A NEW DETERMINANT EXPRESSION FOR THE
WEIGHTED BARTHOLDI ZETA FUNCTION OF A
DIGRAPH

Iwao SATO*, Hideo MITSUHASHI
Oyama National College of Technology, Oyama
Tochigi 323-0806, JAPAN
Hideaki MORITA
Division of System Engineering for Mathematics,
Muroran Institute of Technology,
Muroran, Hokkaido 050-8585, JAPAN

July 3, 2012

Abstract

We consider the weighted Bartholdi zeta function of a digraph D, and give a new de-
terminant expression of it. Furthermore, we treat a weighted L-function of D, and give
a new determinant expression of it. As a corollary, we present determinant expressions
for the Bartholdi edge zeta functions of a graph and a digraph.

2000 Mathematical Subject Classification: 05C50, 15A15.
Key words and phrases: zeta function, digraph covering, L-function

1 Introduction

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [7]. In [7],
he showed that their reciprocals are explicit polynomials. A zeta function of a regular graph
G associated with a unitary representation of the fundamental group of G was developed
by Sunada [12,13]. Hashimoto [6] generalized Thara’s result on the zeta function of a regular
graph to an irregular graph, and showed that its reciprocal is again a polynomial by a
determinant containing the edge matrix. Bass [2] presented another determinant expression
for the Thara zeta function of an irregular graph by using its adjacency matrix.

Stark and Terras [11] gave an elementary proof of Bass’ Theorem, and discussed three
different zeta functions of any graph. Furthermore, various proofs of Bass’ Theorem were
given by Foata and Zeilberger [4], Kotani and Sunada [8].

For two variable zeta function of a graph, Bartholdi [1] defined and gave a determinant
expression of the Bartholdi zeta function of a graph. Mizuno and Sato [9] presented a
decomposition formula for the Bartholdi zeta function of a regular covering of a graph.

As a digraph version of the Bartholdi zeta function, Choe, Kwak, Park and Sato [3]
defined the weighted Bartholdi zeta function of a digraph, and presented its determinant
expression.
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As a multi-variable zeta function of a graph, Stark and Terras [11] defined the edge zeta
function of a graph. Watanabe and Fukumizu [14] presented a determinant expression for
the edge zeta function of a graph G with n vertices by n x n matrices.

In this paper, we present a new determinant expression of the weighted Bartholdi zeta
function of a digraph D by using the method of Watanabe and Fukumizu [14]:

Main Theorem.

Let D be a connected digraph with n vertices and m arcs, and let W = W (D) be a
weighted matrix of D. Then the reciprocal of the weighted Bartholdi zeta function of D is
given by

my

C(D,w,u,t) ™" = det(I, + (1 - w)’D — tAy — tAg) [[(1 — w(fi)w(f; (A — u)*?),

i=1
where D, A; and A are defined in Section 3, and flil, cee njfbll are symmetric arcs of D.

Furthermore, we present a new decomposition formula for the weighted Bartholdi zeta
function of a group covering of D, and a new determinant expression for the weighted
Bartholdi L-function of D.

2 Preliminaries

Graphs and digraphs treated here are finite. Let G = (V(G), E(G)) be a connected graph
(possibly multiple edges and loops) with the set V(G) of vertices and the set E(G) of
unoriented edges uv joining two vertices u and v. For wv € E(G), an arc (u,v) is the
oriented edge from u to v. Set D(G) = {(u,v), (v,u) | uv € E(G)}. For e = (u,v) € D(G),
set u = o(e) and v = t(e). Furthermore, let e~! = (v, u) be the inverse of e = (u,v).

A path P of length n in G is a sequence P = (ey,- -, e,) of n arcs such that e; € D(G),
t(e;) = o(e;i+1)(1 < i <n—1), where indices are treated mod n. Set | P |=n, o(P) = o(e1)
and t(P) = t(e,). Also, P is called an (o(P), t(P))-path. We say that a path P = (e1,-- -, ep)
has a backtracking or a bump at t(e;) if e} = e; for some i(1 <i <n—1). A (v,w)-path
is called a v-cycle (or v-closed path) if v = w.

We introduce an equivalence relation between cycles. Two cycles Cy = (eq, -+, e,,) and
Cy = (f1,- -+, fm) are called equivalent if there exists k such that f; = ej4 for all j. The
inverse cycle of C' is in general not equivalent to C. Let [C] be the equivalence class which
contains a cycle C. Let B" be the cycle obtained by going r times around a cycle B. Such
a cycle is called a power of B. A cycle C is reduced if C' has no backtracking. Furthermore,
a cycle C is prime if it is not a power of a strictly smaller cycle.

The Ihara zeta function of a graph G is a function of u € C with |u| sufficiently small,
defined by

2(G,t) = [T -dh,
[C]
where [C] runs over all equivalence classes of prime, reduced cycles of G(see [7]).

Let m be the number of edges of G. Furthermore, let two m X m matrices B =

(Be,f)e,reap) and Jo = (J¢ 1 )e, rea(p) be defined as follows:

B . _ 1 ift(e) = o(f), I . 1 if f=e"t,
“f =) 0 otherwise ef =) 0 otherwise.

Then B — Jg is called the edge matriz of G.

Theorem 1 (Hashimoto; Bass) Let G be a connected graph with n vertices and m edges.
Then the reciprocal of the IThara zeta function of G is given by

Z(G,t)7! = det(Igy, — t(B — Jp)) = (1 — tH)™ " det(I — tA(G) + t*(D — 1)),



where A(G) is the adjacency matriz of G, and D = (d;;) is the diagonal matriz with
di; = degv; where V(G) = {vy,- -, v, }.

Then the Bartholdi zeta function of G is defined by

Caly,t) =((G,u,t) = H(l — OO =L
[l

where [C] runs over all equivalence classes of prime cycles of G(see [1]).

Theorem 2 (Bartholdi) Let G be a connected graph with n vertices and m unoriented
edges. Then the reciprocal of the Bartholdi zeta function of G is given by

(G, u,t)~t = det(Igy, — (B — (1 —u)Jo))
= (1-(1-uw?*?)m "det(I-tA(G)+ (1 —u)(D — (1 —u)D)t?).

In the case of u = 0, Theorem 2 implies Theorem 1.

Next, we state the weighted Bartholdi zeta function of a digraph. Let D = (V(D), A(D))
be a connected digraph with the set V(D) of vertices and the set A(D) of arcs. Furthermore,
let D have n vertices vy, - - -, v, and m arcs. Then we consider an nxn matrix W = W(D) =
(wij)1<s,j<n With 4j entry nonzero complex number w;; if (v;,v;) € A(D), and w;; = 0
otherwise. The matrix W = W(D) is called the weighted matriz of D. Furthermore,
let w(vi,vj) = wij, vi,v; € V(D) and w(e) = w;j,e = (v;,v;) € A(D). For each path
P = (e, ,e.) of G, the norm w(P) of P is defined as follows: w(P) = w(ey)---w(e,).

The cyclic bump count cbe(C) of a cycle C = (e, -+, e,) of G is

cbe(C) =| {i:1,~-,n|ei:e;+11} [,

where e, +1 = e1. Then the weighted Bartholdi zeta function of D is a function of u,t € C
with |u|, [¢] sufficiently small, defined by

(D, w,u,t) = [J(1 = w(CuteDH) 1,
(€]
where [C] runs over all equivalence classes of prime cycles of D.

If w=1,ie., w(v,v;) =1 for each (v;,v;) € A(D), then the weighted Bartholdi zeta
function of D is the Bartholdi zeta function of D. If D = D¢ is the symmetric digraph
corresponding to a graph G, and w = 1, then the weighted Bartholdi zeta function of D¢ is
the Bartholdi zeta function of G. If D = D¢, w = 1 and v = 0, then the weighted Bartholdi
zeta function of G is the Thara zeta function of G.

Two m X m matrices B, = (Bgf)e,feA(D) and J, = (J;‘jf)eyfeA(D) are defined as

oo { (&) ift(e) = olf) { (e) if f=e
o [ T =olf) g _ [ wle) i f=e

ef =Y 0 otherwise Ve f 0 otherwise.

Furthermore, we define two n x n matrices W1 = W1 (D) = (ay,) and Wy as follows:

w(u,v) if both (u,v) and (v,u) € A(D),
I .
0 otherwise

and
Wy =Wy(D) =W(D) - Wj.

Let an n x n matrix S = (s,y) is the diagonal matrix defined by

s00 =| {e € A(D) | o(e) =x,e € A(D)}|.



Theorem 3 (Choe, Kwak, Park and Sato) Let D be a connected digraph, and let W =
W (D) be a weighted matriz of D. Furthermore, let m; =| {e € A(D) | e~! € A(D)} | /2.
Then the reciprocal of the weighted Bartholdi zeta function of D is given by

D, w,u,t)™' = det(I,, — (By — (1 —u)Jy)t),

where n =| V(D) | and m =| A(D) |.
Furthermore, if w(e™') = w(e)™! for each e € A(D) such that e € A(D), then

C(D,w,u, )™ = (1 — (1 —w)22)ym—n
X det(L, — tW1(D) = (1= (1 = u)*2)tWo(D) + (1 = w)t*(S — (1~ u)L,)).

If D= D¢g, w=1 and u = 0, then Theorem 2 implies Theorem 1.

Now, we proceed to the edge zeta function of a graph G with m edges. Let G be a
connected graph and D(G) = {e1,...,€m,Cm+1s---,€2m (€mpi = ei_l(l <i<m)). We
introduce 2m variables z1, . . ., zam, and set g(C) = z;, - - - z;,, for each cycle C = (e;,,. .., €i,)
of G. Set z., = z;(1 <4 <2m) and z = (21,. .., 22,m). Then the edge zeta function {c(z) of
G is defined by

Calz) = [[(1—g(@),

(€

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Theorem 4 (Stark and Terras) Let G be a connected graph with m edges. Then
(a(2)"" = det(Lam — (B = Jo)U),

where

U= Fm
Zm+1

0 Z2m

Let G be a graph with n vertices. Then we define an n x n matrix A= (azy) as follows:

_ { Z(my)/(l - Z(a:ﬁ)z(y,w)) if (x, Z/) € D(G)7
0

Apy = g
zY otherwise.

Furthermore, an n x n matrix D = (dyy) is the diagonal matrix defined by
Zele—1
dyy = _FeFet
zx Z 1-— Zele—1
o(e)=z

Theorem 5 (Watanabe and Fukumizu) Let G be a connected graph with n vertices and
m edges. Then

s

Co(z) " = det(L, + D = A) JT(1 = 2,2,0),

i=1

where D(G) = {f1, 1" oo\ fmfm'}.



In Section 2, we present a new determinant expression of the weighted Bartholdi zeta
function of a digraph D by using the method of Watanabe and Fukumizu [14]. In Section 3,
we present a new decomposition formula for the weighted Bartholdi zeta function of a group
covering of D. In Section 4, we present a new determinant expression for the weighted
Bartholdi L-function of D. In Section 5, we define the Bartholdi edge zeta functions of
graphs and digraphs, and present their determinant expressions as corollaries of Theorem
6.

3 Weighted Bartholdi zeta functions of digraphs

We present a new determinant expression of the weighted Bartholdi zeta function of a
digraph.

Let D be a connected digraph with n vertices vy, ---,v, and m arcs, and W = W(D)
a weighted matrix of D. Then we define two n x n matrices A; = A;(D) = (agy,) and
Ay = Ay(D) = (byy) as follows:

] w(z,y) /(1 —w(z, y)w(y,z)(1 —w)?t?) if both (z,y) and (y,z) € A(D),
oy = { 0 otherwise
e L[ wley) i (o) € AD) and (y2) ¢ AD),
e { 0 otherwise

Furthermore, an n x n matrix D = D(D) = (d,,) is the diagonal matrix defined by

e Y wiew(e)

_ Z1V (] — )22
0(6)2%671614(1))1 w(e)w(e 1) (1 —u)?t

Let My @ - -- @ My be the block diagonal sum of square matrices My, -+, M;. A new
determinant expression for (D, w,u,t) is given as follows:

Theorem 6 Let D be a connected digraph, and let W = W (D) be a weighted matriz of D.
Then the reciprocal of the weighted Bartholdi zeta function of D is given by

C(D,w,u,t)™" = det(L, + (1 — u)t?D — tA; — tAy) ﬁa —w(f)w(f;7 (1 —u)?t?),
i=1

where n =| V(D) |, m =| A(D) | and f',.. - fEL are symmetric arcs of D.

Proof. Let V(D) = {v1,--,v,} and, let A(D) = {e1, . €mes f1, s fnas 1 oo Frnd
such that e; ' ¢ A(D)(1 <14 < myg). Note that m = mq + 2m;.
Arrange arcs of D as follows:

€1, emos f1o T Fonns k-
Let
[ w(er) 0
_ w(em,)
U= w(fr)
w(fi )
L O -




Then we have
UB =B, and UJg = J,,.

Thus,
By, —(1-u)J, =U®B—(1—u)Jp).

By Theorem 2, it follows that
(D, w,u,t)™ = det(I,, — tUB — (1 — u)Jp)).

Now, let K = (Key) cca(p)wev(p) be the m x n matrix defined as follows:

K., - { 1 ifo(e) =,

0 otherwise.
Furthermore, we define the m x n matrix L = (Ley)ecA(D);wev(p) as follows:

L 1 ift(e) =,
Y"1 0 otherwise.

Then we have
L'K = B.

Thus,
det(I,, — tU(B — (1 — u)Jy))
= det(L,, — tU(L'K — (1 — u)Jg)) = det(I,, — tUL'K + (1 — u)tUJy).

But, we have

m 1 (1 —wtw(f;)
Lo+ (1 —utUJy =1, @ (&2, { (1- u)tw(fj_l) . i . (1)
Since |ul, |t| are sufficiently small, we have
| o gty }) = 1= (1= wPPu(f)w(f!) £ 0 (1< 5 < my).
j

Thus, I, + (1 — u)tUJy is invertible. Therefore,
det(I,, — tU(B — (1 — u)Jyp))
= det(I,, — tUL'K(I,, + (1 — u)tUJo) 1) det(I,, + (1 — u)tUJy).
But, if A and B are a m x n and n X m matrices, respectively, then we have
det(I,, — AB) = det(I,, — BA). (2)
Thus, we have
det(I,, —tU(B — (1 — u)Jy))
= det(I, —t '"K(L,, + (1 — w)tUJo) " 'UL) det(I,, + (1 — u)tUJy).

Next, we have

mi

det(L, + (1 = u)tUJo) = [J(1 — w(fi)w(f; ) (1 — u)*?).

i=1



Furthermore, the m x n matrix UL = (cev)eca(D)vev (D) is given as follows:

Cov 1= { w(e) if t(e) =,

0 otherwise.

But, we have

(L + (1 = u)tUJo) ™! = L, @ (@] { —(1- u)lt/ugfgfjl)/xj - q)ﬁj‘uj)/% )

where z; = 1 —w(f)w(f; (1 —u)*? (1 <i<my).
Now, for a symmetric arc (x,y) € A(D),

("K(Ln + (1 = u)tUJo) " UL)gy = w(z,y)/(1 - w(z, y)w(y, 2)(1 — u)*t?).
For a nonsymmetric arc (x,y) € A(D),
('K, + (1 —u)tUJo) 'UL),, = w(z,y).

Furthermore, if x = y, then

—u)twie)w 671
("K(Ln + (1 = u)tUJg) "' UL)yy = — Z 1 —(110(6)13;12@51;(1(_ u))2t2'
o(e)=z,e~1€A(D)

Thus,
det(I,, —t *"K(L,, + (1 — w)tUJo) " UL) = det (I, 4 (1 — u)t?D — tA; — tAy).
Therefore, it follows that

mi
C(D,w,u,t)"t = det(I, + (1 — u)t?D — tA; — tAo) H(l —w(f)w(f7 1A — u)t?).
i=1
O
By Theorem 5, we obtain the second identity of Theorem 2.

Corollary 1 (Choe, Kwak, Park and Sato) Let D be a connected digraph, and let W =
W (D) be a weighted matriz of D. Furthermore, assume that w(e™!) = w(e)™! for each
e € A(D) such that e € A(D). Then the reciprocal of the weighted Bartholdi zeta function
of D is given by

C(D,w,u,t)™ L = (1 — (1 —u)?t2)™m—n

x det(I, — tW1(D) — (1 — (1 — u)**)tWo(D) + (1 — u)t*(S — (1 — w)L,,)).
where n =| V(D) | and m =| A(D) |.

Proof. Since w(e™t) = w(e)~? for each symmetric arc e € A(D), we have w(e™!)w(e)~t =
1. Then we have
1 ~ 1

S, Aj=— —
Tl (- w2

D=~
1—(1—wu)22™’

W1 (D).

Furthermore, Ay = W(D). Thus,
C(Da W, U, t)il = (1 - (1 - u)2t2)m1

x det(L, —t/(1 — (1 —u)*#)W (D) — tWo(D) + (1 — u)t?/(1 — (1 — u)?t?)S)

= (1-(1—w?2)ym="det(I, — tW1(D) — (1 — (1 —u)?t3)tWy(D) + (1 — u)t*(S — (1 — u)L,)).



4 Weighted Bartholdi zeta functions of group coverings
of digraphs

We can generalize the notion of a I'-covering of a graph to a simple digraph. Let D be
a connected digraph and I' a finite group. Then a mapping « : A(D) — T is called a
pseudo ordinary voltage assignment if a(v,u) = a(u,v)~! for each (u,v) € A(D) such that
(v,u) € A(D). The pair (D, «) is called an ordinary voltage digraph. The derived digraph
D* of the ordinary voltage digraph (D, ) is defined as follows: V(D%) = V(D) x I" and
((u, h), (v, k)) € A(D®) if and only if (u,v) € A(D) and k = ha(u,v). The digraph D® is
called a I'-covering of D. Note that a I'-covering of the symmetric digraph corresponding
to a graph G is a T'-covering of G(see [5]).

Let D be a connected digraph, T' a finite group and « : A(D) — T a pseudo ordinary
voltage assignment. In the I'-covering D%, set v, = (v,g) and e, = (e,g), where v €
V(D),e € A(D),g €T. For e = (u,v) € A(D), the arc e, emanates from u, and terminates
at Vgal(e)-

Let W = W(D) be a weighted matrix of D. Then we define the weighted matriz
W = W(D®) = (i(ug,vp,)) of D* derived from W as follows:

. | w(u,v) if (u,v) € A(D) and h = ga(u,v),
W(ug, v) = { 0 otherwise.

If M; =My =--- =M, =M, then we write soM = M; @ --- ® M,. The Kronecker
product A Q B of matrices A and B is considered as the matrix A having the element a;;
replaced by the matrix a;; B.

Theorem 7 Let D be a connected digraph with n vertices and m arcs, I' a finite group, o :
A(D) — T a pseudo ordinary voltage assignment and W = W (D) a weighted matriz of D.
Set my; =| {e € A(D) | et € A(D)} | /2 and | T |=r. Furthermore, let p1 = 1,pa,- -+, pi
be the irreducible representations of I', and d; the degree of p; for each i, where dy = 1. For
g €', the matriz Ay 4 = (a:(g,)) is defined as follows:

a0 — { w(z,y)/(1 —w(z,y)w(y, =) (1 —u)*?) if (z,y), (y,x) € AD) and a(z,y) = g,
Yy - 0 otherwise.

Furthermore, the matriz Ay 4 = (b&gy)) is defined as follows:

o) .— { w(z,y) if (v,y) € A(D),(y,x) € A(D) and a(z,y) = g,
ry - 0 otherwise.

Suppose that the I'-covering D% of D is connected. Then the reciprocal of the weighted
Bartholdi zeta function of D is

miy

(D, u,t) ™ = [T = w(fi)w(f7 )1 —u)?e?)”

i=1

k
X H{det(Indi —t Z pi(h) ® Ayp—t Z pi(h) ® Ao+ (1 —u)t*(Iy, ® D(D)))}*,

her hel

where flil, ceey f#:“l are symmetric arcs of D.

Proof. Let V(D) = {v1,---,v,} and T = {1 = g1, g2, - -, g» }. Arrange vertices of D* in
n blocks: (v1,1),--+, (vn, 1); (v1,92), 5 (Vny g92)5 -5 (V1,9r)5 5 (Vs gr). We consider the
three matrices A1 (D), Wo(D%) and D(D®) under this order. By Theorem 5, we have

C(D*, b, u,t) "t = det(L, — tA1 (D) — tAo(D?) 4 (1 — u)t?D(D%))



mi

I = wlfw(s (=)

i=1
For h € T, the matrix P, = (pgjh)) is defined as follows:
tn _ | 1 if gih = g,
Pij "=\ 0 otherwise.
Suppose that pl(?) =1, 1ie., g; = gih. Then ((u, ), (v,g9;)) € A(D®) if and only if (u,v) €
A(D) and g; = g;a(u,v), ie., a(u,v) = gi_lgj = gi_lgih = h. Thus we have
=> Py Aon and A;(D*) =D PR A
her her

Let p be the right regular representation of I'. Furthermore, let p; = 1,p2, -, pr be
the irreducible representations of I', and d; the degree of p; for each i, where dy = 1. Then
we have p(h) = Py, for h € T'. Furthermore, there exists a nonsingular matrix P such
that P~p(h)P = (1) @ dg o pa(h) @ -+ @ dj o pi(h) for each h € T'(see [10]). Putting
B=(P'Q®IL,) (A (D) + Ag(DY)(PQ1I,), we have

B =) {(1)@dyopa(h)®-- ®dyopr(h)} R)(Arn + Agp).
hel

Note that A;(D) = Sher Ain (i =0,1) and 1+d3 +---+d; = r. Therefore it follows that

D, w,u,t)"! = H(l — w(fj)w(fj_l)(l —u)?t?)"
k
< [T det(@na, = pi(h) Q) Arn =t > pi(h) R) Ao + (1 — u)t*(Ia, Q) D(D
i=1 hel hel

5 L-functions of digraphs

Let D be a connected digraph with m arcs, T' a finite group, a : A(D) — T a pseudo
ordinary voltage assignment and W = W(D) a weighted matrix of D. For each path
P=(ey, --,e;) of D,set a(P) =ale1) - ale) and w(P) = w(er) - --w(e). . Furthermore,
let p be a representation of I' and d its degree.

The weighted Bartholdi L-function of D associated with p and « is defined by

Cp(w,u,t,p,a) = Hdet(Id - w(C)p(a(C’))quC(c)tm)71
[C]

where [C] runs over all equivalence classes of prime cycles of D.
Two md x md matrices Bf, = (Be,f)e,feap) and J4, = (Je f)e rea(p) are defined as
follows:

B = { WO Qo) g wlelle@) Hf=e

04 otherwise 04 otherwise.

A determinant expression for the weighted Bartholdi L-function of D associated with p
and « was given by Choe, Kwak, Park and Sato [3]. Let 1 < 4,5 < n. Then the (i, j)-block
F;; of a dn x dn matrix F is the submatrix of F consisting of d(i — 1) +1,...,di rows and
d(j—1)+1,...,dj columns.



Theorem 8 (Choe, Kwak, Park and Sato) Let D be a connected digraph with m arcs,
T a finite group, a : A(D) — T a pseudo ordinary voltage assignment and W = W (D) a
weighted matrixz of D. Furthermore, let p be a representation of I', and d the degree of p.
Then the reciprocal of the weighted Bartholdi L-function of D associated with p and « is

Cp(w,u,t, p,a)™t = det(Tng — (B2, — (1 —w)J2)t).

A new determinant expression for the weighted Bartholdi L-function of D associated
with p and « is given as follows:

Theorem 9 Let D be a connected digraph, and let W = W (D) be a weighted matriz of D.
Then the reciprocal of the weighted Bartholdi L-function of D is given by

my
Co(w,ust,poa) ™ =TT = w(fiw(fi (1 - u)?t?)
i=1
x det(Tug + (1 = w)’T,QDD) =t > p(9) Q) Arg =D p(9) ) Acy),
ger ger
where n =| V(D) |, m =| A(D) | and fi',..., 21 are symmetric arcs of D.
Proof. Let V(D) = {U17"'7vn} and) letA(D) = {ela"'aemo7f17"'7fm1af1_17"'7 7;11

such that e; ' ¢ A(D)(1 <4 < myg). Note that m = mq + 2m;.
Arrange arcs of D as follows:

-1 -1
617"'7em07f17f1 7"';fm17 mq*

Let

w(fi )

Furthermore, let two md x md matrices B, = (B, ;). feap) and J, = (J? ;) rea(n) be
defined as follows:

Bg,f:{ plale)) iftle)=o(f), 1o _ { o) i f—e

04 otherwise ef 71 04 otherwise.

Then we have
(U 1)B, = B, and (UR)14)T, = J7,.
Thus,
Bf, — (1—u)Jf, = (UQRT)(B, — (1 -u)I,).
By Theorem 7, it follows that

CD(w7 u, ta P, Oé)il = det(Imd - t(U®Id)(BlJ - (1 - u)JP))
Now, let K = (Kcy) cea(p):wev(p) be the md x nd matrix defined as follows:

K. I, ifo(e) =,
€] 04 otherwise.

10



Furthermore, we define the md x nd matrix L = (Ley)eca(D);vev(p) as follows:

e {500 K002

04 otherwise.

Set Ug = U @1I,;. Then we have

Thus,
det(L,q — tUg(B, — (1 —u)J,))
= det(Ipg — tUg(L'K — (1 —u)J,)) = det(L,q — tUZLK + (1 — u)tUgJd ).

But, we have

Lna+ (1= u)tUgd, = Lyya ® (872 { - u)tw(fl.—dl)p(a(ffl)) (1- u)tw(lj;j)p(oé(fj)) ]).
(3)
Since |ul, |¢| are sufficiently small, we have
L (1 = w)tw(f;)p(a(f;))
e (1 s ) L ]

= (1= (1= wPPw(f)u(f ) £0 (1<) < m).
Thus, L,q + (1 — u)tUyJ, is invertible. Therefore,
det(Ipg —tUg(B, — (1 —u)J),))
= det(Ipg — tUGLIK(Lyg + (1 — w)tUgd,) 1) det(Lng + (1 — w)tUgJd,).
By (2), we have
det(Ipng —tUg(B, — (1 —u)J,))
= det(L,g —t "K(Iq + (1 — w)tUgd,) T UGL) det(Lyq 4+ (1 — w)tUgd,).

Next, we have

miy

det(Ipg + (1 —u)tUqd,) = H(l —w(f)w(f7H (A —u)?t?)e.

i=1

Furthermore, the md x nd matrix UzL = (cev)eeA(D);UGV(D) is given as follows:

o= { DM T =,

0 otherwise.

But, we have
(Lng + (1 —u)tUqd,)

_ m 1214 —(1 = w)tw(f;)/z;ip(a(f;))
= Lioa @ (972 [ —(1 —wtw(f; ) faip(a(f7) 121 )

where x; = 1 — w(f;)w(f;i ) (1 —u)?? (1 <i<my).

11



But, for a symmetric arc (z,y) € A(D),
("K(Tna + (1 = w)tUad )" UgL)ey = w(z,y)/ (1 — w(z, y)w(y, z)(1 — u)*t*) p(alz,y)).
For a nonsymmetric arc (z,y) € A(D),
(K (T + (1 - w)tUsd,) U L)y, = e, y)plolz,y)).

Furthermore, if x = y, then

Z (1 — u)tw(e)w(e 1) L

("K(Tpa + (1 —u)tUad,) "' UgL)sy = — 1— w(e)yw(e 1)(1 — u)??

o(e)=z,e~1€A(D)

Thus,
det(I,g —t "K(Ing + (1 — u)tUyJ,) 'U4L)

= det(Lug + (1 -~ 0)*D(D) RLa > A1, R p(g) —t > Aoy X p(9)),

ger g€l
Therefore, it follows that
miy
CD(’U), u,t, 2 a)_l = H(l - w(fl)w(fzil)(l - u)2t2)d
i=1
x det(Tg + (1= w1, Q) DD) — Y p(9) Q) Avg — 1D p(9) Q) Aog),
ger ger

O
By Theorems 6,8, the following result holds.

Corollary 2 (Choe, Kwak, Park and Sato) Let D be a connected digraph, T' a finite
group, a : A(D) — T' a pseudo ordinary voltage assignment and W = W (D) a weighted
matriz of D. Then we have

C(Daa w, u, t) = H ¢p (wv u, t, p, a)degp’
P
where p runs over all inequivalent irreducible representations of T'.

6 Bartholdi edge zeta function of a digraph

Let D be a connected digraph with m arcs eq,...,e,. Furthermore, let z1,...z, be m
variables. Set z., = 2z (1 < i < m) and z = (21,...,2n). Then the Bartholdi edge zeta
function (D, w,u) of D is defined by

C(D7Z7u) = H(l - g(C)UCbC(C))ila

(€]

where [C] runs over all equivalence classes of prime cycles of D. If D = D¢ is the symmetric
digraph of a graph G, then the Bartholdi edge zeta function ((Dg,z,u) of D¢ is called the
Bartholdi edge zeta function ((G,z,u) of G.

Now, set |[V(D)| = n. Then we define an n x n matrix Af = A{ (D) = (ay,) as follows:

. 2] (1 = 2@z 2(y,2) (1 — w)?) if both (z,y) and (y,z) € A(D),
ik 0 otherwise.
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Furthermore, an n x n matrix D’ = D’(D) = (d,,) is the diagonal matrix defined by

Zele—1
dypy = .
Z 1= zeze—1(1 —u)?
o(e)=z,e~1€A(D)

Substituting t = 1 in Theorem 5, we obtain the following result.

Corollary 3 Let D be a connected digraph with m arcs and let z = (21,...,2m) be m
variables. Then the reciprocal of the Bartholdi edge zeta function of D is given by

((D,z,u)™" = det(I, + (1 —u)D' — AY(D) — Ag) [](1 - 221 (1= u)?),

i=1

where n =| V(D) | and f', ..., 21 are symmetric arcs of D.

If D = D¢, then
Corollary 4 Let G be a connected graph with m edges and let z = (z1,...,22m) be 2m

variables.and let W = W(QG) be a weighted matriz of G. Then the reciprocal of the Bartholdi
edge zeta function of G is given by

(G, z,u) "t =det(I, + (1 —u)D’ — AL (G) — Ap)

=

(12,21 (1 u)?),
1

(2

where n =| V(G) | and D(G) = {f',..., fE'}.

7 Example

Finally, we give an example. Let D be the digraph with three vertices vy, vs,v3 and five
arcs (v1,v2), (v2,v1), (va,v3), (v, v2), (v3,v1). Furthermore, let

0
W(D) = Z

o O

0
c
0

Then we have n = 3, m = 5, m; = 2. By Theorem 5, we have

C(D,w,u,t)™" = (1 —ab(l —u)??)(1 — ce(l — u)?t?) det(Is — tA; — tAg + (1 — u)t?D)
1+ abF/A —at/A 0
—  ABdet “bt/A  1+abF/A+ceF/B  —ct/B
—dt —et/B 1+ ceF/B

= 1— (ab+ ce)u?t? + abce(u* — u?)t* — acdt?,

where A =1 —ab(1 —u)?*?, B=1—ce(1 —u)?t? and F = (1 — u)t?.

Let I' = Z3 = {1,7,72}(73 = 1) be the cyclic group of order 3, and let o : A(D) — Zs3
be the pseudo ordinary voltage assignment such that a(vi,ve) = 7, a(ve,v1) = 72 and
a(vy,v3) = a(vs,v2) = a(vs,v1) = 1. The characters of Z3 are given as follows: x;(77) =
(€)7,0 <i,j < 2, where ¢ = =HY/=3,
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Now, we present the weighted Bartholdi L-function (p(w,u,t,x1,«) of D associated
with x; and a. Theorem 8 implies that

(p(w,u,t,x1,0)”t = ABdet(I3 — tZ?:o X1(TH)A i — tZ?:o x1(T)Ag i + (1 — u)t>D)
1+ abF/A —até/A 0
= ABdet —bté?JA 1+ abF/A+ceF/B  —ct/B
—dt —et/B 1+ ceF/B

1 — (ab + ce)u?t? + abce(u* — u?)t* — acdt3¢.

Similarly, we have
Co(w,u,t, xo, )t =1 — (ab+ ce)u®t? + abce(u* — u?)t* — acdt®¢>.
By Corollary 2, it follows that
(DY, u,t) "t = (D, w,u, t) " p(w,u, t, x1,) ' Cplw,u,t, x2,a)
= (1 — (ab+ ce)ut* + abce(u* — u®)t*)3 — a33d>°.
If w(e™!) = w(e)~! for each symmetric arc e € A(D), then
C(D,w,u, t) ™t =1 =20 + (u* — )t — acdt®,
Co(w,ut, xi, ) h =1 =20t + (u* — )t — acdt®¢" (i = 1,2)

and
C(D* b, u,t) ™t = (1 — 202 4 (u* — u®)t?)3 — a33d3t°.
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