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Abstract

In the study of permutations, generalized patterns extend classical patterns by
adding the requirement that certain adjacent integers in a pattern must be adjacent
in the permutation.

For any generalized pattern 7 of length k& with 1 < b < k blocks, we prove that
for all u > 0, there exists 0 < ¢ = ¢(k, ) < 1 so that whenever n > no(k, p, ¢), all
but ¢"n! many 7 € S, admit (1 + )2 (}) occurrences of mj. Up to the choice of c,
this result is best possible for all 7§ with k& > 2.

We also give a lower bound on avoidance of the generalized pattern 12-34, which
answers a question of S. Elizalde [8] (2006).

Keywords: generalized patterns; pattern avoidance; Azuma’s inequality; Cher-
noff’s inequality; Sharkovsky’s Theorem

1 Introduction

Pattern and generalized pattern avoidance in permutations is a well-studied area (see,
e.g.,[1-5, 7, 8, 10, 11]). Fix 1 < k < n and my € Sy and let 7 € S,. An occurrence
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of a pattern my in 7 is a sequence of integers 1 < ¢; < --- < ¢ < n so that, for all
1<i#j<k,

71'(&) < W(gj) e 7T0(i) < 7T0<j). (1)
In order to define generalized patterns, take a classical pattern my = (ay,...,a;) =
(mo(1), ..., mo(k)), and fix 7§ = (a1,€1, ag, €9, ...,Ek-1,a) where, for each 1 <i <k —1,
g; is either a dash ‘=’ or the empty string. Then, 7 € S,, admits 7 as a generalized
pattern if it contains an occurrence 1 < ¢; < --- < {, < n of the classical pattern m
satisfying that,
whenever ¢; # —, then (;,; = {; + 1. (2)
More explicitly, suppose, for some positive integer sequence q = (qi, ..., q), for which
g1+ -+ q, =k, that
£ __q _
Ty = Ty = (al, vy Qg Ty Qg 41y e Qgudgas oo oy T Ak—qy+1, - - - ,ak) (3)
= (Ala ) A27 Ty _7Ab)'
Then, for some integers 1 < Uy < <y < n,
(El,...,gk) = (@1,...,él+q1—1, EQ,...,EQ—FQQ—L “eny éb,...,éb+qb—1> (4)

= (L1, ..., Ly).

We shall refer to the subsequences Ay, ..., A, and Lq,..., Ly as blocks.

As an illustrative example, we note that the permutation (3,5, 2,4, 1) = 35241 contains
the classical pattern 132 (realized uniquely by the 3, 5, and 4 occuring in that order).
However, 35241 does not contain the generalized pattern 1-32, since the 5 and 4 are not
adjacent.

Let fr:(m) denote the frequency of the generalized pattern 75 in 7, and set Fr,(7) =
frz(m) in the case that q = (1,...,1) (i.e., classical patterns). In this notation, the
celebrated result of Marcus and Tardos [13] (cf. Klazar [11]) asserts Fy,(m) > 1 for all
but C™ permutations 7 € S,,, where C' = C(m) > 1 and n is sufficiently large. The first
author [7] proved that F, is concentrated about its mean: Fy(r) = (1 £ o(1))%(}) for
all but o(n!) permutations 7 € S,. Our main result shows, more generally, that fr. is
also concentrated about its mean, and we provide a sharp estimate for the error o(n!) of
concentration.

Theorem 1. For every k > 1 and for all p > 0, there exists 0 < ¢ < 1 so that, for all
sufficiently large integers n, the following holds. For every wy € Sy and for every sequence
75 with b blocks as in (3), all but ¢*n! many w € S,, satisfy fr:(m) = (1 £ )% (3)-

Remark 2. In Section 2, we offer two proofs of Theorem 1. The first, based on martin-
gales, is fairly short. The second gives more detail, using a ‘quasi-random’ property (see
Lemma 6) typical of random permutations. Lemma 6 extends some results from [7] and
may be of independent interest.

Up to the choice of 0 < ¢ < 1, Theorem 1 is best possible for all 7§ with £ > 2. In
particular, we prove the following result.
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Proposition 3. Fizr k > 2, b > 1, and mp = (aq,...,ar) € Si. Let ©} be any sequence,
as in (3), with b blocks. Then, there exists 0 < 79 < 1 so that, for all 0 < v < 7,
there exist infinitely many integers n for which at least y"n! permutations m € S, satisfy

fﬂ-g (ﬂ') < ’ynb.

We prove Proposition 3 in Section 3.
Proposition 3 can often be strengthened. Indeed, S. Elizalde [8] proved the following
strong and quite general result (in [8], see Proposition 4.3).

Theorem 4 (Elizalde [8]). Let 7§ be a sequence, as in (3), having a block A; of length
at least 3. Then, there exists 0 < ¢ < 1 so that for alln > k, at least c"n! permutations
7 € S, satisfy frs(m) = 0.

Elizalde [8] also considered to what extent Theorem 4 can be extended to sequences
7y whose every block has length at most two. He showed that, in general, Theorem 4
can’t be extended to every such mj. To describe these results, let A, (m) denote the
set of permutations 7 € S, for which fr-(7) = 0, and let a,(n5) = [A,(7g)|. For
(1,—,2,3,—,4) = 1-23-4, Elizalde showed (see Corollary 6.2 in [8])

lim (M) "o (5)

n—00 n!

He asked (see Section 7 of [8]):

12-34)\ /"
does lim <M> =07 (6)

n—00 n!
We answer this question in the negative.

Theorem 5. For odd integers n,

an(12-34) > (% - 0(1)>nn!.

We prove Theorem 5 in Section 4, and also consider some related problems.

2 Proofs of Theorem 1

For both of the following proofs, fix a positive integer k£ and fix pu > 0.

2.1 The martingale proof
Let

2
0
C:eXp{_9k4k!2} (7)
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and let n be a sufficiently large integer wherever needed. Fix 7§ with b blocks as in (3).
We show that all but ¢"n! many 7 € S,, satisfy fr:(7) = (1 £ )5 (3)-

To that end, let 7 € S,, be chosen uniformly at random. We use the ‘exposure process’
to define the following sequence of random variables. Set

1 1
Xo = Elfry(m)], where from (4), we have (1 - o(L)); (Z) <Elfr(m)] < 75 (Z) 8)
For r € [n] = {1,...,n}, let ) denote the restriction 7 : [r] — [n]. Set

X, =E [fwa (W)‘Ww] :

so that X,, = fr:(m) is the variable we wish to estimate. Then, Xg, Xi,..., X, is the
Doob martingale for the function fr-, to which we will apply Azuma’s inequality.
For that purpose, observe that for each 0 <r <n — 1,

n
X1 — X, | < k(b b 1). (9)

To see this, note that the element r + 1 belongs to between zero and k‘(bfl) occurrences
(ly,...,0) of w in m. Indeed, if ¢; = r + 1 belongs to block L; (see (4)), then all
of Ly is determined by r +1 = ¢; and q = q(n}). Thus, it remains to determine
Ly,..., Ly, Lyyq, ..., Ly, or equivalently, Ory ooy, @i/+1, ..., 0y, of which there are
at most (bfl).

Applying Azuma’s inequality with ¢ = (u/2) X, and using (8) and (9), we have

£ P ()
P[| X, — Xo| > t] <2exp{ ——— < exp —L“(l —o(1))
2% 0 (X — X3)? 8nk?(,",)
2

2 2
=0 {~ (1 o)} <o { (1o } <o { g } O

Thus, with probability 1 — ¢”,

ot = (12 8)Blm] @ (128) 2o (1) = 0w (),

as desired.

2.2 The quasi-random proof

To present Lemma 6, we need a few concepts. For integers n > ¢t > 5 > 1, define
I =[(j—1)|n/t| +1,j|n/t]] and R = [n] \ U;Zl I;, Wecal [n]=1LUlLU---ULLUR
the t-partition P, of [n]. Now, fix 7 € S,,, and consider partitions Py = I U---U I; U R
and P, = F1U---UFE;UR; of [n], where n >t > s> q > 1. For a set X, we will write
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(X)) for the family of m-permutations of X, and we write (|X|),, for |(X),,|, when |X]|
is finite. For i = (i1,...,4,) € ([s])q and j € [t], let

Byy(r) = {éeEJ: (+q—1leEandn(l+m—1)€l,, forallme {1,...,q}}. (10)
For ¢ > 0, and (i,7) € ([s])q % [t], we say m € S,, is (1, 7, (, q)-typical (w.r.t. (Ps, Py)) if

1 1 |n
Byl > (= OBl = - O |7 (1)
and say ™ € S, is ((,q)-typical (w.r.t. (Ps, Py)) if it is (i, 7, (, q)-typical for all (i,7j) €

([s])g > [¢].

Lemma 6. For all ¢ > 0 and integers q > 1, there exists an integer sy so that for all
integers s > Sg, there exists an integer ty so that for all integers t > ty, there exists ¢g > 0
so that for all sufficiently large integers n, all but exp{—con}n! permutations = € S,, are
(¢, q)-typical w.r.t. (Pg, Py).

Lemma 6 follows by a standard (albeit tedious) probablistic analysis, which we give in
Section 5.
To show that Lemma 6 implies Theorem 1, define auxiliary constants d,( > 0 so that

5= % and  (1—20)"2>1-04, (12)
For ¢ € [k], let so(g) be the constant guaranteed by Lemma 6. Fix an integer s so that
s s
s > max {so(1),...,s0(k)} and (k’) > E(I_QO' (13)

For ¢ € [k], let ty(q) be the constant guaranteed by Lemma 6. Fix an integer ¢ with

b
t > max {to(1),...,t0(k)} and so that for all b € [k], (Z) > %(1 —-2(). (14)

For g € {1,...,k}, let co(q) > 0 be the constant guaranteed by Lemma 6. Define

co =min {co(1),...,co(k)} and c=exp{—co/4}. (15)
In all that follows, let n be a sufficiently large integer.
Fix a permutation my € Sk, and let 75 = g = (41, —,...,—, Ap) be given as in (3)

where q = (q1,...,q). Apply Lemma 6 (cf. (13)—(15)) to conclude that all but
(exp{ —co(q)n} +---+exp{ — co(qb)n}>n! < kexp{—con}n! < exp {—%n} n!

permutations m € S,, are ((, ¢;)-typical w.r.t. (P, P;) for all « € [b]. For such a 7 € S,,,
we show

@z 0-05(;) % a-wg(}) (16
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Indeed, fix indices 1 < i3 < - <ip <sand 1 < jy < -+ < jp < t. For z € [b], recall
the block

A = (@q1+---+qx_1+1> <. aaq1+---+qz) = (7TO<Q1 +o e+ 1), ol A+ CI:J:))
of w3 (cf. (3)). Consider the injection defined by, for each x € [b],
. . def /. . .
Jo > 1y = (Za)aeAz = (Zaq1+m+qz,1+17 . ,Zaqﬁ...ﬂx) (17)
- (iWO(q1+"'+QI—1+1)7 e 7/L.7T0(q1+"'+Qcc)) : (18)
For each z € [b], arbitrarily select £, € Ej_; () (cf. (10)). We claim that the sequence

(Ly, Lo, ..., Ly), where for each x € [b], L, = (@$,fx+1,...,£m+qx—1), (19)

is exactly an occurrence in 7 of the generalized pattern my. The sequence (L1, ..., L)
clearly satisfies (2), since each L, is consecutive, and since (Lq, Lo, ..., L;) precisely
mimics the block structure of 73 = (A1, —, A2, —,...,—, A) (cf. (3)). It remains to
check, therefore, that (Li,..., L) is an occurrence of the classical pattern my in =, i.e.,
that (Lq,..., L) satisfies (1).
Indeed, rewrite the sequence (Lq, ..., L) as
(61, o 7€k) - (61, ce. 7€q17£q1+17 o 7€q1+q2’ ...... 7€qub+17 ce . 7€k)

so that for = € [b], Ly = (Cgioiqeitts s lottq,). (20)

Comparing (19) and (20), we see that a term of the sequence (Ly, ..., L) is determined
by a choice of indices 1 < x < band 1 < w < ¢, and written simultaneously as

~

lp+w—1="Vly14q 14w (21)
(Such a term necessarily belongs to the block L,.) Observe from (10) and (17) that
Tl +w—1) € Liww), where (2, W) = tny(qt-tqo_1+w)- (22)
Now, fix two terms (cf. (21)) of the sequence (L, ..., Ly):
lp+w—1= Cortotqo 14w and éy +z—=1="lg gy 1tz
where 1 < z,y <b, 1 <w < ¢ and 1 < z < g,. From (22), we conclude
W(ﬁqﬁ...wx_lﬂu) < W(€q1+...+qy_1+z) <= max [z, < min I, )

. . (22) . .
<~ %(:L‘, w) < l(y7 Z) < lng(qi+Hge_14w) < Yro(q1t-tgy—1+2)
<:>Wo(q1+--~+qx_1+w)<7r0(q1—|—-~+qy_1+z),

as required by (1). (For the last step, recall the ordering 1 < i; < --- < i < s of the
fixed indices.)
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Now, the discussion above implies that

Jag(m ZZ{HUEJ Pl < <ik<8,1<j1<---<jb<t}. (23)

Since m € S, is ((, q)-typical w.r.t. (P, P;) for every ¢ € {q1,...,q}, we have, for each
x € [b],

B > 1 -0 | 2] = 0 -20)

(8)g. > (1= 20

tsqz

Returning to (23),

and so (16) follows from

b1 (13), (1) L/ (2 )
fra(m) 2 (Z) (Z) (1—2¢)" <t> p > (1- 2()1c+2g (%) 2 - 5)@(2)

The corresponding upper bound fa (m) < (1+ ,u)% (Z) follows, in fact, from the lower
bound. Indeed, first conclude (16) for every permutation p € Sy and p* = p9. Thus, all

but . .
k!'exp {——On} n! < exp {——On} n! =2 cin!
2 4
permutations m € S, satisty, for every p € S, fpa(m) %(2) Fix such a 7 € S,,.
Observe that every 1 < ¢ < --- < £ < n of the form in (19) and (20) defines a generalized

pattern p® of some p € Sy. (Indeed7 if m({ly, ..., 0}) = {1, ..., A}, define p(i) = 5 if
and only if 7(¢;) = A;.) Thus,

(3) 2 X talm) = figlm+ 3 fnle) > fgr) + (1= 11— 5 ()

PESK To#PESk
1 ) n 1 /n\ @2 1 /n
— < (=+5-2 <O+6—(") @1y =(").
Jry() <k!+5 k!> (b) ( +5k>k!<b) ( +“>k!(b)

3 Proof of Proposition 3

Fix k > 2, b > 1, and mp = (ay,...,a;x) € Sk. Fix any sequence 7, as in (3), with b
blocks. If 7§ has a block of length at least 3, then let 0 < ¢ = ¢(n§) < 1 be the constant
guaranteed by Theorem 4, and set vy = ¢/2. Otherwise, set 79 = 1/2. Fix 0 < v < 7o,
and write g = [1/7], where we note that v < 1/2 implies g > 2. For a sufficiently large
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integer n which is divisible by g, we guarantee at least v"n! permutations © € .S,, with
o () <

Our proof is based on cases, depending on the structure of the sequence 7. Clearly,
we get the following case entirely for free on account of Theorem 4.

Case 0 (7§ has a block of length at least 3). Theorem 4 guarantees at least ¢"n! > y"n!
permutations 7 € S, with fr«(m) =0 < n?.

To handle all other cases, we require the following considerations. For 0 < s < g — 1,
write Iy = [s(n/g) + 1,(s + 1)(n/g)] and Ry = {m € [n] : m = s (mod g)}. Then
n] =1IyU---Ul,_; and [n] = Ry U--- U R, are partitions of [n] into parts of common
size n/g. Consider the following four classes of permutations:

Spp = {meS,:n(l

Spna = {me S, :7n(l )_gls,v
Sns = {meS,:m(Ry) =14, VO
Spa = {me Sy:7m(Rs)=1Is—1, VO

Clearly, |Sn1| = |Sn2| = |Snsl = [Snal = ((n/g)!)?, where by Stirling’s formula,

((g)v)g > % ( 27(n/g) (%)Wg))g > g(zmn)% X "2 (g)" > ymnl.

We mention, in advance, that in the following four cases below, Case ¢ will be handled by
the family S, ;, for 1 <17 < 4. We also mention that Cases 1 and 2 are not always disjoint
from Case 0, nor are they always disjoint from each other. (It seemed easiest to preserve
generality in the cases.)

We now consider when 7 has b > 2 blocks. In particular, suppose a; = (i) and
aj =mo(j), 1 <i < j <k, belong to blocks Ay and Aj/, respectively, where A; # Ajr.

s) =15, VO<s<g—1},

0<s<g—1},

<s<g-—1} (take I, = 1),
<8<

S g — 1} (take I,l = [gfl).

Case 1 (b > 2, a; > a;). Fix m € S,,1, and consider an occurence 1 < £ < --- < {, < n
of the generalized pattern 7 in 7. Consider the terms ¢; < ¢;. From (1), since my(i) =
a; > a; = mo(j), we have m(¢;) > m(¢;). We therefore claim that, for some 1 < s < g, we
have (;,(; € I,. Indeed, if ¢; € I, and {; € I, for some s; < s;, then 7(¢;) < m(¢;) on
account of m € S, 1, a contradiction. We also recall from (3) and (4), that ¢; belongs to
block L;; and ¢; belongs to block L; (since a; belongs to block A;; and a; belongs to block
Aj/). Finally, recall from (4) that Ly begins with ¢y and L; begins with £;;. Then, since
l;,l; € I, we have that lfj/ € I, and l@v €l Ul (If &;/ € I, 1, it occurs very near the
right boundary.) Clearly, there are at most |I;| = n/g choices for éj/. It is easy to check

b—2

that there are fewer than n/g choices for lo. Clearly, there are at most n’~* choices for

any remaining /1, ..., 0, in (4). Thus, Jrz(m) <nP72329 1 (n/g)* < yn.

Case 2 (b > 2, a; < a;). Fix m € S,,5. All details of Case 1 are repeated identically
save the following: Now, 7({;) < m(¢;), which similarly implies that ¢;,¢; € I, for some
1 < s <g. Indeed, {; € I, and /; € I, for some s; < s5; would imply 7(¢;) > 7(¢;), on
account of T € S, 9.
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The only cases in the proof of Proposition 3 not covered by Cases 1 and 2 involve
generalized patterns 7 with b = 1 block. (These are relatively rare, since there are only
k! such, while there are 2¥~1k! generalized patterns of [k].) If k > 3 and b = 1, then 7},
has (is) a block of length at least 3, which is included in Case 0. If K =2 and b = 1, then
my = 12 or m; = 21, where these cases are entirely symmetric.

Case 3 (7} = 12). Fix 7 € S, 3, and consider an occurence 1 < ¢ < ¢+ 1 < n of the
generalized pattern 12 in 7. From (1), we have that w(¢) < (£ +1). As such, 7 € S, 3
implies that £ = 0 (mod g). Consequently, we have only n/g < ~yn choices for /.

Case 4 (n5 = 21). Fix 7 € S,4. An occurence 1 < ¢ < ¢+ 1 < n of 21 in 7 results in
w(0) > w(¢+1). Since m € S, 4, it must be that £ = 0 (mod g), resulting in only n/g < yn
choices for ¢.

4 Proof of Theorem 5

Consider the following concept, which has a clear resemblance to patterns. For m € 5,,,
call a pair 1 < i < j < n a stretching pair if 7(i) < i < j < w(j). We shall use stretching
pairs to prove Theorem 5, although stretching pairs are interesting in their own right, as
we discuss in Section 4.2.

4.1 Stretching pairs and Theorem 5

We establish a few initial considerations. First, let C,,11 C S,+1 denote the set of (n+1)-
cycles of S, 41, and write each m € C,, 41 in cyclic notation: 7 = (n+1ay ... a,), ie.,
m(a;) = a;4q for 0 <i < nand ay = a,1 = n+ 1. Consider the bijection ¢ : Cp,1 1 — S,
given by, for each m = (n+1ay ... a,) € Cpy1,

p=o¢(r) = (ai,...,a,), that is, p(i) = a; for each 1 < i < n. (24)
We prove that

7 € Chy1 admits a stretching pair 1 < (i) <i<j<nw(j)#n+1
if and only if p = ¢(m) admits 21-34 or 34-21 as a generalized pattern. (25)

Before we prove (25), we note that 21-34 is not the same as 12-34, which Theorem 5
considers. However, Elizalde proved (see Proposition 5.3 from [8]) that

,(12-34) = a,(21-34), (26)
and so we shall be able to use (25).

Proof of (25). Suppose first that p = f(7) = (a4,...,a,) € S, admits 21-34 or 34-21 as
a generalized pattern. If ag, ap 1, ap, apyq is a copy of 21-34, where 1 < k+1 < { < n,
then ap, 1 < ap < ap < agyq, and so (i) =app < ap =i <j=ay < a1 =7(j) <nisa
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stretching pair of w. If ay, agi1, ar, apyq is a copy of 34-21, then ap 1 < ap < ap < agi1, and
som(i) = a1 < ap=1<j=ar < agr1 = 7(j) < nis astretching pair of 7. Assume now
that t=(n+1ay ... a,) € Cn+1 admits a stretching pair 1 < 7(i) <i < j < 7w(j) < n.
lfr=Mm+1a ... i7(i) ... 77(j) ... ay), then for some 1 < k+1<{<n,p= f(n)
has i = ay, (i) = agy1, j = ap and 7(j) = apy1, where apyq < ar < ag < agyq gives a copy
of21-34. f m=(n+1ay ... jw(j) ... i7(i) ... ay), then for some 1 < k+1 < ¢ <mn,
p = f(m) has j = ag, 7(j) = axs1, i = a; and w(i) = apy1, where apr; < ap < a < agsq
gives a copy of 34-21. m

Now, define 57, to be the family of 7 € S, satisfying (n+1)/2 < 7(i) < n+1
if, and only if, 1 <7 < (n+ 1)/2. Clearly, S, admits no stretching pairs. Set C},

Cni1 N S),,4, and observe that C}_, # 0 if, and only if, n is odd. As such, if n is both
odd and sufficiently large, Stirling’s formula implies

o] = —— (<”;1>!)2 > (% —0(1)>nn!.

It then follows from (25) that ¢(C;, ;) avoids 21-34 and 34-21, and so

(26)

@, (12-34) =" a,,(21-34) > |A,,(21-34) N A,,(34-21)|
1 n
|¢ n+1 | =|C +1’ (— —0(1)> n!,

which proves Theorem 5.

4.2 A corollary of Theorem 1 for stretching pairs

Stretching pairs are motivated by considerations in dynamical systems. Namely, the oc-
currence of a stretching pair within a periodic orbit of a continuous interval map implies
what is called ‘turbulence’ (see [3, 12] for details). These considerations are closely re-
lated to the celebrated theorem of Sharkovsky [14]. From this point of view, the second
author [12] considered which n-cycles = € ), admit stretching pairs, and proved that all
but o(n —1)! of them do. Theorem 1 allows us to sharpen this result in the following way.

Corollary 7. For all § > 0, there exists 0 < ¢ < 1 so that for all sufficiently large integers
n, all but ¢*(n — 1)! cyclic permutations = € C,, admit 1—12(2‘) (1 £0) stretching pairs.

Proof of Corollary 7. Let § > 0 be given. Set k =4 and p = §/2, and let 0 < ¢; < 1 be the
constant guaranteed by Theorem 1. Define ¢ to be any constant satisfying ¢; < ¢ < 1, and
let n be sufficiently large. For an n-cycle 7 € C,,, write o(m) for the number of stretching
pairs of m, and write ¢’(7) for the number of stretching pairs 1 < 7(i) < i < j < 7(j) # n.
Note that o/(7) < o(7) < o'(7)+n, since if 1 < 7(i) <i < j < 7w(j) =n, then j = 771 (n)
is fixed and there are at most j — 1 < n choices for 7. Note, moreover, that it follows
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from (25) that, for p = ¢(7) € S,—1, o' (7) = fa1-34(p) + f3421(p). Theorem 1 ensures that
all but 2¢7 ' (n — 1)! < ¢"(n — 1)! permutations p € S,_; satisfy

1 1

faraa(p) = (L £ 1)7; (n ; 1) and - faoi(p) = (LE£p) 7 (n ; 1)‘

For each such permutation p € S,,_1, the corresponding n-cycle m = ¢~!(p) € C,, satisfies
1 /n—-1 1 /n—-1
=(1+pu)— 1+ p)— + 2
oty = g ("5 )+ azng (")) £ (27)
1 /n 1 /n
=(1 1))— =(1 —
o)y (5) =205 (5). (28)

which proves Corollary 7. [

5 Proof of Lemma 6

Fix ¢ > 0 and integer ¢ > 1. Define auxiliary constant

G = (/4. (29)
Define sy = so(q, (o) to be the least integer s for which
(8)g = (1 —2¢p)s. (30)
Let s > sg be given. Define
to = [4487s™1¢; %] . (31)
Let integer t > ty be given. Define
G
= _ 32
0 3qt24+3s4 (32)

Let n be a sufficiently large integer, and fix (io, jo) € ([s]), X [t]. We prove
all but exp{—2¢on}n! permutations = € S, are (i, jo, ¢, ¢)-typical w.r.t. (P, P;). (33)

Applying (33) to all (i,7) € ([s])y x [t] and noting s exp{—2con} < exp{—con} yields
Lemma 6.

We now outline our approach for proving (33) (and reduce the ¢ notation in (10) to
¢). Define equivalence relation ~ on Ej;: ¢ ~ {' <= ¢| (¢ — ). Thus, for an integer
0 < r < q, we may write

B ={teB, t~Go-1) |3 +14r}  sothat B =E"U-UETY (34)

is a partition. A key observation for later in the proof (cf. Claim 8) will be that

0 l+1—qgN[, ¢ +q—1]=0 whenever { #/( € EJ(T). (35)
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For some final notation, we shall write, for a permutation 7 € §,,,

Ey) (7) = Bijip(r) N E) sothat  Eiyy(w) = E) (1) U=+ UEL D (m) - (36)

1oJjo 10Jjo 10J0
is a partition. We shall prove that, for a fixed 0 < r < ¢,
all but exp{—3con}n! permutations = € S,, satisfy that ‘E )| = (1-¢)

iojo ‘ =

1
Q(S)q ’Ejo ‘ :
(37)

Note that (37) implies (33) since then all but gexp{—3con}n! < exp{—2c¢on}n! many
™ € S, satisfy

Eiyio( %Z\Eﬁ;@ >\>(1—<)&

To prove (37), let 7 € S,, be chosen uniformly at random. Then, Y = YIO . |E10 ]0( )|
is a random variable whose mean we evaluate. To that end, recall from (10) that for an
element ¢ € E; to be an element of E; ; (7), we require that ¢ < jo|n/t] — ¢+ 1, where
we will write n, = |n/t| and ny = [n/s]. As such, delete the last ¢ — 1 elements from

|Ej0|'

Ej,, and write
- ef . . ~
Ejod: [(]0—1)71,5—}—1, jont—q+1}, E]('o) —E()QEJO,
€ T - 1 1
and g |87 = |2 = 2 o
q q
Now, for ¢ € E , define indicator random variable Y, by (cf. ip = (i1, ..., 1))
[ 1 ifa(l+m—1)€e;, Vme][q, B . = (r)
Ye= { 0 otherwise, = Y = Z {YZ € By }
_ ! q I. q E(T [z q
so that E[Yrg] _ (n Q) r['m:1| 'Lm’ _ T — E[Y] o | ‘H 1| m| _ nsnt,q‘
n: (n)q (n>q (n)q

(39)
Following the method of Bernstein for the Chernoff inequality (cf. [10]), for u = log(1 —
Co) = log,.(1 — ¢p), the Markov inequality implies

PlY <E[Y](1-¢)] =P [e" > exp {uE[Y](1 - ¢o)}]
39 nin "
< exp {—uE[Y](1 - ()} E [ ] 2 exp {—u - <0>} E[c]. (40)
q
While we do not have mutual independence among the Y;’s, we will prove the following.
Claim 8.

T=E| ] | < <1+q<4%)11>m’q IT E[e]

) N
ZeEjO

tcEM
(18 (1 o)) o (4 )
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We shall defer the proof of Claim 8 in order first to finish the proof of (37).
Applying Claim 8 to (40), together with the Taylor series bound —u(1 —(y) +e*—1 <

BY < B - 6] < oo g (o057 4 (w1 - e 1) )}

<o fmg (4102~ Y g f, (807G ()

- {nt’q ( s Qﬁ Sq)} (since n, = [n/s] > n/(2s))

t

(31) G G (32)
< exp {nt,q (—2q+—23q>} < exp {— (qt2‘1+33‘1 ny = exp{—3con}.

(The last inequality above follows from n, = | (n:+1)/q] —1 > n/(2tq).) In other words,
with probability 1 — exp{—3con}, the randomly chosen permutation = € S, satisfies

Y = |ED, 0| > BYI - 0 @ T - ) 2 - )i - o) 7]

Ya _2@)2%3% EJ > (1 —4C0)q(i)q 2] ®a-¢ ! ]

5.1 Proof of Claim 8
Write EJ(Z;) as 01 < --- < Ly, (cf. (38)) so that

EHe“Yf: Z P

(B (Y1reeesting g )E{0,1} ™00 Li=1

Nt,q Nt,q
i=1
Fix (y1,...,Yn,,) € {0,1}"4 so that

N yi] —p
i=1

We claim that

P

nt,qfl
}/g”t,q = YUnyq /\ Yéj = y]] P

j=1

ne,q—1

A Vi, = yj] =P |Yi,, = Y] (1 - q(4f)q) - (42)

J=1

P

nnt,q - yntvfl

If so, iteratively applying (42) to (41) yields Claim 8.
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To see (42), recall the observation in (35). Thus,

— 17714 I; q
P Y'ent _ 1‘ /\ Y’ej =y < (n qnt,q) Hmzll m‘ _ s : and
e =LA | S gl DU (0 g + ),
— ntg—1 -
Ply, = 1‘ /\ Y, =y | > (n — qnug) Ty (i — a(neg — 1))
i nt,q ) J J- (n - Q(nt,q . 1)),

_ (ns—qniq+q)°
(n —qnig+q)q

For the upper bound, we use (39) (and gn;, < n; (cf. (38)) to infer

q q
Pl -] e <e b, -1 (75
(n — Ny g +q ba (n_ qniiq +Q)q b n—n

<P (1--) [n :1} (1+%)q<IP’[ant’q :1] (1+q§).

For the lower bound, we similarly infer

(ns - qnt,q + q)q > (ns - qnt,q) ]P) |:Yé _ 1:| (ns - qnt7Q>q
= - n
(n = qnig +q)q (n)q b

>, =) () > P, =] (-2})'
»q ns t,q

45)

2P[antq 21} (1—q( f) )
This proves (42) when y,; = 1. Otherwise, (using P[Y,,, = 1] <1/2 <P[Y,, = 0]) we
have

nt q—l ’I’Lt,q—l

P|Y,. :o’ A Y, —yj] —1-P|Y,, fl‘ A Yo yJ]
j=1 =1
q
~P|v,, = 0] (1 + ) ) ,

where we used P[Y,, =1]<1/2<P[Y,, =0].
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