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Abstract

A k–factorization of Kv of type (r, s) consists of k–factors each of which is the
disjoint union of r copies of Kk+1 and s copies of Kk,k. By means of what we call
the patterned k–factorization Fk(D) over an arbitrary group D of order 2s + 1, it
is shown that a k-factorization of type (1, s) exists for any k > 2 and for any s > 1
with D being an automorphism group acting sharply transitively on the factor–set.
The general method to construct a k-factorization F of type (1, s) over an arbitrary
1–factorization S of K2s+2 (F is said to be based on S) is used to prove that the
number of pairwise non–isomorphic k–factorizations of this type goes to infinity
with s. In this paper, we show that the full automorphism group of F is known
as soon as we know the one of S. In particular, the full automorphism group of
Fk(D) is determined for any k > 2, generalizing a result given by P. J. Cameron for
patterned 1–factorizations [J London Math Soc 11 (1975), 189–201]. Finally, it is
shown that Fk(D) has exactly (k!)2s+1(2s + 1)|Aut(D)| automorphisms whenever
D is abelian.

Keywords: (1-rotational) k–factorization; automorphism group.

1 Introduction

Let V and W be sets of size v and w, respectively. As usual we denote by Kv the complete
graph on v vertices and by KV the complete graph with vertex–set V . Also, by KV,W

we denote the complete bipartite graph with parts V and W and by Kv,w any complete
bipartite graph with parts of size v and w. For any simple graph Γ, the vertex–set and
the edge–set of Γ will be denoted by V (Γ) and E(Γ), respectively. A k–regular spanning
subgraph of Kv is a k-factor and a set F of edge–disjoint k–factors whose edges partition
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E(Kv) is a k–factorization of Kv. It is easily seen that for a k–factorization of Kv to exist
we must have kv ≡ 0 (mod 2) and v − 1 ≡ 0 (mod k); in particular, k and v − 1 must
have the same parity. An automorphism of a k-factorization F of KV is a permutation
ϕ of V preserving F , namely, ϕ(F ) ∈ F for any F ∈ F . The set of all automorphisms
of F is a group which is called the full automorphism group of F and usually denoted by
Aut(F). Any subgroup of Aut(F) is an automorphism group of F .

It is very well known that a 1–factorization of K2n exists for any n. For a given
multiplicative group D (not necessarily abelian!) of order 2n− 1, one can be constructed
as follows. Set P = {[∞, 1]} ∪ {[x, x−1] | x ∈ D \ {1}} (where ∞ is an element not
belonging to D) and let Pd = Pd, for any d ∈ D. Of course, Pd is the 1–factor that we
get from P by replacing any vertex x 6= ∞ with xd hence, P1 = P . It is known (see [7]
for a proof when D is not necessarily abelian!) that the set P = {Pd | d ∈ D} turns out
to be a 1–factorization of KD∪{∞} and throughout the paper it will be referred to as the
patterned 1–factorization over D. In [11] the full automorphism group of P is determined
whenever D is abelian.
Many other papers deal with 1–factorizations of Kv with a certain degree of symmetry,
namely, with an automorphism group acting somehow regularly on either the vertex–set
or the edge-set or the factor–set (see, for example, [3, 4, 8, 15, 16, 18]). Note that a
k–factorization F with k > 2 is not necessarily made up of isomorphic k–factors. When
this happens F will be called uniform. In this paper we will only deal with uniform k–
factorizations. The main problem concerning the existence of a uniform k–factorization
consists of establishing whether for a given k–factor F of Kv there exists a k–factorization
whose factors are copies of F . When k = 2 then F is nothing but the disjoint union of
t–cycles of length `1, `2, . . . , `t with

∑
`i = v. In this case the problem is briefly denoted

by OP(`1, `2, . . . , `t) and it is known as the Oberwolfach problem (see [5]). Although
there are many infinite sets of parameters `1, `2, . . . , `t for which the problem has been
solved (see [6, 9, 10, 17, 19, 22] for some recent results), the problem remains open. It is
worth pointing out that most of the above cited papers provide solutions satisfying some
conditions of symmetry such as the existence of an automorphism group fixing one vertex
and acting semiregularly on the others. Generally speaking, a k–factorization F of Kv is
said to be 1–rotational under a group G if the vertices of Kv can be renamed over G∪{∞},
∞ 6∈ G, in such a way that the action of G on the vertices by right multiplication (with
the condition ∞g =∞ for any g ∈ G) preserves F , namely, Fg ∈ F for any F ∈ F and
g ∈ G. Of course, the graph Fg is obtained by replacing each vertex of F , say x, with xg.
In particular, the patterned 1–factorization over D is 1–rotational over the same group
D.
As k increases, the structure of an arbitrary k–factor of Kv can be much more involved
and the general existence problem appears much more difficult to face. We refer the
reader to [1, 20] for some recent results on cubic (k = 3) factorizations. In this paper, we
restrict our attention to k–factors which are the union of complete graphs and bipartite
complete graphs. For k > 2, let F denote a k–factor with the following structure:

F = Kk+1 ∪ . . . ∪ Kk+1︸ ︷︷ ︸
r–times

∪Kk,k ∪ . . . ∪ Kk,k︸ ︷︷ ︸
s–times
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for some non–negative integers r and s. A k–factorization of Kv whose factors are copies of
F will be called a k–factorization of type (r, s). Of course, v = r(k+ 1) + 2sk and for such
a factorization to exist we must have v ≡ 1 (mod k), hence r ≡ 1 (mod k). This means
that a necessary condition for the existence of k–factorization of type (r, s) is that the
number r of complete graphs in any of its factors is ≡ 1 (mod k) thus r > 1. Even with
such a strong restriction on the structure of a k–factor the problem is almost completely
open even in the most studied case, i.e., k = 2. This instance of the Oberwolfach problem,
i.e., OP(3, . . . , 3︸ ︷︷ ︸

r–times

, 4, . . . , 4︸ ︷︷ ︸
s–times

), has been solved only when r is odd and either s = 0 (in this

case we have a Kirkman Triple system KTS(v) of order v whose existence has been
proven in [13]), or s = 1 [14] and whenever s > 0 and r = 1 ([5], see also [9]). The
case r = 1 which is OP(3, 4, . . . , 4) is somewhat peculiar and it has been treated in
[9, 21]. The former paper shows that a 1–rotational solution to such a problem can
be easily constructed over the dihedral group. In [21] the full automorphism group of
such a solution is completely determined, providing a lower bound for the number of
non–isomorphic solutions to OP(3, 4, . . . , 4).

The aim of this paper is to show that as in [21] we can construct a highly symmetric
k–factorization of Kv of type (1, s) for any k > 2 and for any s > 1. In Section 2 we
construct such a factorization over an arbitrary 1–factorization of K2s+2 and we prove
that the number of pairwise non–isomorphic k–factorizations of type (1, s) is at least as
large as the number of non–isomorphic 1–factorizations of K2s+2. The k–factorization we
obtain when starting from P is called the patterned k–factorization over D. In Section 3
we completely determine its full automorphism group and we also determine its size when
D is abelian.

2 The existence of k–factorizations of type (1, s)

In this section we construct a k–factorization of type (1, s) for any positive integers k > 2
and s, generalizing the construction given in [9] when k = 2.
Let D be a set of order 2s + 1 and let ∞ be an element not belonging to D. Also, let S
be a 1–factorization of KD∪{∞}. We are going to construct the requested k–factorization
over the complete graph K(Ik×D)∪{∞}, where Ik = {1, 2, . . . , k}. Consider the partition of
Ik × D into the sets Ad = Ik × {d} with d ∈ D and let Fd be the k–factor defined as
follows:

Fd = KAd∪{∞} ∪
⋃

[x,y]∈Sd
x 6=∞6=y

KAx,Ay

where Sd denotes the factor of S containing the edge [∞, d], for any d ∈ D. It is worth
mentioning that by means of the circle product ◦ defined in [19], one can see that Fd is
nothing but the product of KIk∪{∞} and Sd, i.e. Fd = KIk∪{∞} ◦ Sd. We claim that the
set Fk(S) = {Fd | d ∈ D} is a k–factorization of KIk×D∪{∞} of type (1, s). Since Fk(S)
contains the right number of k–factors, we only need to prove that they are edge–disjoint.
First of all note that KAx∪{∞} and KAx,Ay are edge-disjoint for any x, y ∈ D. Also, any
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two distinct complete graphs of the form KAx∪{∞} only share the vertex ∞ hence, they
do not have a common edge. Finally, note that two complete bipartite graphs KAx1 ,Ay1

and KAx2 ,Ay2
share an edge if and only if [x1, y1] = [x2, y2]. From the above considerations

easily follows that all k–factors of Fk(S) are edge disjoint and then partition the edge–set
of KIk×D∪{∞}. We will call Fk(S) the k–factorization based on S.

Our simple construction leads to non–isomorphic k–factorizations of type (1, s) as soon
as we start from non–isomorphic 1–factorizations. More precisely,

Proposition 1. If S and S are two non–isomorphic 1–factorizations, then Fk(S) and
Fk(S) are non–isomorphic.

Proof. Let Fk(S) = {Fd | d ∈ D} and Fk(S) = {F d | d ∈ D} be the two k–factorizations
based on S and S, respectively, and consider an isomorphism ψ between Fk(S) and
Fk(S). Since for any d ∈ D there exists d′ ∈ D such that ψ(Fd) = F d′ we have, in
particular, that ψ(KAd∪{∞}) = KAd′∪{∞}. Therefore, if we prove that ψ fixes ∞ we will
necessarily have that ψ(Ad) = Ad′ , i.e., ψ permutes the Ad’s. By contradiction, assume
there exists an element (i, a) ∈ Ik×D such that ψ(i, a) =∞. Then for any b 6= a we would
have that ψ(KAb∪{∞}) is a complete graph not passing through ∞ which contradicts the
consideration above.
Now, denote by Sd (Sd) the factor of S (S) containing the edge [∞, d], for any d ∈ D,
and consider the permutation ϕ of D ∪ {∞} fixing ∞ and such that ϕ(x) = y if and
only if ψ(Ax) = Ay. We are left to prove that ϕ is an isomorphism between S and S
which means that for a given d ∈ D we have ϕ(Sd) = Sd′ , where d′ = ϕ(d). Of course,
ϕ([∞, d]) = [∞, d′]. Now, let [x, y] ∈ Sd \ {[∞, d]}. Since ψ(Fd) = F d′ , there exists
x̄, ȳ ∈ D such that ψ(KAx,Ay) = KAx̄,Aȳ ∈ F d′ hence, ϕ([x, y]) = [x̄, ȳ] ∈ S̄d′ . We then

conclude that ϕ is an isomorphism between S and S and the proof is complete.

It is very well known (see [23]) that the number N(2n) of pairwise non–isomorphic
1–factorizations of K2n goes to infinity with n; more precisely, lnN(2n) ∼ 2n2 ln(2n) [12].
Therefore, we have:

Corollary 2. The number of pairwise non isomorphic k–factorizations of type (1, s) is
at least as the number of pairwise non–isomorphic 1–factorizations of K2s+2 and it goes
to infinity with s.

Now, assume that D is a multiplicative group (not necessarily abelian!) and let R be
a 1–rotational 1–factorization over D. Also consider the action of D on Ik ×D ∪ {∞}
by right translation defined by ∞d = ∞ and (i, x)d = (i, xd) for any d ∈ D and for any
(i, x) ∈ Ik ×D. The reader can easily check that Fx · d = Fxd for any x, d ∈ D meaning
that the k–factorization Fk(R) based on R admits D as an automorphism group acting
sharply transitively on the factor–set. Recall that the patterned 1–factorization P over D
is 1–rotational over the same group D. The k–factorization based on P will be denoted
by Fk(D) and referred to as the patterned k–factorization over D.

The arguments given so far allow us to state the following result.
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Proposition 3. For any k > 2, any s > 1 and any group D of order 2s + 1 there
exists a k–factorization of type (1, s) with D being an automorphism group acting sharply
transitively on the factor–set.

Proof. For a given group D of order 2s+ 1, Fk(D) provides the requested k–factorization
for any k > 2 and any s > 1.

It is worth pointing out that the patterned 2–factorization has been defined in [9] over
the cyclic group Z2s+1. Reviewing I2 as the cyclic group Z2 of order 2 the authors proved
that F2(Z2s+1) is 1–rotational under the direct product Z2×Z2s+1. In order to show that
Fk(D) is 1–rotational under many different groups we need to recall the following facts. A
semidirect product GnθD with θ : G→ Aut(D) being an homomorphism is defined over
the cartesian product G×D with the binary operation ∗ : (g1, d1)∗(g2, d2) = (g1g2, d

g2

1 d2),
where dg2

1 = θ(g2)(d1). The holomorph Hol(D) of D is usually defined as the semidirect
product Aut(D) nθ D where θ is the identity map. If we denote by τd, d ∈ D, the right
transltion by d which fixes∞ and maps x to xd, for any x ∈ D, and let τD be the group of
all right translations over D then Hol(D) can also be represented as the group generated
by τD and Aut(D), i.e., Hol(D) ' 〈Aut(D), τD〉. One can easily see that the holomorph
of D is an automorphism group of P fixing ∞. The converse, when D is abelian, has
been proven in [11]:

Proposition 4. If D is abelian, then any automorphism of the patterned 1–factorization
P fixing ∞ lies in Hol(D).

Now recall that the dihedral groupD4s+2 of order 4s+2 can be defined as the semidirect
product Z2nθZ2s+1 with θ mapping the generator of Z2 to the inverse map of D. In [9] the
authors prove that F2(Z2s+1) is 1–rotational under the dihedral group of order 4s+ 2 and
in [21] it is observed (without proof!) that it is actually 1–rotational under any semidirect
product Z2 nθ Z2s+1. A more general result will be now proven for any k > 2.

Proposition 5. Let D and G be groups of order 2s + 1 and k, respectively. Then the
patterned k–factorization over D is 1–rotational under any semidirect product GnD.

Proof. Rename the elements of Ik over the ones in G. Then Ad = G× {d} for any d ∈ D
and Fk(D) becomes a k–factorization of KG×D∪{∞}. Since (g, d) ∗ (a, b) = (ga, dab) ∈
G × {dab}, it follows that Ad ∗ (a, b) = Adab. Note that τbθ(a) ∈ Hol(D) hence, it is an
automorphism of S mapping Sd to Sdab ∈ S. Therefore, we have

Fd ∗ (a, b) = Kdab ∪
⋃

[x,y]∈Sd
x 6=∞6=y

KAxab,Ayab

= Kdab ∪
⋃

[x,y]∈Sdab
x 6=∞6=y

KAx,Ay = Fdab

for any d ∈ D which means that the right multiplication by any element of GnθD leaves
Fk(D) invariant. The conclusion follows.
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We leave to the reader the easy task to show that starting from any 1–rotational 1–
factorization S over D, the k–factorization Fk(S) is actually 1–rotational under the direct
product G×D with G being an arbitrary group of order k.

3 The full automorphism group of a patterned k–

factorization

Let D be a set of order 2s+ 1 and let S = {Sd | d ∈ D} be a 1–factorization of KD ∪ {∞}
with Sd, d ∈ D, denoting the factor of S containing [∞, d]. In this section we show that
the full automorphism group of Fk(S) is linked to that of S. After that we completely
determine the full automorphism group of a patterned k–factorization over an abelian
group. From now on Fk(S) will be simply denoted by F and we will also refer to the sets
Ad’s as the parts of F .

First, we prove the following result.

Proposition 6. Each automorphism ψ of F fixes ∞ and permutes its parts, namely, for
any d ∈ D there exists d′ ∈ D such that ψ(Ad) = Ad′.

Proof. It is enough to review the first part of the proof of Proposition 1, with S = S.

Now, we define two different types of automorphisms of F . Denote by Aut∞(S) the
group of the automorphisms of S fixing ∞. For a given ϕ ∈ Aut∞(S) we call a lift of ϕ
the permutation ϕ of Ik×D ∪ {∞} which fixes∞ and maps any element (i, d) ∈ Ik×D
to (i, ϕ(d)). It is easy to check that the set Aut∞(S) = {ϕ | ϕ ∈ Aut∞(S)} of all lifted
automorphisms is a group. We are about to prove that it is actually an automorphism
group of F .

Proposition 7. Aut∞(S) is an automorphism group of F .

Proof. Consider an automorphism ϕ of S fixing∞. For a given d ∈ D, there exists d′ ∈ D
such that ϕ(Sd) = Sd′ ; in particular, ϕ(d) = d′ and the edges [ϕ(x), ϕ(y)] cover all edges
of Sd′ \ {[∞, d′]} as [x, y] runs over Sd \ {[∞, d]}. Therefore, we have:

ϕ(Fd) = KAϕ(d)∪{∞} ∪
⋃

[x,y]∈Sd
x 6=∞6=y

KAϕ(x),Aϕ(y)

= KAd′∪{∞} ∪
⋃

[x,y]∈Sd′
x 6=∞6=y

KAx,Ay = Fd′

The conclusion easily follows.

We now introduce a different type of automorphism of F . Let σ be a permutation of
Ik ×D ∪ {∞} fixing ∞ and preserving each part, i.e., σ(Ad) = Ad for any d ∈ D. Since
σ fixes any complete graph of the form KAd

∪ {∞} and any bipartite complete graph of
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the form KAx,Ay , it follows that σ is an automorphism of F with the further property that
each of its factors is fixed by σ. Such an automorphism is called a vertical automorphism
and the set of all such automorphisms will be denoted by Σ. It is straightforward that
Σ is an automorphism group of F and to describe its structure we denote by Σd, d ∈ D,
the subgroup of Σ consisting of those automorphisms fixing each element not belonging
to Ad.

Proposition 8. The group Σ of the vertical automorphisms of F is a normal subgroup
of Aut(F) and it is the direct product of the Σds, namely, Σ = ×d∈DΣd. In particular,
|Σ| = (k!)2s+1.

Proof. To prove that Σ is a normal subgroup we need to check that for any σ ∈ Σ and
any ψ ∈ Aut(F) we have ψ−1σψ ∈ Σ. Indeed, for any d, d′ ∈ D such that ψ(Ad) = Ad′
we have that ψ−1σψ(Ad) = ψ−1σ(Ad′) = ψ−1(Ad′) = Ad, hence ψ−1σψ is vertical.
Now, let σ be a vertical automorphisms of P and for any d ∈ D define σd ∈ Σd as follows:

σd(x) =

{
σ(x) if x ∈ Ad;
x otherwise.

It is easy to check that σ decomposes into the product of the σd’s, i.e., σ =
∏

d∈D σd,
and that such a decomposition is unique up to the order. This is enough to state that
Σ = ×d∈DΣd. Since D has order 2s+ 1 and |Σd| = k! we get |Σ| = (k!)2s+1.

Note that a non trivial lifted automorphism ϕ moves at least one k–factor of F since
there exists at least an element d ∈ D such that ϕ(d) 6= d and then ϕ(Fd) = Fϕ(d) 6= Fd.
On the other hand a vertical automorphism fixes each k–factor of F . Therefore we
conclude that Σ ∩ Aut∞(S) = {id}.

We are now able to describe the structure of the full automorphism group of F .

Theorem 9. The full automorphism group of the k–factorization F based on S is gener-
ated by all lifted and vertical automorphisms, namely, Aut(F) = ΣAut∞(S). In particu-
lar, it has at least (k!)2s+1 automorphisms.

Proof. It is enough to prove that for any automorphism ψ of F there exists a lifted
automorphism ϕ such that ψϕ−1 ∈ Σ. It will follow that ψ ∈ ΣAut∞(S) and then
Aut(F) = ΣAut∞(S).
Let ψ be an automorphism of F and denote by ϕ the permutation of D ∪ {∞} fixing∞
and such that ϕ(x) = y if and only if ψ(Ax) = Ay, for any x, y ∈ D. We prove that ϕ is
an automorphism of S, namely, for a given d ∈ D we have ϕ(Sd) = Sd′ where d′ = ϕ(d).
Of course, ϕ([∞, d]) = [∞, d′]. Now, let [x, y] ∈ Sd \ {[∞, d]}. Since ψ(Fd) = Fd′ , there
exists x′, y′ ∈ D such that ψ(KAx,Ay) = KAx′ ,Ay′

∈ Fd′ hence, ϕ([x, y]) = [x′, y′] ∈ Sd′ . It

follows that ϕ is an automorphism of S and ψϕ−1 fixes each part, i.e., ψϕ−1 ∈ Σ. The
conclusion follows.

As already mentioned in Proposition 4, when D is an abelian group and S = P
is the patterned 1–factorization over D then Aut∞(S) = Hol(D) and we known that
|Hol(D)| = (2s+ 1)|Aut(D)|. Therefore we get the following corollary.
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Corollary 10. Let D be an abelian group of order 2s+ 1. The full automorphism group
of the patterned k–factorization over D has order (k!)2s+1(2s+ 1)|Aut(D)|.

Recall that the full automorphism group of any abelian group can be easily computed.
Hence, as a final application of the results above, we determine the order of Aut(Fk(D))
for any abelian group D of order 125. There are exactly 3 non-isomorphic abelian groups
of such order: D1 = Z125, D2 = Z5 × Z25 and D3 = Z5 × Z5 × Z5. One can easily check
that their full automorphism groups Aut(Di) have the following orders: |Aut(D1)| =
100, |Aut(D2)| = 100 · 20 = 2000, and |Aut(D3)| = 124 · 120 · 100 = 1488000. Since
Aut(Fk(Di)) = (k!)125(125)|Aut(Di)|, the three patterned k–factorizations constructed
over the Di’s have a different number of automorphisms hence, they are pairwise non–
isomorphic.
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