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Abstract
Si Li and the fourth listed author (2008) considered unitary graphs attached

to the vector spaces over finite rings using an analogue of the Euclidean distance.
These graphs are shown to be integral when the cardinality of the ring is odd or
the dimension is even. In this paper, we show that the statement also holds for
the remaining case: the cardinality of the ring is even and the dimension is odd,
by showing a sufficient condition for Cayley graphs generated by distance sets in
vector spaces over finite fields to be integral.
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ment grant 102.01-2012.29.
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1 Introduction

Let Γ be an additive group. For S ⊆ Γ, 0 6∈ S, and S−1 = {−s : s ∈ S} = S, the Cayley
graphG = C(Γ, S) is the undirected graph where the vertex set V (G) = Γ and the edge set
E(G) = {(a, b) : a− b ∈ S}. The Cayley graph G = C(Γ, S) is regular of degree |S|. For
any positive integer n > 1, let Zn = Z/nZ be the finite cyclic ring of n elements. Notice
that one can identify Zn with {0, 1, . . . , n−1}. The unitary Cayley graph Xn = C(Zn,Z

∗
n)

is defined by the additive group of the ring Zn of integers modulo n and the multiplicative
group Z∗n of its units. So Xn has vertex set V (Xn) = Zn = {0, 1, . . . , n− 1} and edge set

E(Xn) = {(a, b) : a, b ∈ Zn, gcd(a− b, n) = 1}.

The graph Xn is regular of degree |Z∗n| = φ(n), where φ(n) denotes the Euler function.
Unitary Cayley graphs are highly symmetric and have some remarkable properties con-
necting graph theory and number theory. More information about the unitary Cayley
graphs can be found in Berrizbeitia and Giudici [3], Dejter and Giudici [5], Fuchs [6], and
Klotz and Sander [7].

In [8], Si Li and the fourth listed author studied higher dimensional unitary Cayley
graphs over Zd

n using an analogue of the Euclidean distance. Precisely, they defined for

positive integers n and d the unitary Euclidean graph T
(d)
n with vertex set V (T

(d)
n ) = Z

d
n

and edge set

E(T (d)
n ) =

{
(a, b) : d(a, b) =

d∑
i=1

(ai − bi)2 ∈ Z∗n

}
. (1)

Note that the Euclidean graph E
(d)
R (r) over a finite ring R, r ∈ R, is the Cayley graph

with vertex set V (E
(d)
R (r)) = Rd and the edge set

E(E
(d)
R (r)) =

{
(a, b) : d(a, b) =

d∑
i=1

(ai − bi)2 = r

}
.

In [11], Medrano, Myers, Stark and Terras studied the spectrum of the Euclidean
graphs over finite fields and showed that these graphs are asymptotically Ramanujan
graphs. In [12], these authors studied the same problem for the Euclidean graphs over
rings Zq for an odd prime power q. They showed that over rings, except for the smallest
case, the graphs (with unit distance parameter) are not (asymptotically) Ramanujan.

In [2], Bannai, Shimabukuro and Tanaka showed that the Euclidean graphs over finite
fields are always asymptotically Ramanujan for a more general setting (i.e. they replace
the Euclidean distance by nondegenerated quadratic forms). The fourth listed author
recently applied these results to several interesting combinatorial problems, for example
to the Erdős distance problem [14], Szemeredi-Trotter type theorem and sum-product
estimate [15], singular matrices with restricted entries over finite fields [16] and explicit
constructions of existentially closed graphs [17].

Si Li and the fourth listed author [8] showed that the spectrum of unitary finite-
Euclidean graphs consists entirely of integers when n is odd or the dimension d is even.
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This property seems to be amazingly widespread among Cayley graphs on abelian groups.
One of the first papers in this direction is due to L. Lovász [9], who proved that all Cayley
graphs, (cube-like) graphs, on Zd

2 are integral where Zn is the ring of integers modulo n.
In this paper, we extend this result by showing a sufficient condition for Cayley graphs
generated by distance sets in vector spaces over finite fields are integral. We would like
to remark that our result is closely related to the result of W. So in [13].

2 Cayley graphs generated by distance sets

For any U ⊆ Zn, the distance graph generated by U over Zl
n, G(Zl

n,U), is the undirected
graph that has the vertex set V (G) = Zl

n and the edge set

E(G) = {(a, b) : d(a, b) =
l∑

i=1

(ai − bi)2 ∈ U}.

Let
Sl,n(U) = {a ∈ Zl

n : d(a,0) = a21 + . . .+ a2l ∈ U},
then the graph G(Zl

n,U) is the Cayley graph C(Zl
n, Sl,n(U)). Recall that the eigenvalues

of Cayley graphs of abelian groups can be computed easily in terms of the characters of
the group. This is an old result and easy to prove: the characters of a finite abelian group
are eigenfunctions for the convolution operators on the group (see also [11]). This implies
that the eigenvalues of the graph G(Zl

n,U) are all the numbers

λb =
∑

x∈Sl,n(U)

en(tb · x), (2)

where b ∈ Zl
n and the exponential en(z) = exp{2πiz/n}.

In particular, the unitary Euclidean graph T
(d)
n is the Cayley graph generated by the

distance set U = Z∗n. Using properties of Gauss and Ramanujan’s sums over cyclic rings,

Si Li and the fourth listed author [8] showed that T
(d)
n is an integral graph if n is odd or

d is even.

Theorem 1 ([8, Theorem 3.6]) If n is an odd integer or d is an even integer then all

eigenvalues of the unitary Euclidean graph T
(d)
n are integers.

They conjectured that the same result also holds in general.

Conjecture 2 ([8, Conjecture 3.7]) For any positive integers n and d all eigenvalues of

the unitary Euclidean graph T
(d)
n are integers.

From Theorem 1, the remaining open case of Conjecture 2 is: n even and d odd. In
this paper, we will give a simple proof of this conjecture. More precisely, we have the
following sufficient condition for Cayley graphs generated by distance sets in vector spaces
over finite fields are integral. We conjecture that the given condition is also the necessary
condition.
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Theorem 3 Suppose that d1, d2, . . . , dr are divisors of n. Let

U = ∪rj=1Gn(dj), (3)

where
Gn(dj) = {y ∈ Zn : gcd(n, y) = dj}.

Then we have λU(b) ∈ Z for all b ∈ Zl
n.

Proof Let d be a divisor of n. Note that x ∈ Sl,n(Gn(d)) then k · x ∈ Sl,n(Gn(d)) for
any k ∈ Z∗n, and if x 6= x′ then k ·x 6= k ·x′ for every k ∈ Z∗n. Since Sd,n(Gn(d)) is finite,
it follows that

kSl,n(Gn(d)) ≡ Sl,n(Gn(d)).

Hence, kSl,n(U) ≡ Sl,n(U) when U is of the form (3).
We write n = pr11 · · · prtt for the prime decomposition of n. For any nonempty subset

I ⊆ {1, . . . , t}, set

pI =
∏
i∈I

pi and nI = n/pI .

We have

λU(b) =
∑

x∈Sl,n(U)

en(tb · x)

=
1

|Z∗n|
∑
k∈Z∗

n

∑
x∈kSl,n(U)

en(tb · x)

=
1

|Z∗n|
∑

x∈Sl,n(U)

∑
k∈Z∗

n

en(ktb · x)

=
1

|Z∗n|
∑

x∈Sl,n(U),tb·x=0

|Z∗n|+
1

|Z∗n|
∑

x∈Sl,n(U),tb·x6=0

∑
k∈Z∗

n

en(ktb · x)

= #{x ∈ Sl,n(U),t b · x = 0}

+
1

|Z∗n|
∑

x∈Sl,n(U),tb·x6=0

∑
k∈Zn

en(ktb · x)

+
1

|Z∗n|
∑

x∈Sl,n(U),tb·x6=0

∑
I⊆{1,...,t}

(−1)|I|
∑
s∈ZnI

en(pIs
tb · x).

Since tb · x 6= 0, from the orthogonality of exponential sums, we have∑
s∈ZnI

en(pIs
tb · x) = 1

if n = p1 · · · pt and I = {1, 2, . . . , t}; and∑
s∈ZnI

en(pIs
tb · x) = 0
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otherwise. This implies that λU(b) ∈ Q for any b ∈ Zl
n. Furthermore, the characteristic

polynomial of the adjacency matrix of G(Zl
n,U) is monic with integer coefficients, so

λU(b) ∈ Z for any b ∈ Zl
n. This concludes the proof of the theorem. �

Note that Theorem 3 implies Conjecture 2 by setting r = 1 and d1 = 1.

Remark 4 For any distance function f : Zl
n × Zl

n → Zn and the distance set U ⊂ Zn,
define the generating set

Sl,n(f,U) = {a ∈ Zl
n : f(a,0) ∈ U}.

The above proof of Theorem 3 works transparently for any distance function f that satisfies
the condition kSl,n(U) ≡ Sl,n(U) when U is of the form (3). For example, Theorem 3 still

holds if we use the distance function d(a, b) =
∑l

i=1(ai−bi)h for any h > 1. Let l = h = 1,
we obtain alternative proofs of [7, Theorem 16] and [13, Corollary 4.5].
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