2

2r 0 0 0 2
2r + 1 0 0 1 1

We first show that it is a proper coloring of K(2r + 1, r). It is clear that D1, D2, D3

form a partition of the vertex set of K(2r+ 1, r). All vertices in D1 contain the integer 1,
so D1 is an independent set of K(2r + 1, r). To show that D2 is an independent set, first
we see that its subset (C2 \ {y1, y2}) ∪ {xj|1 6 j 6 r − 2} is an independent set since all
vertices contain the integer 2. Note that the induced subgraph of K(2r + 1, r) generated
by C2, C3 is a matching between two sets since it is isomorphic to K(2r, r). So the vertex
z1 ∈ C3 (resp. z2 ∈ C3) is only adjacent to vertex y1 ∈ C2 (resp. y2 ∈ C2). Therefore,
z1, z2 are not adjacent to any vertex in C2 \ {y1, y2}. Moreover, z1, z2 are not adjacent to
any xj (1 6 j 6 r − 2) since they have at least one common integer 2r − 1. Hence, D2

is an independent set. It remains to show that D3 is an independent set. It is clear that
its subset (C3 \ {z1, z2}) ∪ {y1, y2} is an independent set since y1, y2 are not adjacent to
any vertex in C3 \ {z1, z2}. The only vertex in C3 which xr−1 is adjacent to is z1 because
they are disjoint. Hence xr−1 is not adjacent to any vertex in C3 \ {z1, z2}. Also xr−1
is not adjacent to either y1 or y2 because they have at least one common integer r + 1.
Therefore, D3 is also an independent set.

It remains to show that {D1, D2, D3} is also a distinguishing coloring of K(2r + 1, r).
We first construct a table where row i contains the number of occurrences of integer i (for
each 1 6 i 6 2r+ 1) in vertices xj (1 6 j 6 r− 1), y1, y2 and z1, z2, see Table 5. By Table
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Table 6: Occurrences of each integer i in color classes D1, D2, D3 of K(2r + 1, r)
i D1 D2 D3 Remarks

1
(

2r
r−1

)
− (r − 1) 0 + (r − 2) 0 + 1 GROUP 1

2
(
2r−1
r−2

)
− (r − 2)

(
2r−1
r−1

)
+ (r − 4) 0 + 2

3
(
2r−1
r−2

)
− 1

(
2r−2
r−2

)
+ 0

(
2r−2
r−1

)
+ 1 GROUP 2

4
(
2r−1
r−2

)
− 1

(
2r−2
r−2

)
− 2

(
2r−2
r−1

)
+ 3 GROUP 3

5
(
2r−1
r−2

)
− 2

(
2r−2
r−2

)
− 1

(
2r−2
r−1

)
+ 3

6
(
2r−1
r−2

)
− 3

(
2r−2
r−2

)
+ 0

(
2r−2
r−1

)
+ 3

...
...

...
...

r − 1
(
2r−1
r−2

)
− (r − 4)

(
2r−2
r−2

)
+ (r − 7)

(
2r−2
r−1

)
+ 3

r
(
2r−1
r−2

)
− (r − 3)

(
2r−2
r−2

)
+ (r − 6)

(
2r−2
r−1

)
+ 3

r + 1
(
2r−1
r−2

)
− (r − 2)

(
2r−2
r−2

)
+ (r − 5)

(
2r−2
r−1

)
+ 3

r + 2
(
2r−1
r−2

)
− 1

(
2r−2
r−2

)
+ 3

(
2r−2
r−1

)
− 2 GROUP 4

r + 3
(
2r−1
r−2

)
− 2

(
2r−2
r−2

)
+ 4

(
2r−2
r−1

)
− 2

r + 4
(
2r−1
r−2

)
− 3

(
2r−2
r−2

)
+ 5

(
2r−2
r−1

)
− 2

...
...

...
...

2r − 3
(
2r−1
r−2

)
− (r − 4)

(
2r−2
r−2

)
+ (r − 2)

(
2r−2
r−1

)
− 2

2r − 2
(
2r−1
r−2

)
− (r − 3)

(
2r−2
r−2

)
+ (r − 1)

(
2r−2
r−1

)
− 2

2r − 1
(
2r−1
r−2

)
− (r − 2)

(
2r−2
r−2

)
+ r

(
2r−2
r−1

)
− 2

2r
(
2r−1
r−2

)
+ 0

(
2r−2
r−2

)
+ 2

(
2r−2
r−1

)
− 2 GROUP 5

2r + 1
(
2r−1
r−2

)
+ 0

(
2r−2
r−2

)
+ 0

(
2r−2
r−1

)
+ 0

1 and Table 5, we construct Table 6 where row i contains the number of occurrences of
integer i (for each 1 6 i 6 2r + 1) in color classes D1, D2, D3.

We will show that all rows are pairwise different from each other, and so any auto-
morphism of K(2r + 1, r) which preserves the above color classes must be trivial. The
groups in Table 6 are determined by D3 column. Each of the row 1, row 2, row 3, row
2r, and row 2r + 1 is distinguished by its unique entry in column D3. The remaining
rows are divided into GROUP 3 and GROUP 4 by D3 column. Rows in GROUP 3 are
pairwise distinguished from each other because of their entries in D1 column, and rows
in GROUP 4 are pairwise distinguished from each other by the same reason. Hence, all
rows are pairwise different from each other. It follows that the only automorphism which
preserves color classes must be trivial. Therefore, the proper 3-coloring {D1, D2, D3} is
also distinguishing.
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Theorem 9. Let n, r be integers such that n > 2r + 1 and r > 3. Then χD(K(n, r)) =
χ(K(n, r)) = n− 2r + 2.

Proof. By induction on n. If n = 2r + 1, then by Theorem 8, χD(K(2r + 1, r)) =
χ(K(2r + 1, r)) = 3 where r > 3. Assume that χD(K(n′, r)) = χ(K(n′, r)) = n′ − 2r + 2
for any integer 2r + 1 6 n′ < n where r > 3. We will show that it is true for K(n, r)
where r > 3.

Let H = K(n, r) − M{n} be the induced subgraph of K(n, r) obtained by deleting
all vertices of M{n}, the maximum independent set of K(n, r) with the intersection {n}.
Then H is isomorphic to K(n − 1, r). By induction hypothesis, H has a proper and
distinguishing (n − 2r + 1)-coloring with color classes D1, D2, . . . , Dn−2r+1 such that for
each integer i (1 6 i 6 n− 1), the ordered (n− 2r+ 1)-tuple of its number of occurrences
in vertices of D1, D2, . . . , Dn−2r+1 is unique.

Table 7: Occurrences of each integer i in color classes D1, D2, D3, . . . , Dn−2r+2 of K(n, r)
i D1 D2 D3 D4 D5 · · · Dn−2r+1 Dn−2r+2

1 ∗ ∗ ∗
(

2r
r−2

) (
2r+1
r−2

)
· · ·

(
n−3
r−2

) (
n−2
r−2

)
2 ∗ ∗ ∗

(
2r
r−2

) (
2r+1
r−2

)
· · ·

(
n−3
r−2

) (
n−2
r−2

)
...

...
...

...
...

...
...

...
...

2r + 1 ∗ ∗ ∗
(

2r
r−2

) (
2r+1
r−2

)
· · ·

(
n−3
r−2

) (
n−2
r−2

)
2r + 2 0 0 0

(
2r+1
r−1

) (
2r+1
r−2

)
· · ·

(
n−3
r−2

) (
n−2
r−2

)
2r + 3 0 0 0 0

(
2r+2
r−1

)
· · ·

(
n−3
r−2

) (
n−2
r−2

)
...

...
...

...
...

...
...

...
...

n− 1 0 0 0 0 0 0
(
n−2
r−1

) (
n−2
r−2

)
n 0 0 0 0 0 0 0

(
n−1
r−1

)
Let Dn−2r+2 = M{n}. Then Dn−2r+2 is an independent set of K(n, r). It follows that

{Di|1 6 i 6 n − 2r + 2} is a proper coloring of K(n, r). Note that integer n is the only
integer that does not appear in any color classes Di for 1 6 i 6 n− 2r + 1, and appears(
n−1
r−1

)
times in color class Dn−2r+2. Hence, for integer n, the ordered (n − 2r + 2)-tuple

for the number of its occurrences in vertices of D1, D2, . . . , Dn−2r+1, Dn−2r+2 is unique.
By the induction hypothesis, this is also true for each integer i where 1 6 i 6 n − 1,
see Table 7. If σ is a nontrivial automorphism of K(n, r) which preserves color classes
D1, D2, . . . , Dn−2r+2, then σ must fix each integer 1, 2, . . . , n. Therefore, σ is trivial.
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