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Abstract

In this paper, we use the network solution of the Ar T -system to derive that
of the unrestricted A∞ T -system, equivalent to the octahedron relation. We then
present a method for implementing various boundary conditions on this system,
which consists of picking initial data with suitable symmetries. The corresponding
restricted T -systems are solved exactly in terms of networks. This gives a simple
explanation for phenomena such as the Zamolodchikov periodicity property for T -
systems (corresponding to the case Aℓ ×Ar) and a combinatorial interpretation for
the positive Laurent property for the variables of the associated cluster algebra. We
also explain the relation between the T -system wrapped on a torus and the higher
pentagram maps of Gekhtman et al.

1 Introduction

1.1 Discrete Integrable systems, positivity and periodicity

Discrete integrable systems are evolution equations in a discrete time variable k ∈ Z that
admit a sufficient number of conservation laws or integrals of motion, in the Liouville
sense. In this note we concentrate essentially on the so-called T -system, which first arose
in the context of integrable quantum spin chains, as a system of equations satisfied by the
eigenvalues of transfer matrices of generalized Heisenberg magnets, with the symmetry of
a given Lie algebra [18]. In the case of type A, the T -system equation is also often referred
to as the octahedron recurrence, and appears to be central in a number of combinatorial
objects, such as: the λ-deformed determinant introduced by Robbins and Rumsey and its
interplay with Alternating Sign Matrices [22]; the puzzles leading to the proof of positivity
of Littlewood-Richardson coefficients for sln [16]; the partition function of domino tilings of
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the Aztec diamond [8, 23]. Finally the T -system plays a central role as discrete integrable
system, where it is referred to as the discrete Hirota equation [17]. Note that an interesting
deformation of the T-system was considered by Nakajima [21]; the corresponding system
is obeyed by the so-called q,t-characters of quantum affine algebras.

A new interpretation for the T -system arose from realizing that the corresponding
discrete evolution could be viewed as a particular mutation in a suitably defined cluster
algebra [5]. As such, it must satisfy the Laurent property, namely that any solution is
a Laurent polynomial of any set of admissible initial data [9]. Moreover, the general
positivity conjecture for cluster algebras would also imply that these Laurent polynomials
have non-negative integer coefficients. Positivity for the unrestricted T -system expressed
in terms of “flat” initial data follows from the interpretation of the solution as a positively
weighted partition function for domino tilings of the Aztec diamond [23]. In the present
paper, we first generalize this result to an explicit network solution for arbitrary initial
data which we then adapt to include various types of boundary conditions. The network
solutions display in particular the positive Laurent phenomenon.

Another fundamental property of T -systems was conjectured by Zamolodchikov [26]
in the form of periodicity properties of the so-called Y -systems in the presence of special
boundary conditions, which is a result of similar periodicity properties for the T -system. In
a more general setting, the Y -system is attached to the Dynkin diagram G of a Lie algebra,
and the special boundaries are coded by another Dynkin diagram G′, while the period of
the system is given by 2(hG + hG′), where hG is the Coxeter number of the corresponding
algebra. This periodicity has been proved by many authors [25, 24, 12, 13, 14] for the
case when either or both G,G′ are of A-type, culminating in the general proof of Keller
[15] using category theory, for the case of any pair of Dynkin diagrams G,G′. Note
that the various methods of proof used in these works do not imply the positive Laurent
phenomenon. The method presented in this paper for (Ar, Aℓ), based on the explicit
network solution, provides a simple combinatorial explanation for this property.

By analogy with the solutions of the so-called Q-systems [6], based on an explicit
construction of conserved quantities, a first solution of Ar T -systems for particular periodic
initial data surface was produced in terms of partition functions of paths with time- and
space-dependent weights on some target graphs [7]. Finally the Ar T -system was explicitly
solved [4] for arbitrary admissible initial conditions in terms of weighted path models on
specific networks, coded by the geometry of the initial data surface.

The aim of this paper is to use the network solution of the Ar case to derive properties
of solutions of T -systems with different kinds of boundary conditions. We start with the
unrestricted T -system: by using the formulas for Ar for r large enough, we show that any
fixed unrestricted T -system solution can be expressed in a compact form, as a principal
minor of a positive network matrix coded by the geometry of the initial conditions.

To address other boundary conditions, our strategy consists in identifying suitable
initial data for the Ar system, that imply the presence of the desired boundaries, such as
walls along which the values of the T -system solution must be equal to 1. Once these are
identified, we must plug them into the network solution of the Ar system. The network
solution happens to behave nicely under these symmetries, and can be reduced to explicit
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positive expressions in all cases. As a result, we obtain closed formulas for the solutions
of the T -system with various boundary conditions.

1.2 T -system: definitions

Let us now give a few definitions regarding the T -system and its various boundary con-
ditions.

1.2.1 The unrestricted A∞ T -system

The unrestricted A∞ T -system, also called octahedron recurrence, is the following system
for formal variables Ti,j,k, i, j, k ∈ Z:

Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k + Ti+1,j,kTi−1,j,k (i, j, k ∈ Z). (1.1)

The system splits into two independent systems corresponding to a fixed parity of i+j+k.
From now on we restrict ourselves to Ti,j,k with i+ j + k = 0 mod 2.

This system can be considered as a three-term recursion relation in k. As such it has
the following sets of admissible initial conditions, attached to a stepped surface defined as
follows.

Definition 1.1. A stepped surface in the variables (i, j, k) ∈ Z
3 is a set:

k = {(i, j, ki,j) ∈ Z
3 : i+j+ki,j = 0mod 2 and |ki,j−ki′,j′ | = 1 if |i−i′|+|j−j′| = 1}. (1.2)

To any such stepped surface, we attach the initial condition:

Xk(t) :
{

Ti,j,ki,j = ti,j (i, j ∈ Z)
}

(1.3)

for some formal variables t = {ti,j}i,j∈Z, which we refer to as initial data/values along the
surface k.

The interplay between these admissible initial conditions is best understood if we
interpret the relation (1.1) as a mutation relation for the cluster algebra related to the T -
system [5]. In this setting, the admissible initial data are cluster variables xk = (ti,j)i,j∈Z
in a seed of the cluster algebra, and a mutation µi,j is simply one application of the
relation (1.1) where k = ki,j+1 = ki,j−1 = ki+1,j = ki−1,j and either ki,j = k − 1 (forward
mutation) or ki,j = k + 1 (backward mutation). The mutation µi,j sends the surface k
to a new surface k′ such that k′

a,b = ka,b + 2ǫδa,iδb,j with ǫ = 1 for a forward mutation,
and ǫ = −1 for a backward mutation. Accordingly, the initial data along the surface k
is transformed into initial data along k′ by keeping the same values t′a,b = ta,b except for
a = i and b = j, where

t′i,j =
ti,j−1ti,j+1 + ti−1,jti+1,j

ti,j
. (1.4)
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The following is a pictorial representation of a forward mutation:

(i,j,k−1)

(i+1,j,k)

(i,j+1,k)

(i−1,j,k)

(i,j−1,k)

k k’

(i,j,k+1)
i

j

k

(1.5)
It shows how the mutated surface k′ differs from k by one point, which is the sixth point
(i, j, k+1) of the incomplete octahedron (i, j, k−1), (i, j+1, k), (i, j−1, k), (i+1, j, k), (i−
1, j, k), hence the name “octahedron” equation often used for (1.1). Iterating mutations
on a given stepped surface k, we may attain any other stepped surface k′.

In the following, unless otherwise stated, we will refer to the fundamental stepped
surface as “flat” stepped surface k0 with k

(0)
i,j = i+ j mod 2.

1.2.2 The T -system for Ar

In the case of the Ar Lie algebra, the T -system (1.1) is restricted to values of i ∈ [1, r]
and is subject to the boundary condition

T0,j,k = Tr+1,j,k = 1 for all j, k ∈ Z. (1.6)

The system (1.1-1.6) can still be considered as a three-term recursion relation in k. The
corresponding admissible initial data are attached to infinite strip-like stepped surfaces
k = (i, j, ki,j)i∈[1,r];j∈Z such that ki,j ∈ Z, i + j + ki,j = 0 mod 2, and |ki+1,j − ki,j| =
|ki,j+1 − ki,j| = 1 for all i, j. To each such k, we associate the initial conditions:

Xk(t) :
{

Ti,j,ki,j = ti,j (i ∈ [1, r]; j ∈ Z)
}

(1.7)

for some formal variables t = {ti,j}i∈[1,r];j∈Z.

The fundamental “flat” stepped surface, still denoted by k0 now has k
(0)
i,j = i+ j mod

2, for i ∈ [1, r], j ∈ Z.
The following useful lemma allows to eliminate the Ti,j,k for i > 1 in terms of the

T1,j′,k′ ’s.

Lemma 1.2. [2] The solutions Ti,j,k to the Ar T -system may be expressed for i = 1, . . . , r
as the following “discrete Wronskian” determinants involving only T1,j′,k′’s:

Ti,j,k = det
16a,b6i

(T1,j+a−b,k+a+b−i−1) . (1.8)
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Ti,0,k = 1

T0,j,k = 1

Ti,l+1,k = 1

Tr+1,j,k = 1

k

l+1

0 1

r+1

i

j

Figure 1: The ℓ-restricted T -system geometry. We have represented in (i, j, k)-space the four
walls along which we set Ti,j,k = 1, as well as the flat initial data stepped surface k0 with vertices
in the planes k = 0 and k = 1.
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Proof. This is a direct consequence of the Desnanot-Jacobi identity relating the determi-
nant |M | of any N ×N matrix M to its minors |M |j1i1 and |M |j1,j2i1,i2

obtained respectively
by erasing row i1 and column j1 of M or rows i1, i2 and columns j1, j2 of M :

|M | × |M |1,N1,N = |M |11 × |M |NN − |M |1N × |M |N1 , (1.9)

with the convention that the determinant of a 0 × 0 matrix is 1. The lemma follows
by taking the (i + 1) × (i + 1) matrix M with entries Ma,b = T1,j+a−b,k+a+b−i−2, a, b =
1, 2, . . . , i+ 1.

We will also consider the Ar T -system with so-called ℓ-restricted boundary conditions,
in which we restrict the range of j ∈ [0, ℓ+ 1] and we impose

Ti,0,k = Ti,ℓ+1,k = 1 (i ∈ [1, r]; k ∈ Z). (1.10)

In this case the initial data is also restricted to a finite sequence t = {ti,j}i∈[1,r];j∈[1,ℓ], and
the associated initial conditions read:

Xk(t) :
{

Ti,j,ki,j = ti,j (i ∈ [1, r]; j ∈ [1, ℓ])
}

. (1.11)

The boundary conditions and flat surface initial data for the ℓ-restricted T -system are
sketched in Fig.1.

1.3 Main results

In this paper we explore the effect of imposing various boundary conditions of the T -
system.

For the unrestricted T -system, we derive a compact explicit expression for the solution,
first in terms of the initial data Xk0 (1.3) along the flat stepped surface k0 (Theorem 3.9
and Corollary 3.11). This is then generalized to arbitrary initial data Xk (Theorem 3.12).
As a consequence, we have:

Theorem 1.3. The solution Ti,j,k of the unrestricted T -system (1.1) with arbitrary initial
conditions Xk (1.3) is a Laurent polynomial of the initial values {ti,j} with non-negative
integer coefficients.

This extends the result of [23], corresponding to k = k0 in our language.
Next we consider the Ar T -system in different geometries, first in a right or left half-

plane bordered by a “wall” j =constant, along which the value of Ti,j,k is fixed to 1. We
show that the solutions of such systems coincide with that of the one without a wall,
provided we pick initial data obeying certain symmetry relations (Theorems 5.6 and 5.7).
We also show that the solutions of the two-wall ℓ-restricted Ar T -system coincide with that
of the system without walls but with initial data obeying multiple reflection symmetries
inherited from the two half-plane cases (Theorem 5.8). In all cases, we have an explicit
formula for the solution in terms of the initial data. This will allow us in particular to
establish the following two results on the solutions of the ℓ-restricted Ar T -system.
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Theorem 1.4. The solution of the ℓ-restricted Ar T system with arbitrary initial condi-
tions Xk satisfies the following periodicity condition:

Ti,j,k+N = Ti,j,k (i ∈ [1, r]; j, k ∈ Z)

with period N = 2(ℓ+ r + 2).

Theorem 1.5. The solution Ti,j,k of the ℓ-restricted Ar T system with initial conditions
Xk0 (1.11) along the “flat” stepped surface k0 is a Laurent polynomial of the initial values
{ti,j} with non-negative integer coefficients.

In all cases, the positivity of the coefficients will arise from a combinatorial interpre-
tation, as counting families of non-intersecting paths on suitable network graphs.

1.4 Outline

The paper is organized as follows.
In Sect.2, we recall the solution of the Ar T -system for an arbitrary initial data stepped

surface k. The solution is expressed in terms of paths on networks. The latter are made
of elementary “chips” associated to 2 × 2 matrices U, V whose arrangement is coded by
the initial data stepped surface k, and whose entries are Laurent monomials of the initial
data values along k.

This solution is exploited in Sect.3 to derive the solution of the unrestricted T -system
for an arbitrary initial data stepped surface k (Theorem 3.12). We find that Ti,j,k is
equal, up to simple factors of the initial data, to a principal minor of a network matrix
corresponding to the shadow of the point (i, j, k) onto the stepped surface k, namely the
intersection of k and the pyramid {(x, y, z) such that |i−x|+ |j− y| 6 |k− z|}. Theorem
1.3 follows from this expression.

Sects.4 and 5 are devoted to the study of the ℓ-restricted Ar T system solutions. For
pedagogical reasons, we first treat the case r = 1 completely in Sect.4, where we derive
network formulas for the general solution of the A1 T -system. We first treat the case of
the right (resp. left) half-plane A1 T -system, which correspond to imposing a wall-type
boundary condition on T1,j,k along the “wall” j = 0 (resp. j = ℓ + 1) and restricting the
range of j to the half-plane j > 0 (resp. j < ℓ + 1). The general strategy is to consider
a full plane A1 T -system, and to engineer both its initial data stepped surface and initial
values to ensure that the solution coincides with that of the half-plane in the relevant
range of j. This allows to use the general full plane network solution to derive results in
the half-plane geometry, in particular to establish the positive Laurent property of the
solution, first for the “flat” initial data stepped surface k0 (Theorems 4.7 and 4.5), and
then for general k (Theorem 4.9). Superimposing both half-plane conditions leads to the
ℓ-restricted A1 T -system, whose network solution leads to the A1 version of the periodicity
property of Theorem 1.4 (Theorem 4.2). This solution allows to prove the A1 version of
the Laurent positivity of Theorem 1.5 (Theorem 4.3 for the flat stepped surface k0 and
Theorem 4.4 for the general stepped surface k).
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The same strategy is then applied to the case of general r in Sect. 5, namely we impose
special restrictions to the initial data stepped surface and values of the full space Ar T -
system so as to mimic wall-type boundaries (left or right half-space) geometries (Theorem
5.6 and Corollary 5.7 for the stepped surface k0). Finally, by superimposing the two, we
obtain the ℓ-restricted two-wall boundary geometry (Theorem 5.8 for k0). These special
restrictions however impose the vanishing of the initial values ti,j within square domains
of the form (i, j) ∈ [1, r] × ([−r,−1]mod ℓ + r + 2), which create potential singularities
in the corresponding network matrices. To repair this, we use a regularization procedure
detailed in Sect.5.2, by assigning special non-zero values within these squares, to be sent
to zero in the end. With this trick, all formulas are well-defined and the relevant limits
yield the solutions in half-space (Sect.5.5) and ℓ-restricted geometries (Sects.5.6 and 5.7).

In the concluding Section 6 we consider other types of boundary conditions on the T -
system related to Frieze patterns of the plane [1], pentagram [10] and higher pentagram
maps [11]. We show that the latter are connected to T -systems wrapped on a torus,
namely with doubly-periodic initial data. Finally we discuss generalized cut-like boundary
conditions and formulate some further positivity conjectures.

2 Networks and the Ar T -system solution

In this section we recall the network solution [4] of the infinite Ar T -system, not subject
to the ℓ-restriction. The basic building blocks are matrices U and V , which form the
elementary “chips” of a network.

2.1 Definitions and properties of the matrices U and V

Define the 2× 2 matrices

U(a, b, c) =

(

1 0
c
b

a
b

)

, V (a, b, c) =

(

b
c

a
c

0 1

)

. (2.1)

These are embedded in GLr+1 in the standard way: Given i ∈ [1, r], define Ui(a, b, c) as
the (r + 1)× (r + 1) matrix with entries

(Ui(a, b, c))k,ℓ =

{

(U(a, b, c))k−i+1,ℓ−i+1 , if k, ℓ ∈ {i, i+ 1};

δk,ℓ otherwise,
(2.2)

and similarly for Vi(a, b, c).
These elementary matrices have the following important properties:

Ui(a, b, c)Vi+1(b, c, d) = Vi+1(a, c, d)Ui(a, b, d) (2.3)

Vi(a, b, c)Ui+1(d, e, f) = Ui+1(d, e, f)Vi(a, b, c) (2.4)

U(a, b, u)V (v, b, c) = V (v, a, b′)U(b′, c, u) iff bb′ = uv + ac (2.5)

The third relation is crucial: It gives a representation of the mutation relation of the
T -system (1.4-1.5) via a matrix exchange identity.
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2.2 Pictorial representations

In this paper we will use two pictorial representations of the elementary network matrices.

2.2.1 Pictorial representation I

The matrices Ui(a, b, c) and Vi(a, b, c) are represented as bicolored lozenges:

Ui(a, b, c) = a b

c

i+1

i
Vi(a, b, c) = b c

i+1

i

a

(2.6)

A product of matrices of U and V type is represented by drawing the corresponding
lozenges in the same order from left to right, and identifying the edges of the triangles
whenever no other object sits inbetween. This forms a triangulation of some region in the
plane.

The relations satisfied by the elementary network matrices can be represented pic-
torially as follows. Property (2.3) is (we allow the triangles to be slightly deformed):

c d
i+1

i+2

i

a b
=

c d
i+1

i+2

i

a b
(2.7)

Property (2.4) is

c d
i+1

b

i

a

i+2

=

d

b

c

a

i+1

i+2

i

(2.8)

and the mutation (2.5) is

cb

v

u

a = cb’

v

u

a (2.9)
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2.2.2 Pictorial representation II

The second useful pictorial representation is as network chips. The picture is as follows:

Ui(a, b, c) =

i+1

a b

c

i

...
...

=

1

a

bc
i+1

i

...
...

1

1

b

Vi(a, b, c) =
i

c

i+1

b

...
...

a

=

1

b

ca
i+1

i

...
...

1

1

c

(2.10)

where a, b, c are represented on the faces of a graph in the left picture. The edges, which
are all oriented from left to right (for simplicity, this orientation is omitted in the pictures)
are weighted by the matrix element (j, k) for an edge from j to k. By convention, dashed
edges carry the weight 1. We have indicated the weights of the edges in the right picture.

In terms of the network chips, property (2.3) can be illustrated as

i+2

i+1

i
a

dc

b

=
c

i

i+2

i+1

d

ba

(2.11)

Property (2.4) is

c

i

i+2

i+1

b

d

a

=
a

i

i+2

i+1

b

dc

(2.12)

The mutation (2.5) is illustrated as

b ca

u

v

=

u

v

a cb’ (2.13)
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2.3 Network Matrix

2.3.1 Definition

Given some initial condition Xk as in (1.3), define the (r + 1)× (r + 1) matrices

Ni,j =

{

Ui(ti,j−1, ti,j , ti+1,j−1), if ki,j−1 = ki,j − 1;
Vi(ti−1,j, ti,j−1, ti,j) otherwise.

(i ∈ [1, r]; j ∈ Z)

M0,j = I

Mi,j =

{

Ni,jMi−1,j , if ki,j = ki−1,j−1, ki−1,j 6= ki,j−1;
Mi−1,jNi,j otherwise.

(i ∈ [1, r]; j ∈ Z)

Nj = Mr,j

The network matrix corresponding to the initial condition Xk is

N(j0, j1) =

j1
∏

j=j0+1

Nj (j0 6 j1) (2.14)

with the convention that t0,j = tr+1,j = 1 and N(j, j) = I. The order of multiplication in
(2.14) is according to increasing values of j. We may think of N(j0, j1) as a network matrix
corresponding to a slice of the initial data surface, containing the points (i, j0, ki,j0), (i, j0+
1, ki,j0+1), · · · , (i, j1, ki,j1) for i ∈ [1, r].

To make the definition more transparent, let us translate it in the language of the
pictorial representation I above. Each matrix Ni,j corresponds to a lozenge made of two
triangles (one grey, one white) sharing the horizontal edge (i, j − 1, ki,j−1) − (i, j, ki,j).
The grey triangle is above (U matrix) if ki,j = ki,j−1 + 1, below (V matrix) if ki,j =
ki,j−1 − 1. Moreover, the order in which the {Ni,j}i∈[1,r] are multiplied to form the “slice”
network matrix N(j − 1, j) exactly corresponds to a choice of diagonal in each square
(i − 1, j − 1, ki−1,j−1) − (i − 1, j, ki−1,j) − (i, j − 1, ki,j−1) − (i, j, ki,j), for i = 2, 3, . . . , r,
with the rule that the diagonal should connect two opposite vertices with the same value
of k. This gives rise to six possible vertical configurations of two lozenges:

k

k

k+1

k−1kk

k k

kk

k

k−1

k

kk

k+1

k+1 kkk

k−1

k+1 k

k−1

k−1

k+1 k

k+1

k−1

k (2.15)

Note that when both pairs of diagonally opposite vertices have the same value of k, the
choice of diagonal is not fixed. This ambiguity is immaterial, due to the identities (2.7)
and (2.8). We have chosen the NW-SE diagonal by convention. We call this construction
the U, V decomposition of the stepped surface k.
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Remark 2.1. There is a direct bijection between the U, V decomposition of the stepped
surfaces k and the quiver representing the B-matrix of the cluster algebra associated to
the T -system [5]. Let Qk be the (infinite) quiver encoded by the exchange matrix Bk

at the node labeled by k in the cluster graph. We may represent Qk with its vertices
(i, j) at the nodes of a square lattice Z × Z as a planar oriented graph with only square
and triangular faces. Shading in grey the faces whose edges are oriented couterclockwise
yields a tessellation with white and grey squares and triangles and corresponds to the
U, V decomposition of k described above. In particular, the six face configurations (2.15)
correspond to the six following local quiver configurations:

(2.16)

Remark 2.2. For notational simplicity the rules (2.15) are to be understood as seen from
behind the initial data surface (i.e. from the opposite side of the surface to where the
point (i, j, k) lies), namely from an observer sitting at a point (i, j, k′) with k′ < ki,j. This
allows to read expressions such as products of U, V matrices from left to right.

In the particular case of the fundamental stepped surface k0, as k
(0)
i,j ∈ {0, 1}, the

network matrices simplify to

Ni,j =

{

Ui(ti,j−1, ti,j , ti+1,j−1), if i+ j = 0 mod 2;
Vi(ti−1,j, ti,j−1, ti,j) otherwise.

(i ∈ [1, r]; j ∈ Z)

Nj =
r
∏

i=1

Ni,j,

N(j0, j1) =

j1
∏

j=j0+1

Nj, (j0 6 j1), (2.17)

still with the convention that t0,j = tr+1,j = 1 and N(j, j) = I.
The matrix N(j, j′) for the fundamental stepped surface k0 (we choose odd j < j′ ∈ Z
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in this example) is represented as follows:

t1,j

t2,j

t3,j

t r,j

t1,j’

t2,j’

t3,j’

t r,j’

t3,j+1

t2,j+1

t1,j+1

...

1 1 1

1

2

3

...

r

r+1

111

...

1

This corresponds to the following portion of the cluster algebra quiver (strictly speak-
ing the bottom and top row of fixed values T0,j,k = Tr+1,j,k = 1 are not part of the cluster,
and the corresponding nodes are not vertices of the quiver):
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In the network picture, the matrix N(j, j′) is

r,j+1

t1,j t1,j+1

t2,j+1

t3,j+1

t r,j’

t3,j

t2,j

t r,j

t1,j’

t2,j’

t3,j’

t

r r

r+1

3

2

1

......

1

1

1

2

3

r+1

An example of a non-flat stepped surface k, together with a pictorial representation
of type I of its network matrix, is

j 0 j 1

1

11

1

2 2

2 2

2

2 2

2

11 2

3 3

33

2

3

3 3

3

44

4 4

1

j

i

j

i

r

i,jk

k j

i
0 0 0

0

0

0 0

00

1 1

1

1

1

1 1

1

2.4 Ar T -system solution

Following [4], we can now write an explicit expression for the variable T1,j,k in terms of
the initial conditions Xk for any stepped surface k. Without loss of generality, we may
assume that the point (1, j, k) is above k, namely that k > k1,j (otherwise we simply
reflect k → −k and k → −k).

Definition 2.3. The projection of (1, j, k) onto a given stepped surface k = {(i, j, ki,j)}
is the finite subset {(i, j, ki,j)i∈[1,r];j∈[j0,j1]} ⊂ k. Here, j0 is defined as largest integer such
that

k − j = k1,j0 − j0,

and j1 defined as the smallest integer such that

k + j = k1,j1 + j1.
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We call j0 the minimum of the projection, and j1 its maximum.

Theorem 2.4. [4] The solution T1,j,k of the Ar T -system (1.1) in terms of the initial
conditions Xk on a given stepped surface k is

T1,j,k = [N(j0, j1)]1,1 T1,j1,k1,j1
(2.18)

For the proof, we refer the reader to [4].
The expression for Ti,j,k with i > 1 is obtained from the Wronskian expressions (1.8).

Combinatorially, this determinant is easily interpreted via the Lindström-Gessel-Viennot
theorem [19, 20] as the partition function of a family of i non-intersecting paths on the
weighted network corresponding to N(j0, j1), where j0 and j1 are respectively the smallest
minimum and largest maximum of the projections of the T1,j′,k′ involved in the discrete
Wronskian expression (1.8), namely with (j′, k′) = (j+a− b, k+a+ b− i−1), a, b ∈ [1, i].

Theorem 2.5. [4] As a function of Xk, the solution Ti,j,k of the Ar T -system is

Ti,j,k = Z
j1(1),...,j1(i)
j0(1),...,j0(i)

(j0, j1)
i
∏

a=1

T1,j1(a),k1,j1(a)
,

where Z
j1(1),...,j1(i)
j0(1),...,j0(i)

(j0, j1) is the partition function of i non-intersecting weighted paths on

the network corresponding to N(j0, j1), starting at the points (1, j0(1)), (1, j0(2)), . . .,
(1, j0(i)) and ending at the points (1, j1(1)), (1, j1(2)), . . . , (1, j1(i)). These points are
respectively the minima of the projections of the points (1, j + b− i, k− b), b = 1, 2, . . . , i,
with coordinates (1, j0(b), k1,j0(b)), onto k, and the maxima of the projections of the points
(1, j + a− 1, k + a− i), a = 1, 2, . . . , i onto k, with coordinates (1, j1(a), k1,j1(a)).

3 Unrestricted A∞ T -system

In this section, we study the solutions Ti,j,k of the octahedron equation or the unrestricted
A∞ T -system (1.1), not subject to the restriction (1.6). The idea is that for given i, j, k,
the solutions of the A∞ system are given by those of some Ar system for sufficiently
large r.

We wish to write the solution explicitly in terms of initial conditions Xk (1.3) specified
along some stepped surface k (1.2).

As a preliminary remark, we note that the substitutions k → −k as well as (i, j, k) →
(i+a, j+ b, k+ c) for any a, b, c ∈ Z with a+ b+ c even leave the T -system equation (1.1)
invariant:

Lemma 3.1. The solution Ti,j,k of the unrestricted A∞ T -system (1.1) with initial con-
ditions Xk is the same function of the initial values {tx,y} as Ti,j,−k with initial condition
X−k, where by −k we mean the stepped surface k′ with k′

i,j = −ki,j for all i, j.
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Lemma 3.2. The unrestricted A∞ T -system solution Ti,j,k with initial conditions Xk is the
same function of the initial values tx,y as Ti+a,j+b,k+c is of the initial values ux,y = tx−a,y−b

for the initial conditions Xc+k, for any a, b, c ∈ Z, such that a + b + c = 0 mod 2, and
where by c+ k we mean the stepped surface k′ with k′

i,j = ki,j + c for all i, j.

As an immediate consequence of Lemmas 3.1 and 3.2, we may assume without loss
of generality that the point (i, j, k) is “above” k, that is, k > ki,j , as all the results for
k > ki,j may be transferred to the case k < ki,j as well.

Definition 3.3. Let Dk(i, j, k) = {(x, y, kx,y) ∈ Z
3 : |x − i| + |y − j| 6 |k − kx,y|} ⊂ k.

We call Dk(i, j, k) the shadow of the point (i, j, k) on the initial data stepped surface k.

Note that for k = k0, the boundary points ∂Dk0(i, j, k) = {(x, y, k
(0)
x,y) : |x − i| +

|y − j| = k − 1} all have k
(0)
x,y = 1. For later purposes, we also define the interior domain

D
′
k(i, j, k) = {(x, y, kx,y) : |x− i|+ |y − j| < |k − kx,y|}.

3.1 Solution for the fundamental stepped surface k0

We start with the case when k = k0. Let us consider a point (i, j, k) with i + j + k = 0

mod 2, so that k and k
(0)
i,j ∈ {0, 1} have the same parity. The following statement is clear

from the form of the octahedron equation:

Lemma 3.4. The solution Ti,j,k of the unrestricted A∞ T -system (1.1) with initial con-

ditions Xk0 depends only on the initial values tx,y associated with points (x, y, k
(0)
x,y) ∈

Dk0(i, j, k).

Lemma 3.2 has the following immediate consequence:

Lemma 3.5. The unrestricted A∞ T -system solution Ti,j,k is the same function of the
initial values tx,y on Dk0(i, j, k) as Ti+a,j+b,k+c is of ux,y = tx−a,y−b on Dc+k0(i + a, j +
b, c+ k), for any a, b, c ∈ Z, such that a+ b+ c = 0 mod 2.

In view of the above Lemmas, we may immerse the domain Dk0(i, j, k) of initial data
surface into a different initial data surface, pertaining to the Ar case with sufficiently
large r, so that the domain does not feel the Ar boundary. More precisely, using the
above-mentioned translational invariance, we have the following.

Lemma 3.6. The solution Ti,j,k({tx,y}) of the A∞ T -system in terms of the initial values
tx,y on Dk0(i, j, k) coincides with the solution Tk,0,k({ux,y}) of the Ar T -system, with r =
2k − 1, and with initial data ux,y on any stepped surface k such that kx,y = x + y mod 2
for (x, y, kx,y) ∈ Dk0(k, 0, k), on which ux,y = tx+i−k,y+j.

Proof. We use Lemma 3.4 to compare the solution Ti,j,k({tx,y}) of the A∞ T -system to
that, Tk,0,k({ux,y}) of the Ar T -system with r = 2k − 1. The latter only depends on the
values ux,y on the shadow of (k, 0, k) onto the stepped surface k, which was engineered to
be Dk0(k, 0, k). The lemma then follows from the translational invariance of Lemma 3.5,
with a = k − i, b = −j and c = 0.
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To compute the solution Ti,j,k of the unrestricted A∞ T -system, we simply have to
compute the solution Tk,0,k({ux,y}) of the A2k−1 T -system.

Definition 3.7. The network matrix associated to the domain Dk0(k, 0, k), denoted by
N (Dk0(k, 0, k)) is the product of the 2k − 2× 2k − 2 U and V matrices corresponding to
the U, V decomposition of the domain Dk0(k, 0, k), according to the rules of eq.(2.15).

Example 3.8. For k = 3, we have in the pictorial representation I:

N (Dk0(3, 0, 3)) =

lk m

c

n

e i

db

a

hg
f

= V2(b, e, f)V1(a, b, c)U2(f, g, j)V3(g, k, l)×

×U1(c, d, g)V2(d, g, h)U3(l,m, n)U2(h, i,m)

where we have used shorthands for the variables

u5,0 = n

u4,−1 = k u4,0 = l u4,1 = m

u3,−2 = e u3,−1 = f u3,0 = g u3,1 = h u3,2 = i

u2,−1 = b u2,0 = c u2,1 = d

u1,0 = a

We have the following.

Theorem 3.9. The solution Tk,0,k({ux,y}) of the A2k−1 T -system is given by:

Tk,0,k =
∣

∣

∣
N (Dk0(k, 0, k))

1,2,...,k−1
1,2,...,k−1

∣

∣

∣

k−1
∏

a=1

u−1
a,1−a

k
∏

b=1

ub,b−1

where for any matrix M the notation |M1,2,...,m
1,2,...,m | stands for the m×m principal minor of

M .

Proof. We apply Theorem 2.5 to the case of the following particular stepped surface k.
We assume that k satisfies the conditions of Lemma 3.6, and that, moreover, outside of
D

′
k0(k, 0, k), kx,y is a strictly increasing function of y for y > 0 and strictly decreasing

for y 6 0, while ux,y is arbitrary outside of Dk0(k, 0, k). As k and k0 coincide along
Dk0(k, 0, k) we have:

Tk,0,k({ux,y}) = Z
j1(1),...,j1(k)
j0(1),...,j0(k)

(j0, j1)
k
∏

a=1

u1,j1(a) (3.1)
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where we have used the initial data T1,j1(a),k1,j1(a)
= u1,j1(a), and

{

j0(a) = a− k j1(a) = a− 1
k1,j0(a) = a− k + 1 k1,j1(a) = a

(a = 1, 2, . . . , k)

with j0 = 1− k and j1 = k− 1. The relevant part of the network involved in the quantity
Z

j1(1),...,j1(k)
j0(1),...,j0(k)

(j0, j1) is the rectangle corresponding to N(j0, j1), which reads in pictorial
representations I and II:

1,0u 1,−1 u 1,1

u 2,−1 u 2,1

j  (2)0 j  (3)=0 j  (1)1 j  (2)1

u 3,2

j  (1)0j  (1)0 j  (2)0 j  (2)1 1j  (3)1j  (3)j  (3)0

u1

2k−1

1
1 1 1

k
k+1

2k

k

j  (1)1=

where in the second picture we have represented the network for N (Dk0(k, 0, k)) as a
big lozenge with entry and exit points determined by the unique configuration of non-
intersecting paths outside of that domain, that start at j0(a) and end at j1(k + 1 − a),
a = 1, 2, . . . , k. The steps of these paths outside of N (Dk0(k, 0, k)) are all diagonal steps
of the network (going up on the left side, and down on the right side). The contribution
from the SW→NE steps (on the left side) reads:

k
∏

a=2

k+1−a
∏

m=1

um−1,j0(a)

um,j0(a)

=
k
∏

a=2

1

uk+1−a,j0(a)

while the NW→SE steps (right side) contribute:

k
∏

a=1

a
∏

m=1

um+1,j1(a)

um,j1(a)

=
k
∏

a=1

ua,j1(a)

u1,j1(a)

Collecting the weights and substituting them into (3.1), the theorem follows, as, by virtue

of the Lindström-Gessel-Viennot theorem [19, 20], the quantity
∣

∣

∣N (Dk0(k, 0, k))
1,2,...,k−1
1,2,...,k−1

∣

∣

∣

is the partition function for families of k − 1 non-intersecting weighted paths on the
network for the above big lozenge, starting at all k − 1 points on the SW border, and
ending at all k − 1 points on the SE border.
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Example 3.10. We continue with the example k = 3 of Ex.3.8. We have

|Dk0(3, 0, 3)|
1,2
1,2 =

∣

∣

∣

∣

∣

bd+ag
cd

a(gi+dm)
dhi

eg+bk
df

c(gi+dm)(eg+bk)
dfghi

+ b(gn+mk)
gil

∣

∣

∣

∣

∣

The formula of Theorem 3.9 gives:

T3,0,3 = |Dk0(3, 0, 3)|
1,2
1,2

adi

ab

=
beg

dfh
+

bem

fhi
+

b2k

dfh
+

b2mk

fghi
+

b2n

cil
+

abgn

cdil
+

abmk

cdil
+

b2mk

cgil

Theorem 3.9 has the following immediate consequence.

Corollary 3.11. The solution Ti,j,k of the unrestricted A∞ T -system with initial condi-
tions Xk0 is given by:

Ti,j,k =
∣

∣

∣N (Dk0(i, j, k))
1,2,...,k−1
1,2,...,k−1

∣

∣

∣

k−2
∏

a=1

t−1
i+a−k+1,j−a

k−1
∏

b=1

ti+b−k+1,j+b (3.2)

3.2 Solution for an arbitrary stepped surface k

Recall that Dk(i, j, k) denotes the shadow of (i, j, k) on k, defined as the intersection of
k with the pyramid Π(i, j, k) = {(x, y, z)||x − i| + |y − j| 6 |z − k|}. Using Lemma 3.5,
we may assume without loss of generality that Dk(i, j, k) is entirely above k0. Indeed,
Ti,j,m+k is the same function of the initial data on m+ k as Ti,j,k on k, so we may pick m

large enough to ensure that m+ ki,j > k
(0)
i,j on Dm+k(i, j,m+ k).

As explained before, any finite domain of k above k0 may be obtained by applying a
finite number of forward mutations µi,j to k0. These correspond to a local transformation
of the surface, in which a vertex (i, j, ki,j = m − 1) such that its four neighbors have
ki−1,j = ki+1,j = ki,j−1 = ki,j+1 = m is sent to the 6th vertex of the octahedron, (i, j, k′

i,j),
with k′

i,j = m + 1, as illustrated in (1.5). If we complete Dk(i, j, k) with the faces of
Π(i, j, k) until they intersect k0, we obtain a domain ∆k(i, j, k) that touches k0 along
the square |x − i| + |y − j| = k − 1. The domain ∆k(i, j, k) is obtained from Dk0(i, j, k)

by a finite number of forward mutations of the form µx,y with (x, y, k
(0)
x,y) strictly inside

Dk0(i, j, k).
Starting from the expression of Corollary 3.11, we may implement these mutations

by the corresponding V U ↔ UV substitutions according to (2.5), as depicted in (2.9).
These mutations are directly applied on the matrix N (Dk0(i, j, k)), until the matrix is
expressed as N (∆k(i, j, k)). We have consequently:

Ti,j,k =
∣

∣

∣N (∆k(i, j, k))
1,2,...,k−1
1,2,...,k−1

∣

∣

∣

k−2
∏

a=1

t−1
i+a−k+1,j−a

k−1
∏

b=1

ti+b−k+1,j+b (3.3)
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We are left with the simple task of comparing N (∆k(i, j, k)) with N (Dk(i, j, k)). Let
us denote by La = (ia, ja) and Ra = (i′a, j

′
a), a = 1, 2, . . . , κ, the (i, j) coordinates of the

vertices of ∂Dk(i, j, k)∩Π(i, j, k) with (ia, ja) in the bottom left corner ia 6 i, ja 6 j and
(i′a, j

′
a) in the bottom right corner i′a 6 i, j′a > j, labeled from bottom to top. We have:

Theorem 3.12. The solution Ti,j,k of the unrestricted A∞ T -system with initial conditions
Xk reads:

Ti,j,k =
∣

∣

∣N (Dk(i, j, k))
1,2,...,κ−1
1,2,...,κ−1

∣

∣

∣

κ−1
∏

a=1

t−1
La

κ
∏

b=1

tRb
(3.4)

Proof. As ∆k(i, j, k) is a completion of Dk(i, j, k) by use of the four faces of the pyramid
Π(i, j, k) until they reach k0, we have a simple pattern for the associated networks. Here
is an example, with (i, j, k = 4) and its shadow Dk(i, j, k) (shaded area) and domain
∆k(i, j, k) (within the dashed square) for a typical stepped surface whose heights ki,j are
displayed on the left diagram:

0 0

j

i

2 011 10 0

0 011 10 0

0 2 01 1 11

2 2 23 1 11

2 011 10 0

0 0 01 1 11

0 011 1

∆k(i,j,k)

D (i,j,k)k

We have shown the corresponding matrix N (∆k(i, j, k)) on the right, while N (Dk(i, j, k))
corresponds to the smaller indicated domain, which matches the shaded domain on the
left. Note that by construction the four corners between Dk(i, j, k) and ∆k(i, j, k) are
products of only U ’s (W corners) or only V ’s (E corners). The network pictorial repre-
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sentation is:

y

z

w’

x

u

v v’

u’

w

w’
wv

v’

u
u’

x

z

y1

2

33 3

2

1

3

2

1

v

u

v’

u’

w
w’

k

∆k(i,j,k)

D (i,j,k)

4Rt
3Rt

2Rt
1

= Rt
3Lt

2Lt
1Lt

The vertex labels correspond to the actual initial data values, with tL1 = tR1 = x, tL2 = u′,
tL3 = v′, tR2 = y, tR3 = z, tR4 = w′, while κ = 4. We see that the (non-intersecting) paths
contributing to N (∆k(i, j, k)) must go along horizontal edges throughout the domain
∆k(i, j, k) \ Dk(i, j, k), as they correspond to U matrices (W side) and V matrices (E

side). It is now easy to express
∣

∣

∣
N (∆k(i, j, k))

1,2,...,k−1
1,2,...,k−1

∣

∣

∣
in terms of

∣

∣

∣
N (Dk(i, j, k))

1,2,...,κ−1
1,2,...,κ−1

∣

∣

∣
.

Collecting the contributions of the horizontal steps of these paths, in the form of ratios of
face labels along horizontals, all intermediate terms cancel out, leaving us with only the
first and last one. In the particular example above, the weights of the horizontal steps
transform the prefactor for the W side: 1

uvx
into u

u′
v
v′

1
uvx

= 1
u′v′x

, while on the E side we

have: xyzw transformed into w′

w
xyzw = xyzw′. In general, the net result is to replace the

factors of t−1’s and t’s in (3.3) by the products of t−1
La

and tRa
, and the theorem follows.

Theorem 1.3 is now an immediate corollary of Theorem 3.12, as N(Dk(i, j, k)) is
the matrix of a network with edge weights that are non-negative Laurent monomials of
the initial data {ti,j}, and by the Lindström-Gessel-Viennot theorem [19, 20] the mi-
nor N (Dk(i, j, k))

1,2,...,κ−1
1,2,...,κ−1 is the partition function of families of κ − 1 weighted non-

intersecting paths on the network graph, which is a polynomial of the path weights with
non-negative integer coefficients.

Remark 3.13. A last remark is in order. In this section, we have used the known solution
of the Ar T -system (Theorem 2.5) to derive the general formula of Theorem 3.12 for
the unrestricted A∞ T -system solutions. We may now reverse the logic and extend the
formula (3.4) to the case of the Ar T -system solutions, by viewing the Ar T -system as
a restriction of the A∞ one obtained by impsing the extra Ar boundary condition. This
is easily done by noting that the Ar boundary simply truncates the space (i, j, k)Z3 to the
domain (i, j, k) ∈ [1, r]×Z

2. Accordingly, the initial data stepped surfaces k are truncated
to lie in the same domain, while the shadow of any given point (i, j, k) on k is similarly
truncated to a domain Dk(i, j, k) = k ∩ Π(i, j, k). The formula (3.4) remains valid with
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1

1
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1

11
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33
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3
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3

44

4

Figure 2: A typical application of the truncation of formula 3.4 in the Ar case. We have
r = 5, (i, j, k) = (2, 2, 4), and the surface k given on the left where we indicate the value
of k in the (i, j) coordinate plane. The shaded area is the (truncated) shadow of (i, j, k)
on k. The formula expresses Ti,j,k as the partition function for i = 2 non-intersecting
paths on the lattice N(Dk(i, j, k)) represented on the right, with the indicated prefactors.

this new definition, while the left and right boundary points range only over those within
the truncated domain (see Fig.2 for an example). This gives a new direct formula for the
solution of the Ar T -system which displays manifest Laurent positivity of the solution in
terms of arbitrary initial data.

4 ℓ-restricted T-system: the A1 case

We study the solutions of the T -system with ℓ-restricted boundaries. For pedagogical
reasons, this section is entirely devoted to the case of A1, for which we will derive slightly
more general results.

4.1 The ℓ-restricted A1 T -system and its initial conditions

The A1 T -system is the r = 1 version of (1.1), with the simplified notation T1,j,k = Tj,k

for j, k ∈ Z and j + k = 1 mod 2. Let S be a subset of Z. We consider the A1 T -system
with the restriction that j ∈ S:

Tj,k+1Tj,k−1 = Tj+1,kTj−1,k + 1 (j ∈ S; k ∈ Z) (4.1)

The general initial conditions for (4.1) are indexed by stepped surfaces k (1.2), which
reduce here to paths

k(S) = {kj(S) ∈ Z, |kj+1 − kj| = 1and kj + j = 1mod 2, j ∈ S}.

We consider the system (4.1) with possibly additional boundary conditions depending on
S, and an initial condition XS(t), which is an assignment of formal variables t = (tj)j∈S
to the points on the surface k(S). We consider the four cases:
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(i) Unrestricted A1 T -system: S = Z. The initial condition Xk(t) is the assignment

Xk(t) :
{

Tj,kj = tj (j ∈ Z)
}

(4.2)

(ii) Right half-plane A1 T -system: S = [1,∞). The additional boundary conditions are

T0,k = 1 (k ∈ Z)

and the initial condition X+
k
(t) is the assignment

X+
k
(t) :

{

Tj,kj = tj (j ∈ [1,∞))
}

(4.3)

(iii) Left half-plane A1 T -system: S = (−∞, ℓ]. The additional boundary conditions are

Tℓ+1,k = 1 (k ∈ Z)

and the initial condition X−
k
(t) is the assignment

X−
k
(t) :

{

Tj,kj = tj (j ∈ (−∞, ℓ])
}

(4.4)

(iv) ℓ-restricted A1 T -system: S = [1, ℓ]. The additional boundary conditions are

T0,k = Tℓ+1,k = 1 (k ∈ Z)

and the initial condition X
[1,ℓ]
k

(t) is the assignment

X
[1,ℓ]
k

(t) :
{

Tj,kj = tj (j ∈ [1, ℓ])
}

(4.5)

In the following, we will also consider the unrestricted A1 T -system (i) with initial
conditionsXk(t) (5.2), further restricted by imposing extra conditions on the initial values
t = {tj} as well as the path k. The new initial values t+, t−, t[1,ℓ] and paths k+,k−,k[1,ℓ]

correspond respectively to the following conditions:

t+ :

{

t−j−2 = −ti,j (j ∈ Z+)
t0 = 1, t−1 = 0

k+ :

{

k−j−2 = kj (j ∈ Z+)
k−1 = k0 − 1

(4.6)

t− :

{

tj+ℓ+3 = −tℓ+1−j (j ∈ Z+)
ti,ℓ+1 = 1, ti,ℓ+2 = 0

k− :

{

kj+ℓ+3 = kℓ+1−j (j ∈ Z+)
kℓ+2 = kℓ+1 − 1

(4.7)

t[1,ℓ] :







t−j−2 = −ti,j (j ∈ Z+)
t2(ℓ+3)+j = ti,j (j ∈ Z)
t0 = tℓ+1 = 1, t−1 = 0

k[1,ℓ] :







k−j−2 = kj (j ∈ Z+)
kj+2(ℓ+3) = kj (j ∈ Z)

k−1 = k0 − 1, kℓ+2 = kℓ+1 − 1
(4.8)

By convention, when k = k0 we drop the requirements on k. We note that the
conditions (4.8) are equivalent to imposing simultaneously the conditions (4.6) and (4.7).

We wish to study the solutions Tj,k of the A1 T -system in terms of initial conditions
in all of the above cases (i − iv). By virtue of Lemmas 3.1 and 3.2 we may without loss
of generality restrict ourselves to points (j, k) above the initial data surface k in all these
cases.
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4.2 Unrestricted system solution

The unrestricted system subject to initial conditions Xk(t) reads:

Tj,k+1Tj,k−1 = Tj+1,kTj−1,k + 1 (j, k ∈ Z; j + k = 1mod 2) (4.9)

Tj,kj = tj (j ∈ Z) (4.10)

Its solution is simply expressed in terms of the following simplified versions of the U, V
matrices of Sect. 2.1 defined as:

U(a, b) = U(a, b, 1) =

(

1 0
b−1 ab−1

)

V (a, b) = V (1, a, b) =

(

ab−1 b−1

0 1

)

. (4.11)

Let us consider a point (j, k) above the path k, i.e. with k > kj . Def. 2.3 for r = 1
defines the projection of the point (j, k) onto k as the portion of the path (j, kj)j∈[j0,j1]
with largest j0 and smallest j1 such that k − kj0 = j − j0, k − kj1 = j1 − j. Note that j0
and j1 are both even integers. The cone of projection of (j, k) is defined by the two lines
k = j + kj0 − j0 and k = kj1 + j1 − j.

We define the matrix

Mj(tj, tj+1) =

{

V (tj, tj+1) if kj = kj+1 + 1
U(tj, tj+1) if kj = kj+1 − 1

(4.12)

We have:

Theorem 4.1. [1],[4] The solution Tj,k of the system (4.9-4.10) is:

Tj,k =
(

j1−1
∏

j=j0

Mj,j+1(tj, tj+1)
)

1,1
tj1 (4.13)

Note that this is the A1 version of (2.18), in which the 2× 2 network matrix N(j0, j1)
is identified with the 2× 2 matrix product

∏j1−1
j=j0

Mj,j+1(tj, tj+1).
The exact solution of Theorem 4.1 was used previously to derive the positive Laurent

property for the solution of the T -system, namely that Tj,k is a Laurent polynomial of the
initial data, with non-negative integer coefficients. (This is clear from Theorem 4.1, as the
entries of U, V are themselves Laurent monomials of the initial data with non-negative
integer coefficients.).

4.3 ℓ-restricted case: equivalent initial data and main theorems

We now turn to solutions of the ℓ-restricted system. The main idea is to realize the
ℓ-restricted boundaries within the framework of the unrestricted T -system, by suitably
engineering the initial data tk, k ∈ Z. The following three theorems will be proved in
next section.
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Theorem 4.2. The solution Tj,k of the ℓ-restricted A1 T -system (iv) is periodic in the
direction k:

Tj,k+N = Tj,k

with period N = 2(ℓ+ 3).

Theorem 4.3. The solution of the unrestricted A1 T -system (i) with initial conditions
Xk0(t

[1,ℓ]) (4.2,4.8) restricts to the solution of the ℓ-restricted A1 T -system (iv) with the

initial conditions X
[1,ℓ]
m (u) (4.5), where u = t([1, ℓ]),m = k0([1, ℓ]) are the restrictions of

t,k0 to the interval j ∈ [1, ℓ]. As such, the solution of the ℓ-restricted A1 T -system with

initial conditions X
[1,ℓ]
k0

(t) is a positive Laurent polynomial of the initial values t1, t2, . . . , tℓ.

Theorem 4.4. The solution of the ℓ-restricted A1 T -system (iv) with initial conditions
Xk(t) (4.5) along an arbitrary finite path k is a positive Laurent polynomial of the initial
values t1, t2, . . . , tℓ.

4.4 Half-plane solution

To prove Theorem 4.3, we must show that the ℓ-restricted boundary is implemented by
the choice of symmetries of the initial data. Concretely, one must show that both T0,k = 1
and Tℓ+1,k = 1 as a consequence. It turns out to be instructive to first consider the case
of the T -system (4.1) in a half-plane. We have:

Theorem 4.5. The solution of the unrestricted A1 T -system (i) with initial conditions
Xk0(t

+) (4.2,4.6) restricts to that of the right half-plane A1 T -system (ii) with initial
condition X+

m
(u) (4.3), where u = t([1,∞)),m = k0([1,∞)) are the restrictions of t,k0

to the range j ∈ [1,∞). As such the solutions of the latter are positive Laurent polynomials
of the initial data t1, t2, t3, . . .

Proof. To prove the first statement of the theorem, it is sufficient to show that T0,2k+1 = 1
for all k > 0 (the case k < 0 follows from the general reflection symmetry argument of
Lemmas 3.1 and 3.2). Indeed, the half-plane solution is uniquely determined in terms
of initial conditions of the type (4.3), so it must coincide with that of the unrestricted
system in the range j > 0, once the boundary condition T0,k = 1 is guaranteed.

To compute T0,2k+1, we wish to use Theorem 4.1, but we cannot plug directly the value
t−1 = 0 as some entries of the matrices U, V may diverge. However, only combinations of
the form V (tj, tj+1)U(tj+1tj+2) for even j enters the solution (4.13). We simply note that

lim
ǫ→0

V (−1, ǫ)U(ǫ, 1) = P =

(

0 1
1 0

)

(4.14)

Provided we take this limit, we may now safely use the formula (4.13) for T0,2k+1, for
k > 0 with j0 = −2k + 2 and j1 = 2k:

T0,2k+1 =

(V (−t2k−2,−t2k−3) · · ·V (−t2,−t1)U(−t1,−1)PV (1, t1)U(t1, t2) · · ·U(t2k−1, t2k))1,1 t2k
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j

Figure 3: The segment [j0, j1] of values necessary to express Tj,k has its left endpoint
reflected by the line j = −1. As a result, only the values of tj for j between j̄0 = −j0 − 2
and j1 enter the expression.

(Here and in the following the · · · stand for alternating products of UV UV U . . .). Next,
we shall use the following “collapse” properties of U, V, P matrices, easily derived by direct
calculation:

U(−b,−a)PV (a, b) = P V (−b,−a)PU(a, b) = P (4.15)

for all a, b. Applying these iteratively to (4.13) implies:

T0,2k+1 = (PV (t2k−2, t2k−1)U(t2k−1, t2k))1,1 t2k =
1

t2k
× t2k = 1

We now turn to the Laurent positivity of the solution. Let us compute Tj,k for k > 0
via (4.13). If j0 > 0, this is the same as the solution of the unrestricted system, and the
positivity is clear. Otherwise, let us denote by j̄0 = −j0 − 2 > 0, and compute:

Tj,k = (V (tj0 , tj0+1) · · ·U(t−3,−1)PV (1, t1) · · ·U(tj1−1, tj1))1,1 tj1

=
(

V (−tj̄0 ,−tj̄0−1) · · ·U(−t1,−1)PV (1, t1) · · ·U(tj1−1, tj1)
)

1,1
tj1

=
(

PV (tj̄0 , tj̄0+1) · · ·U(tj1−1, tj1)
)

1,1
tj1

where we have used (4.15) repeatedly to eliminate the first j̄0 terms. This is a product
of matrices with entries that are all Laurent monomials of the initial data (tj)j>1 with
non-negative integer coefficients. The positive Laurent property follows.

Remark 4.6. There is a very simple pictorial interpretation of the computation of Tj,k.
The left endpoint of the segment j ∈ [j0, j1] of initial values tj necessary to express the
solution Tj,k has been reflected by the line j = −1. This is depicted in Fig. 3, along with
the corresponding cone of projection of (j, k) and its reflection.

We have the following analogous result for the left half-plane j 6 ℓ solution:
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Theorem 4.7. For fixed ℓ ∈ Z>0, the solution of the unrestricted A1 T -system (i) with
initial conditions Xk0(t

−) (4.2,4.7), restricts to that of the left half-plane A1 T -system
(iii) with initial condition X−

m
(u) (4.4), where u = t((−∞, ℓ]),m = k0((−∞, ℓ]) are the

restrictions of t,k0 to the range j ∈ (−∞, ℓ]. As such the solutions of the latter are
positive Laurent polynomials of the initial data tℓ, tℓ−1, tℓ−2, . . .

Proof. Let us first show the positivity statement. Imitating the proof of Theorem 4.5, we
must “regularize” the singular value 0 by introducing:

lim
ǫ→0

V (1, ǫ)U(ǫ,−1) = −P

A new feature arises when ℓ is even: in that case, the boundary contribution is

lim
ǫ→0

U(1, ǫ)V (ǫ,−1) = −P

as well, but if j + k = ℓ+ 3, the formula (4.13) for Tj,k contains a potential singularity as
U(1, ǫ) diverges when ǫ → 0. Fortunately the full formula also has an ǫ = Tj1,kj1

in factor,
leading to a finite limit:

Tj,k = lim
ǫ→0

(

V (tj−k, tj−k+1) · · ·V (tℓ, 1)U(1, ǫ)
)

1,1
ǫ

=
(

V (tj−k, tj−k+1) · · ·V (tℓ, 1)
)

1,2
=
(

V (tj−k, tj−k+1) · · ·V (tℓ, 1)(−P )
)

1,1
(−1) (4.16)

which is manifestly positive. In general, we compute Tj,k via the formula (4.13). Again, if
j + k 6 ℓ+ 1, the solution is the same as in the unrestricted case, and positivity follows.
Otherwise, we have a reflection of the segment of initial values on the right against the
line j = ℓ + 2. More precisely, denoting by Mℓ = U if ℓ is odd and Mℓ = V if ℓ is even,
we get:

Tj,k =
(

V (tj−k, tj−k+1) · · ·Mℓ(tℓ, tℓ+1)(−P )Mℓ+1(tℓ+2, tℓ+3) · · ·U(tj+k−1, tj+k)
)

1,1
tj+k

=
(

V (tj−k, tj−k+1) · · ·U(t2(ℓ+2)−j−k−1, t2(ℓ+2)−j−k)(−P )
)

1,1
(−t2(ℓ+2)−j−k) (4.17)

where we have used the symmetry t2(ℓ+2−j) = −tj and (4.15) to cancel out terms on
both sides of the (−P ) factor. The two minus signs cancel, and we are left with a
manifestly positive expression. Let us now turn to the first part of the theorem. By
uniqueness of the solution in the left half-plane, we simply have to show that Tℓ+1,k = 1
for all k ∈ Z>0 such that k + ℓ is even. For odd ℓ, using (4.16) we first compute:
Tℓ+1,2 = limǫ→0(V (tℓ, 1)U(1, ǫ))1,1ǫ = 1. For all other cases, we use (4.17) to compute:

Tℓ+1,k =
(

V (tℓ+1−k, tℓ+2−k)U(tℓ+2−k, tℓ+3−k)P
)

1,1
tℓ+3−k

=
(

V (tℓ+1−k, tℓ+2−k)U(tℓ+2−k, tℓ+3−k)
)

1,2
tℓ+3−k =

1

tℓ+3−k

× tℓ+3−k = 1

This completes the proof of the theorem.
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Figure 4: For odd k, the segment of values necessary to express Tj,k+N/2 is reflected by
both lines j = −1 and j = ℓ + 2 picking respectively a factor P or −P per reflection.
After these two reflections, the edges of the cone of projection of (j, k +N/2) meet again
at the point (ℓ+ 1− j, k). We have indicated the contributions from the formula (4.13).

4.5 ℓ-restricted boundaries and periodicity: proof of Theorem 4.2

Combining Theorems 4.5 and 4.7, we immediately deduce the following:

Theorem 4.8. The solution of the ℓ-restricted A1 T -system (iv) satisfies the following
“twisted half-periodicity” relation:

Tj,k+N
2
= Tℓ+1−j,k

where N = 2(ℓ+ 3).

Proof. Let k = 2m + k0 denote the unique even translate of k0 (with kj = k
(0)
j + 2m)

which contains the point (ℓ + 1 − j, k). If k is odd, then kj = k − (jmod 2), otherwise,
kj = k + 1 − (jmod 2) for all j ∈ Z. The point (ℓ + 1 − j, k) is a local maximum if k
is odd, minimum otherwise. Let us compute Tj,k+N

2
via the formula (4.13). The cone of

projection of (j, k+ N
2
) onto the initial data segment [j0, j1] is reflected once against each

of the two lines j = −1 and j = ℓ + 2, and the edges of the cone intersect in the point
(ℓ− j, k) as shown in Fig. 4 for odd k. For odd k, we find that:

Tj,k+N
2
=
(

P (−P )
)

1,1
(−tℓ+1−j) = Tℓ+1−j,k

If k is even, the reflected cone edges meet the path k respectively at points (ℓ− j, k + 1)
and (ℓ+ 2− j, k + 1), thus leading to:

Tj,k+N
2
=
(

PV (tℓ−j, tℓ+1−j)U(tℓ+1−j, tℓ+2−j)(−P )
)

1,1
(−tℓ+2−j) = tℓ+1−j = Tℓ+1−j,k

as well. The theorem follows.

We conclude that Tj,k+N = Tj,k and the Theorem 4.2 follows.
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Figure 5: The cone of the projection of (j, k) is reflected by both lines j = −1 and j = ℓ+2
picking respectively a factor P or −P per reflection. After these two reflections, the edges
of the cone meet the initial data path at (j̄0, 1) and (j̄1, 1) respectively. We have indicated
the three contributions P,A,−P from the formula (4.13), and the reflected boundary
value tj̄1 = a.

4.6 Positivity for k0: proof of Theorem 4.3

The first part of Theorem 4.3 follows by imposing simultaneously the symmetries of the
initial values tj from both Theorems 4.5 and 4.7. As these guarantee the ℓ-restricted
boundary conditions, the result follows from uniqueness of the solution of the ℓ-restricted
system.

Let us now show that the solution Tj,k of the ℓ-restricted A1 T -system (iv) is a positive
Laurent polynomial of the initial data along the path k0. Thanks to the half-periodicity
property of Theorem 4.8, we may restrict ourselves to values of k such that 0 6 k 6

N
2
.

In that case, the cone of projection of (j, k) is reflected at most once against each line
j = −1 and j = ℓ + 2. If no reflection occurs, the positivity is clear, as the solution is
identical to that of the unrestricted A1 T -system. If only one reflection occurs, we are in
the half-plane situation of Theorems 4.5 or 4.7, and positivity follows. We are left with
the case of two reflections, as illustrated in Fig. 5 (case ℓ odd). As usual we denote by
j0, j1 the minimum and maximum of the projection of (j, k) onto the initial data path,
and by j̄0 = −j0 − 2 and j̄1 = 2(ℓ + 2)− j1 the reflected minimum and maximum of the
projection, such that 0 6 j̄0 6 j̄1 6 ℓ + 1. Applying (4.13) and eliminating the left and
right products involving P and −P leads to:

Tj,k = (PA(−P ))1,1(−a)

where

A = V (tj̄0 , tj̄0+1)U(tj̄0+1, tj̄0+2) · · ·U(tj̄1−1, tj̄1) and a = tj̄1 = −tj1 .
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Figure 6: The cone of projection of (j, k) is reflected by the line j = −1. As a result, only
the values between j̄0 = −j0 − 2 and j1 matter. We have also indicated the particular
case of the point (j = 0, k) (right projection line is blue): the portion of boundary path
for j > j̄0 within the projection is made of m down steps followed by one up step.

As usual, the two signs cancel and leave us with a manifestly positive answer, and the
second part of Theorem 4.3 follows.

4.7 Positivity for k: proof of Theorem 4.4

In the case of an arbitrary path k with associated initial conditions (4.5), we may repeat
the same arguments as in the case k0. We first need to generalize the first part of
Theorem 4.3 to the case of an arbitrary path k. To this effect, Theorems 4.5 and 4.7 have
the following counterparts for arbitrary k:

Theorem 4.9. The solution of the unrestricted A1 T -system (i) with boundary conditions
Xk+(t+) (4.6) (resp. Xk−(t−) (4.7) ) restricts to that of the right (resp. left) half-plane A1

T -system (ii) (resp. (iii)) with boundary conditions X+
m
(u) (resp. X−

m
(u)), where u,m

are the restrictions of t+,k+ (resp. t−,k−) to the range j > 1 (resp. j 6 ℓ). As such,
the half-plane solutions are positive Laurent polynomials of their initial values.

Proof. The theorem is proved by showing that the reflection conditions on k and tj imply
that T0,k = 1 (resp. Tℓ+1,k = 1). As before, this is proved by use of the formula (4.13),
upon noting that limǫ→0 V (−1, ǫ)U(ǫ, 1) = P and limǫ→0 V (1, ǫ)U(ǫ,−1) = −P . We note
also that, with the definition (4.12) and the symmetry properties of k and tj, we have the
following collapse relations:

M−j−3,−j−2(t−j−3, t−j−2) P Mj,j+1(tj, tj+1)

= M−j−3,−j−2(−tj+1,−tj)PMj,j+1(tj, tj+1) = P

Mj,j+1(tj, tj+1)(−P )M2(ℓ+2)−j,2(ℓ+2)−j+1(t2(ℓ+2)−j, t2(ℓ+2)−j+1)

= Mj,j+1(tj, tj+1)(−P )M2(ℓ+2)−j,2(ℓ+2)−j+1(−tj+1,−tj) = −P
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For the right half-plane case, we have for k > k0, k odd:

T0,k =
(

−3
∏

j=j0

Mj,j+1(tj, tj+1)P

j1−1
∏

j=0

Mj,j+1(tj, tj+1)
)

1,1
tj1 =

(

P

j1−1
∏

j=j̄0

Mj,j+1(tj, tj+1)
)

1,1
tk,

where j0, j1 denote the minimum and maximum of the projection of (0, k) onto k. Note
that for j between j̄0 = −j0−2 and j1 the path kmust be made of a numberm = j1+j0+1
of down steps, followed by one up step (see Fig. 6 for an example). This leads to:

T0,k =





(

j1−2
∏

j=j̄0

V (tj, tj+1)
)

U(tj1−1, tj1)





2,1

tj1 =
1

tj1
× tj1 = 1

The argument is similar for the left half-plane solution.
To prove positivity, let us consider a point (j, k) above the path k, namely with k > kj .

Then if j0 > 0 (resp. j1 6 ℓ+1), the solution Tj,k is identical to that of the full plane, and
positivity is granted. Otherwise, note that the remark 4.6 extends to the present cases:
the collapse relations above have the effect of reflecting the cone of projection against the
line j = −1 (resp. j = ℓ+ 2), as indicated in Fig. 6. This gives the following expressions
for j̄0 = −j0 − 2 and j̄1 = 2(ℓ+ 2)− j1:

right half − plane : Tj,k =
(

P N(j̄0, j1)
)

1,1
tj1

left half − plane : Tj,k =
(

N(j0, j̄1)(−P )
)

1,1
tj1 =

(

N(j0, j̄1)P
)

1,1
tj̄1

which are both manifestly positive Laurent polynomials of the initial data.

To prove Theorem 4.4, we now superimpose the symmetry conditions for the two half-
plane cases as described in Theorem 4.9. Let us show that the solution Tj,k with arbitrary
path initial data for j ∈ [0, ℓ+ 1] has the positive Laurent property.

The half-periodicity holds in general, so we may restrict ourselves to the case of a
general path k and a point (j, k) above it such that 0 6 k − kj 6

N
2
. In this case there is

at most one reflection of the cone of projection of (j, k) against each of the lines j = −1
and j = ℓ+2. For no reflection at all, the solution is the same as that of the unrestricted
A1 T -system case, which is manifestly positive. For one reflection against one of the
lines, the solution is the same solution as that of the half-plane A1 T -system case, where
positivity was established above. Finally for two reflections, we have:

Tj,k =
(

PN(j̄0, j̄1)(−P )
)

1,1
tj1 =

(

N(j̄0, j̄1)
)

2,2
tj̄1

which is manifestly positive. This completes the proof of Theorem 4.4.
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5 ℓ-restricted T-system: the Ar case

Throughout this section, we study solutions of the Ar T -system (1.1,1.6) with several
types of boundary conditions, and with initial conditions of the form X(t) := Xk0(t)
(1.7) or appropriate subsets thereof.

Let S be a subset of Z. We have the T -system

Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k + Ti+1,j,kTi−1,j,k (i ∈ [1, r], k ∈ Z, j ∈ S)

with boundary conditions

T0,j,k = Tr+1,j,k = 1 (j ∈ S; k ∈ Z) (5.1)

with possibly additional boundary conditions depending on S, and an initial condition
XS(t), which is an assignment of formal variables t = (ti,j)i∈[1,r],j∈S to the points on the
surface

k0(S) = {(i, j, k(0)(i, j)) : i ∈ [1, r], j ∈ S}.

We consider the following four cases:

(i) Unrestricted Ar T -system: S = Z, there are no additional boundary conditions, and
the initial condition X(t) is an assignment of values to the variables on points of k0:

X(t) :
{

T
i,j,k

(0)
i,j

= ti,j (i ∈ [1, r]; j ∈ Z)
}

. (5.2)

(ii) Right half-space Ar T -system: S = N, the additional boundary conditions are

Ti,0,k = 1 (i ∈ [1, r]; k ∈ Z) (5.3)

and initial condition X+(t) is the assignment

X+(t) :
{

T
i,j,k

(0)
i,j

= ti,j (i ∈ [1, r]; j ∈ S)
}

. (5.4)

(iii) Left half-space Ar T -system: S = (−∞, ℓ], the additional boundary conditions are

Ti,ℓ+1,k = 1 (i ∈ [1, r]; k ∈ Z) (5.5)

and the initial conditions X−(t) are

X−(t) :
{

T
i,j,k

(0)
i,j

= ti,j (i ∈ [1, r]; j ∈ S)
}

. (5.6)

(iv) ℓ-restricted Ar T -system: S = [1, ℓ], the additional boundary conditions are

Ti,0,k = Ti,ℓ+1,k = 1 (i ∈ [1, r]; k ∈ Z) (5.7)

and the initial conditions are X [1,ℓ](t)

X [1,ℓ](t) :
{

T
i,j,k

(0)
i,j

= ti,j (i ∈ [1, r]; j ∈ S)
}

. (5.8)
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Remark 5.1. In all the above cases, due to the form of the T -system as a three-term
recursion, the solution of the system is uniquely determined by its initial conditions.

We will also consider the unrestricted Ar T -system (case (i)) with initial conditions
X(t) (5.2), where we impose certain relations on the variables t = (ti,j)i∈[1,r],j∈Z:

• t+ is t modulo the relations

tr+1−i,−r−1−j = (−1)ri ti,j , (i ∈ [1, r]; j > 0), (5.9)

ti,0 = 1, ti,−j = 0, (i, j ∈ [1, r]). (5.10)

• t− is t modulo the relations

tr+1−i,−r−ℓ−2+j = (−1)ri ti,ℓ+1−j, (i ∈ [1, r]; j > 0) (5.11)

ti,ℓ+1 = 1, ti,ℓ+1+j , (i, j ∈ [1, r]). (5.12)

• t[1,ℓ] is t modulo the relations

tr+1−i,−r−1−j = (−1)ri ti,j, (i ∈ [1, r]; j > 0), (5.13)

ti,2(r+ℓ+2)+j = ti,j, (i ∈ [1, r]; j ∈ Z), (5.14)

ti,0 = ti,ℓ+1 = 1, (i ∈ [1, r]), (5.15)

ti,−j = 0, (i, j ∈ [1, r]). (5.16)

Remark 5.2. The relations satisfied by t[1,ℓ] correspond to simultaneously imposing the
relations of t+ and t−.

Example 5.3. Initial data of type t+ for the case r = 3 has the form (with the i direction
is from bottom to top, and j direction is from left to right):

· · · −t1,5 −t1,4 −t1,3 −t1,2 −t1,1 −1 0 0 0 1 t3,1 t3,2 t3,3 t3,4 t3,5 · · ·
· · · t2,5 t2,4 t2,3 t2,2 t2,1 1 0 0 0 1 t2,1 t2,2 t2,3 t2,4 t2,5 · · ·
· · · −t3,5 −t3,4 −t3,3 −t3,2 −t3,1 −1 0 0 0 1 t1,1 t1,2 t1,3 t1,4 t1,5 · · ·

Example 5.4. Initial data of the type t[1,ℓ] for the case r = 3, ℓ = 3 has the form

−t1,1 −1 0 0 0 1 t3,1 t3,2 t3,3 1 0 0 0 −1 −t1,3 −t1,2 −t1,1 −1 0 0
· · · t2,1 1 0 0 0 1 t2,1 t2,2 t2,3 1 0 0 0 1 t2,3 t2,2 t2,1 1 0 0 · · ·

−t3,1 −1 0 0 0 1 t1,1 t1,2 t1,3 1 0 0 0 −1 −t3,3 −t3,2 −t3,1 −1 0 0

This array has period 2(ℓ + r + 2) = 16 along the horizontal (j-)direction. The vertical
bars indicate the domain corresponding to the ℓ-restricted Ar T -system (iv) initial data.

As in the A1 case, the aim of this section is to use the known network solution for the
unrestricted system (i) to obtain that for the other boundary conditions (ii,iii,iv).
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5.1 Equivalent initial data and main theorems

Here, we give the line of argument used to prove the periodicity theorems 1.4 and 1.5.

Lemma 5.5. The solutions of the T -system (i) with initial conditions X(t+) satisfy

T1,0,k = 1 (k ∈ 2Z+ 1), T1,−j,k = 0, (j ∈ [1, r]; k ∈ 2Z+ j + 1). (5.17)

The determinant formula (1.8) and the Lemma imply that Ti,0,k = 1 for all i ∈ [1, r]
and k ∈ 2Z+ i. The proof of this Lemma is given in Section 5.5.

Theorem 5.6. The solutions Ti,j,k of the unrestricted Ar T -system (i) as a function of
the initial conditions X(t+) are equal, when j > 0, to the solutions Ti,j,k of the right
half-space Ar T -system (ii) with initial conditions X+(t).

Proof. Given Lemma 5.5, the theorem follows from the uniqueness of the solutions (Re-
mark 5.1) of the half-plane T -system with initial data X+(t).

Theorem 5.7. The solutions Ti,j,k of the unrestricted Ar T -system (i) as a function of
initial conditions X(t−) are equal, when j 6 ℓ, to the solutions Ti,j,k of the left half-space
Ar T -system (iii) with initial conditions X−(t).

Proof. Let σ be the following endomorphism of [1, r]× Z× Z:

σ(i, j, k) =

{

(i, ℓ+ 1− j, k), ℓ odd;
(i, ℓ+ 1− j, 1− k), ℓ even.

Then σ(k0) = k0 and σ is also a symmetry of the unrestricted Ar T -system (i). It acts on
t in the natural way, σ(ti,j) = ti,ℓ+1−j , and takes initial data of the form t+ to data of the
form t−. The Theorem follows from application of σ to the result of Theorem 5.7.

Using the map σ together with Lemma 5.5 we see that for all k of appropriate parity,

Ti,ℓ+1,k = 1, Ti,ℓ+1+j,k = 0 (j ∈ [1, r]). (5.18)

Lemma 5.5 and its reflected version (5.18) imply the following result for ℓ-restricted Ar

T -system solutions:

Theorem 5.8. The solutions Ti,j,k of the unrestricted Ar T -system (i) as a function of
initial conditions X(t[1,ℓ]) are equal, when j ∈ [1, ℓ], to the solutions of the ℓ-restricted Ar

T -system (iv) with initial conditions X [1,ℓ](t).

Proof. This follows from Remark 5.2 and the uniqueness of the solutions.

We will also prove certain positivity results for the solutions of the Ar T -systems of
types (ii)–(iv), using the explicit network solution of (i):

Theorem 5.9. The solutions Ti,j,k of Ar T -system of type (ii) and (iii) with initial con-
ditions X+(t) or resp. X−(t), are Laurent polynomials of the initial data t, with non-
negative integer coefficients.

From the network solution with the two half-plane boundaries superimposed, this
implies the positivity Theorem 1.5. The proof appears in Section 5.7.
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5.2 A regularized network matrix

Initial data of the form t+ contains zeros. In order to define network matrices depending
on this initial data, the matrices U and V cannot be used directly. To define the matrices
Pj := N(−j, 0) (with j ∈ [0, r + 1]) depending on t+, we use a limiting procedure as in
the case of A1. First, define regularized initial data by replacing the vanishing conditions
of Theorem 5.6 by non-zero values forming an array (ai,j) compatible with the T -system.
The regularized network matrices Pj({a}) have a well-defined limit when ai,j → 0.

5.2.1 Regularized initial data

Definition 5.10. We consider the array (ai,−j)i,j∈[0,r+1] such that:

ai,0 = a0,−j = ar+1,−j = 1, i, j ∈ [0, r + 1]

ai−1,−jai+1,−j + ai,−j−1ai,−j+1 = 0, i, j ∈ [1, r].

The values of ai,j are determined recursively from the column with j = −1. Define
ai = ai,−1 for i ∈ [1, r]. Then

ai,j = ǫi,j

Min(i,−j,r+1−i,r+1+j)−1
∏

ℓ=0

a|i+j|+1+2ℓ (5.19)

where ǫi,j ∈ {−1, 1} is the solution to the recursion relations ǫi,j−1 = −ǫi−1,jǫi+1,j/ǫi,j+1,
while ǫi,0 = ǫi,−1 = ǫ0,j = ǫr+1,j = 1 for all i ∈ [0, r + 1] and j ∈ [−r − 1, 0]. In particular,
ai,−r−1 = ǫi,−r−1 = (−1)ri.

Example 5.11. For the case r = 3, we have the following array (represented with index
i from bottom to top and j from left to right):

(ai,−j)06i,j64 =













1 1 1 1 1
−1 a1 −a2 a3 1
1 −a2 −a1a3 a2 1
−1 a3 −a2 a1 1
1 1 1 1 1













, (5.20)

and for the case r = 4,

(ai,−j)06i,j65 =

















1 1 1 1 1 1
1 −a1 a2 −a3 a4 1
1 −a2 −a1a3 −a2a4 a3 1
1 −a3 −a2a4 −a1a3 a2 1
1 −a4 a3 −a2 a1 1
1 1 1 1 1 1

















(5.21)

Remark 5.12. As apparent from the formula (5.19), the expression for ai,j involves only
ak’s with a fixed parity of k, namely k = i+ j + 1 mod 2.
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We define the regularlized initial data t+(a) as follows. We keep the symmetry re-
quirements (5.9) but replace the zeros in (5.10) with arrays satisfying Definition 5.10:

ti,j = ai,j (i ∈ [1, r]; j ∈ [−r − 1, 0]) (5.22)

5.2.2 Regularized network matrices

For each j ∈ [0, r+1], define Pj({a}) = N(−j, 0)({a}) corresponding to the network with
initial values t+(a) as follows. Let

Ni,j({a}) =

{

Ui(ai,j−1, ai,j , ai+1,j−1) if i+ j = 1 mod 2;
Vi(ai−1,j, ai,j−1, ai,j) otherwise,

(i,−j ∈ [1, r]). (5.23)

The regularized network matrix is the product of matrices

Pj({a}) =
0
∏

k=−j+1

r
∏

i=1

Ni,k({a}), j ∈ [0, r + 1] (5.24)

taken with the indicated order. With this definition, the matrix corresponding to the
lower right corner of the network is U1(a1, 1, a2), as it corresponds to i = 1 and j = 0 in
(5.23).

Lemma 5.13. Within the domain j ∈ [−r − 1, 0] of the regularized network, each “di-
amond” of the form Ui(a, b, v)Vi(u, b, c) or Vi(u, a, b)Ui(b, c, v), with ac + uv = 0, has
elements in Z[b, u, v, c−1]. In particular, only c may occur as a denominator.

Proof. We compute the UV diamond matrix:

U(a, b, v)V (u, b, c) = cb

v

u

a =

(

b
c

u
c

v
c

0

)

(5.25)

where the (2, 2) matrix element vanishes, due to ac+ uv = 0. Analogously,

V (u, a, b)U(b, c, v) = cb

v

u

a =

(

0 u
c

v
c

b
c

)

(5.26)

where the (1, 1) matrix element vanishes, due to ac+ uv = 0.

Theorem 5.14. The entries of the matrices Pj({a}), j ∈ [0, r + 1], are polynomials of
the ai’s, i ∈ [1, r]. Therefore, the matrices

Pj := lim
a1,a2,...,ar→0

Pj({a})

are well defined.
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Proof. We concentrate on the portion [−j, 0] of the regularized network. It may be de-
composed into two types (UV or V U) of diamonds as follows:

Pj({a}) =

1

2

3

...

r

1

r+1

1

1

1

1

1 1

1

−j 0

1

1

=

1

2

3

...

r

1

r+1

1

1

1

1

1

1 1

1

−j

1

0

1

=

0

1

1

1

1

1

r+1

1

r

...
3

2

1

−j

1

1 1

(5.27)
Due to Lemma 5.13, the first decomposition gives rise to matrix elements with denomi-
nators corresponding to values of ai,j at white circles (with i+ j = 1 mod 2), while in the
second the only possible denominators correspond to values of ai,j at black circles (with
i + j = 0 mod 2). The unpaired column of U and V matrices on the right has only 1 as
possible denominator, due to the boundary condition along the j = 0 column.

From (5.19) and Remark 5.12, the matrix elements for the first expression for P ({a})
may only have denominators that are monomials of the a2i’s, while the second expression
may only have denominators that are monomials of the a2i+1’s. We conclude that none
of these denominators may occur in Pj({a}), which is therefore a polynomial of the a’s,
and the theorem follows.

Let P denote the (r + 1)× (r + 1) matrix with entries:

[P ]i,j = (−1)(r−1)(i−1)δi+j,r+2. (5.28)

Clearly, P 2 = I, and when r = 1 the above definition agrees with (4.14).

Lemma 5.15.
det(Pr+1({a}) = det(P ) = (−1)

r(r+1)(r+2)
2

Proof. The determinants of the U and V matrices are equal to the product of weights
of the horizontal edges. Therefore det(Pr+1({a}) is a product over the weights of all
horizontal edges of the regularized network, each of which is equal to 1 or ai,j−1/ai,j
where i ∈ [1, r] and j ∈ [−r, 0]. Therefore,

det(Pr+1({a}) =
r
∏

i−1

0
∏

j=−r

ai,j−1

ai,j
=

r
∏

i=1

ai,−r−1

ai,0
=

r
∏

i=1

(−1)ri,

and the lemma follows.
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We also note the following useful properties of U, V matrices:

U(a, b, c) = U(λa, λb, λc) V (a, b, c) = V (λa, λb, λc) (5.29)

U(a, b, c)−1 = U(b, a,−c) V (a, b, c)−1 = V (−a, c, b) (5.30)

We give below a pictorial proof of the following formula for Pr+1({a}):

Theorem 5.16. Given r = 2s+ ǫ with ǫ ∈ {0, 1}, the matrix Pr+1({a}) is

Pr+1({a}) =

(

s
∏

i=1−ǫ

U2i(1, 1, (−1)ǫ+1a2(s−i)+1)

)

P

(

s
∏

i=1

U2i(1, 1, a2i)

)

Proof. In the case r = 2s, using the formula for the inverse of U (5.30), the statement of
the theorem will follow if we prove that

Πr+1({a}) =

(

s
∏

i=1

U2i(1, 1, a2(s−i)+1)

)

Pr+1({a})

(

s
∏

i=1

U2i(1, 1,−a2i)

)

is equal to P , independently of the a’s. Analogously, when r = 2s + 1, using also the
projectivity property (5.29) with λ = −1, the theorem boils down to proving that

Πr+1({a}) =

(

s
∏

i=0

U2i+1(−1,−1, a2(s−i)+1)

)

Pr+1({a})

(

s
∏

i=1

U2i(1, 1,−a2i)

)

is equal to P , independently of the a’s. The matrix Πr+1({a}) corresponds in both cases
to an augmented network matrix. We illustrate the network below for the cases r = 7, 8:

a 6

a 4

A7

−1

−1

−1

−1

a 1

a 3

a 5

a 7

a 1

a 3

a 5a 5

a 7a 7

a 2

−a4

−a6

−a2

1

1

1

1

1

1

1

−1

−1

−1

−1

1

1

1

1

1

1

= P
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a 6

a 4

a 2

A8

a 8

a 1

a 3

a 5

a 7

−a6

−a8

−a4

−a2

−a7

−a5

−a3

−a1

1

1

1

1

1

1

1

1

1

1

= P

1 1

1

1

1

1

1

1

1

1

1

1

1

1

(Note that the actual values of the added pieces are compatible with both UV and V U
diamond decompositions of Theorem 5.14.). The matrix elements of Πr+1({a}) are all
polynomials of the a’s. This is readily seen from Theorem 5.14 for k = r + 1, together

with the explicit form of U(1, 1, x) = U(−1,−1,−x) =

(

1 0
x 1

)

which has only polynomial

entries of x. This also implies that

det(Πr+1({a})) = det(Pr+1({a}) = (−1)
r(r+1)(r+2)

2 (5.31)

by Lemma 5.15.
To compute Πr+1({a}), we use the pictorial representation II (2.10) for the the non-

zero matrix elements of the U, V matrices, and we note that the network chips for the
UV and V U diamonds (5.25) and (5.26) may be represented as:

U(a, b, v)V (u, b, c) = cb

v

u

a =

b
c

u
c

v
c

(5.32)

V (u, a, b)U(b, c, v) = cb

v

u

a =
c
b

u
c

v
c

(5.33)

where the missing horizontal edge on the regularized network is due to vanishing condition
uv + ac = 0. The two different (UV or V U) diamond decompositions of Πr+1({a}) in
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pictorial representation II, in the case r = 8 are:

*

*

*

*

*

*

1

5

8

9

7

6

4

3

2

1

5

8

9

7

4

3

2

6

=

*

*9

7

6

4

3

2

1

8

9

7

6

4

3

2

5

1

5

8

where each edge is weighted with a Laurent monomial of the a’s. The left diagram shows
that there are paths from vertex i on the left to vertex i′ on the right only if i′ 6 r+2− i,
whereas the right diagram shows that there are paths from i to i′ only if i′ > r+2− i, for
each i. Therefore there are non-zero weighted paths only from each vertex i to r + 2− i.
The corresponding path is unique. Equivalently, Πr+1({a})i,j = 0 unless j = r + 2 − i.
This is illustrated in the above picture by highlighting in thick solid blue line the unique
contributing path 3 → 7, while the other attainable points via paths starting at vertex 3
are indicated by blue asterisks.

Moreover, the total weight of the single contributing path i → r + 2 − i, equal to
the matrix element

[

Πr+1({a})
]

i,r+2−i
, is a monomial of the a’s (with only non-negative

powers, as the entries of Πr+1({a}) are all polynomials). The determinant of Πr+1({a})
reads:

det(Πr+1({a})) = (−1)r(r+1)/2

r+1
∏

i=1

Πr+1({a})i,r+2−i

Comparing this with (5.31), we see that none of the matrix elements Πr+1({a})i,r+2−i

vanish, and each of them has value ±1. To conclude, we note that the face weights cancel
out along the paths as the product over step weights is telescopic, leaving us with only
the ratio: (leftmost face variable)/(rightmost face variable). Inspecting the signs from
the boundary faces carefully, we finally conclude that Πr+1({a}) = P .

Corollary 5.17. We have

lim
a1,a2,...,ar→0

Pr+1({a}) = P

Proof. We use the expressions of Theorem 5.16, and note that Ui(1, 1, 0) = U(−1,−1, 0) =
I for all i ∈ [1, r].

Lemma 5.18. For each j ∈ [1, r],

(Pj)1,i = lim
a1,a2,...,ar→0

(Pj({a}))1,i = δi,2⌊ j

2
⌋+1.
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Proof. We give a pictorial proof. Use the diamond decomposition of the networks (5.27)
in pictorial representation II with chips (5.33). For even and odd j’s, we get respectively
(here j = 4, 5):

j

r+1

j+1

j
1

1

1

a

1

1aj−1

r+1

1

j

j−1

There are exactly two paths from 1 → k, with k = j, j + 1 if j is even, and k = j − 1, j
is j is odd. The face labels of the last chip are represented inside circles. The weights
of the two paths in the case of even (resp. odd) j are identical except for their last
step, weighted respectively by: 1 if the last step is diagonal and aj (resp. aj−1) if it is
horizontal. Therefore only the path ending with a diagonal step contributes in the limit
ai → 0. Moreover, the weights along this remaining path, due to (5.33), are of the form
v/c and therefore their product is telescopic and leaves us with (leftmost face label)/
(rightmost face label)= 1. This proves the lemma.

5.3 The reflected network matrix

We can give a similar definition of the regularized network matrix for N(ℓ+ 1, ℓ+ r + 2)
of the form N(ℓ + 1, ℓ + r + 2)({b}) for a compatible array (bi,j). In order to satisfy
the boundary conditions in the initial data t−, choose N(ℓ + 1, ℓ + r + 2)({b}) to be the
regularized network matrix with bi,j an array defined as follows:

bi,j = (−1)riai,j−(ℓ+r+2), i ∈ [0, r + 1], j ∈ [ℓ+ 1, ℓ+ r + 2].

where ai,j is given by Definition 5.10. This ensures that bi,ℓ+1 = 1 and bi,ℓ+r+2 = (−1)i

when r is odd.
Let S be the matrix with entries:

[S]i,j = (−1)i−1δi,j (i, j ∈ [1, r + 1]). (5.34)

Clearly,
S2 = I S P = (−1)rP S. (5.35)
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Moreover,

S Ui(a, b, c)S = Ui(a, b,−c) = Ui(−a,−b, c), (5.36)

S Vi(a, b, c)S = Vi(a,−b,−c) = Vi(−a, b, c). (5.37)

Lemma 5.19. The regularized network matrix P̃r+1({b}) = N(ℓ+1, ℓ+r+2)({b}) defined
above satisfies:

lim
b1,...,br→0

P̃r+1({b}) = (−1)r P. (5.38)

Proof. The lemma is clear for even r, as N(ℓ + 1, ℓ + r + 2)({b}) = Pr+1({a}) with
bi,j = ai,j−(ℓ+r+2). For odd r, we have:

SPr+1({a})S = N(ℓ+ 1, ℓ+ r + 2)({b}) where bi,j = (−1)iai,j−(ℓ+r+2),

with S as in (5.28). Indeed, eqns. (5.36) and (5.37) allow us to interpret the conjugate
action of S as flipping the sign of all array entries along every other row, say i = 1, 3, . . . , r.
Taking the a → 0 limit in both cases leads respectively to Pr+1({0}) = P for even r and
SPS = −P for odd r by (5.35), and the lemma follows.

It will also be useful to have the corresponding version of Lemma 5.18. Define the
family of regularized network matrices P̃j({b}) = N(ℓ+1, ℓ+1+j)({b}), j = 0, 1, 2, . . . , r,
with P̃0({b}) = I. Each bi,j is a signed monomial of the variables {bk := bk,ℓ+2}. In
particular, b1,ℓ+1+j = (−1)j−1bj.

Lemma 5.20. The limit bj → 0 of the regularized network matrices is

lim
b1,...,br→0

[

P̃j({b})
]

i,1
b1,ℓ+1+j = δi,aℓ(j) j ∈ [1, r]. (5.39)

where

aℓ(x) =

{

2⌊x+1
2
⌋ if ℓ is even

2⌊x
2
⌋+ 1 if ℓ is odd

(5.40)

Proof. The proof is very similar to that of Lemma 5.18 The difference is that one must
distinguish between odd ℓ (the actual reflection of the case of Lemma 5.18) and even ℓ,
in which U and V matrices are interchanged. The telescopic products of weights for the
remaining path ending at 1 is 1/b1,ℓ+1+j , where and the denominator is cancelled by the
prefactor above.

5.4 Collapse relations

The following relations may be verified by direct calculation.

P Ui(a, b, c)P = Vr+1−i((−1)r−1c, a, b), (5.41)

P Vi(a, b, c)P = Ur+1−i(b, c, (−1)r−1a). (5.42)
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Lemma 5.21. Let i ∈ [1, r] and j > 1. Given initial data of the form t+,

Vr+1−i(tr−i,−r−j, tr+1−i,−r−1−j , tr+1−i,−r−j)PUi(ti,j−1, ti,j , ti+1,j−1) = P,

Ur+1−i(tr+1−i,−r−1−j, tr+1−i,−r−j , tr+2−i,−r−1−j)PVi(ti−1,j, ti,j−1, ti,j) = P.

Proof. Multiplying the relation (5.41) from the left by the inverse of Vr+1−i((−1)r−1c, b, a)
and similarly (5.42) by the inverse of Ur+1−i(b, c, (−1)r−1a) using (5.30) gives:

Vr+1−i((−1)rc, b, a)PUi(a, b, c) = P, Ur+1−i(c, b, (−1)ra)PVi(a, b, c) = P.

The reflection symmetry on t+ (5.9) means that

tr−i,−r−j = (−1)r(i+1) ti+1,j−1, tr+1−i,−r−1−j = (−1)ri ti,j,
tr+1−i,−r−j = (−1)ri ti,j−1, tr+2−i,−r−1−j = (−1)r(i−1) ti−1,j.

(5.43)

The Lemma follows from the projective property (5.29) with λ = (−1)ri.

5.5 Proof of Lemma 5.5

We prove the two statements in the Lemma.

Lemma 5.22. The solutions of the unrestricted Ar T -system of type (i) with initial con-
ditions X(t+) have the property that T1,0,k = 1 for all odd k.

Proof. By reflection symmetry, it is only necessary to consider k > 0. The projection of
the point (1, 0, k) onto k0 is the portion with j ∈ [−k + 1, k − 1]:

T1,0,k = [N(−k + 1, k − 1)]1,1 t1,k−1.

There are two cases to consider.
case 1: k − 1 > r. In this case,

N(−k + 1, k − 1) = N(−k + 1,−r − 1)N(−r − 1, 0)N(0, k − r − 2)N(k − r − 2, k − 1)

= N(−k + 1,−r − 1)PN(0, k − r − 2)N(k − r − 2, k − 1)

using Corollary 5.17. Lemma 5.21 implies N(−k+1,−r−1)PN(0, k− r−2) = P for the
initial data t+. We deduce that T1,0,k = [N(k − r − 2, k − 1)]r+1,1 t1,k−1. Let us examine
the network corresponding to N(k − r − 2, k − 1). As before, let us decompose it into
diamonds of the form

U(a, b, v)V (u, b, c) = cb

v

u

a =

(

b
c

u
c

v
c

uv+ac
bc

)

=

uv+ac

u
c

v
c

b
c

bc
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Note that as the arguments are generic, the quantity uv + ac does not vanish like in the
UV diamond of (5.32). As the network for N(k − r − 2, k − 1) is a square, we have a
decomposition of the form (say for r even):

=

r+1

1

The matrix element (r+1, 1) corresponds to the unique path from r+1 → 1, highlighted in
red. The product of weights along the path is telescopic, and leaves us only with (leftmost
face label)/(rightmost face label) = tr+1,k−r−2/t1,k−1 = 1/t1,k−1, as we have tr+1,j = 1 for
all j. We conclude that T1,0,k = 1.
Case 2: 0 < k − 1 < r + 1. In this case, N(−k + 1, k − 1) = N(−k + 1, 0)N(0, k − 1) =
Pk−1N(0, k − 1). Then

T1,0,k = [N(−k + 1, k − 1)]1,1 t1,k−1 = [N(0, k − 1)]2⌊ k−1
2

⌋+1,1 t1,k−1

by Lemma 5.18. Noting that 2⌊k−1
2
⌋+ 1 = k, it is easy to see that, again, a unique path

contributes to this, as the paths k → 1 only “see” the lower triangle part of the network,
with vertices (i, j) = (1, 0), (1, k − 1), (k, 0), represented below:

1

r+1

1

k

The total weight of this path is equal to (leftmost face label)/(rightmost face label)=
t0,k/t1,k−1 = 1/t1,k−1, which implies T1,0,k = 1.

Lemma 5.23. The solutions of the unrestricted Ar T -system of type (i) with initial con-
ditions X(t+) have the property that T1,−j,k = 0 for all j ∈ [1, r]

Proof. Writing
T1,−j,k = [N(−j − k + 1, k − j − 1)]1,1 t1,k−j−1,
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r+1
1

3

5

24

j

k

0

0−r−1

Figure 7: The five regions in (j, k) plane for the proof of T1,−j,k = 0.

there are five regions for the point (−j, k), which are depicted in Fig.7.
Region 1: 1 6 j 6 r+1

2
and k > r + 1− j. In this case,

N(−j − k + 1, k − j − 1) = N(−j − k + 1,−r − 1)N(−r − 1, 0)N(0, k − j − 1)

= PN(k + j − r − 2, k − j − 1),

where we have used Lemma 5.21. This yields

T1,−j,k = [N(k + j − r − 2, k − j − 1)]r+1,1 t1,k−j−1.

The network for N(k+ j−r−2, k− j−1), once decomposed into V U diamonds as above,
looks like:

r+1

1

r+1

1

k

0−r−1
j

k

0

where we have represented a typical network in the diamond chip representation, and the
corresponding region 1 in (j, k) space. We have shaded the range of the paths from r+1.
The network is in a rectangle of width strictly smaller than its height (size (r+1− 2j)×
(r + 1)), hence there are no path joins r + 1 → 1. Therefore T1,−j,k = 0.
Region 2: r + 1− j > k > j. Since

N(−j − k + 1, k − j − 1) = N(−j − k + 1, 0)N(0, k − j − 1) = Pj+k−1N(0, k − j − 1),
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we have
T1,−j,k = [N(0, k − j − 1)]2⌊ j+k−1

2
⌋+1,1 t1,k−j−1.

The width of the network is k− j − 1 < 2⌊ j+k+1
2

⌋+1 = k+ j, hence no path contributes,
and T1,−j,k = 0.
Region 3: 0 6 k < j and k < r + 1 − j. As −r − 1 < −j − k + 1 < k − j − 1 < 0, we
may use the matrix N(−k− j +1, k− j − 1)({a}) of the regularized network, with labels
(5.22). The paths 1 → 1 only see the triangle shaded in the typical configuration below:

1 1

r+1

0−r−1
j

k

0

r+1

and it is clear that no path can go from 1 → 1, hence

T1,−j,k = [N(−k − j + 1, k − j − 1)]1,1 t0,k−j−1 = 0.

Region 4: r+1−j 6 k 6 j. We have the decomposition N(−k−j+1, k−j−1) = N(−k−
j+1,−r−1)N(−r−1, k−j−1). As before, we may use the matrixN(−r−1, k−j−1)({a})
of the regularized network, with labels (5.22). In the square decomposition, the complete
network looks like:

r+1

1 1

−r−1

0−r−1
j

k

0

r+1

and there are no paths 1 → 1, as in region 3.
Region 5: r + 1 > j > r+1

2
and k > j. We have N(−j − k + 1, k − j − 1) =

N(−j − k + 1,−r − 1)PN(0, k − j − 1) = N(−j − k + 1, j − k − r)P , so that T1,−j,k =
[N(−j − k + 1, j − k − r)]1,r+1. Again, the width of the network is 2j − r − 1 6 r − 1,
hence there is no path from 1 → r + 1, and T1,−j,k = 0.
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P
j 0 j 1 j 0 j 1j 1j 0

P
r

0 j 1

0 l+1

r

k  even

(j,k+N/2)

(−1) P

0 l+1

j

k  odd

(j,k+N/2)

(−1) P
=

Figure 8: The projection [j0, j1] of (1, j, k + N/2) onto k is shown for k odd and even
respectively. For k odd, j0 = k−N/2, j1 = k+N/2 and the reflections j̄0 = j̄1 = ℓ+1−k
coincide. For k even, we have j0 = k − N/2 + 1, j1 = k + N/2 − 1 and the reflections
are j̄0 = ℓ− k and j̄1 = ℓ+ 2− k. In both cases, we have indicated the network matrices
corresponding to the various segments.

5.6 Proof of the periodicity Theorem 1.4

Let Ti,j,k be the solution of the ℓ-restricted Ar T -system (iv). Using Theorem 5.8, it is
equal to the solution Ti,j,k of the unrestricted Ar T -system (i) subject to initial conditions
X(t[1,ℓ]) on k0. We can also use the initial conditions on any integer translate k0 + 2m,
m ∈ Z, of this surface. Let N = 2(ℓ+ r + 2). Due to the determinant formula (1.8) it is
sufficient to consider i = 1. As in the A1 case, we prove the more general half-periodicity
theorem.

Theorem 5.24. The solution of the ℓ-restricted T -system satisfies T1,j,k+N
2
= Tr,ℓ+1−j,k

for all k ∈ Z, j ∈ [1, ℓ] such that j + k + ℓ+ r is odd.

Proof. We use the network solution of Theorem 2.4. Choose the surface k = 2m+ k0 to
be the unique translation of k0 passing through the point (r, ℓ+ 1− j, k). The integer m

is fixed by requiring k − 2m = k
(0)
r,ℓ+1−j, and

kx,y =

{

k − (x+ y + 1mod 2), k odd;
k + 1− (x+ y + 1mod 2), k even.

The corresponding initial conditions are Tx,y,kx,y = tx,y, where tx,y are initial conditions of
type t[1,ℓ].

Figure 8 shows the projection of the point (1, j, k + N
2
) onto k in the cases when k is

even and odd. Let ǫ = 1− k mod 2. Then

T1,j,k+N
2
= N

(

j −
N

2
+ ǫ, j +

N

2
− ǫ

)

1,1

t1,j+N
2
−ǫ.
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When k is odd, we write

N

(

j −
N

2
, j +

N

2

)

= N

(

j −
N

2
, ℓ+ 1− j

)

N

(

ℓ+ 1− j, j +
N

2

)

= N(j − (ℓ+ r + 2),−r − 1)N(−r − 1, 0)N(0, ℓ+ 1− j)

×N(ℓ+ 1− j, ℓ+ 1)N(ℓ+ 1, ℓ+ r + 2)N(ℓ+ r + 2, j + ℓ+ r + 2)

= P × (−1)rP = (−1)r I

where we have used Lemma 5.21. Using t1,j+N
2
= (−1)rtr,ℓ+1−j,

T1,j,k+N
2
= (−1)r I1,1(−1)rtr,ℓ+1−j = Tr,ℓ+1−j,k.

When k even, the splitting yields analogously:

N
(

j −
N

2
+ 1, j +

N

2
− 1
)

= N
(

j −
N

2
+ 1, ℓ− j

)

N(ℓ− j, ℓ+ 2− j)N
(

ℓ+ 2− j, j +
N

2
− 1
)

= N(j − (ℓ+ r + 1),−r − 1)N(−r − 1, 0)N(0, ℓ− j)N(ℓ− j, ℓ+ 2− j)

×N(ℓ+ 2− j, ℓ+ 1)N(ℓ+ 1, ℓ+ r + 2)N(ℓ+ r + 2, j + ℓ+ r + 1)

= P N(ℓ− j, ℓ+ 2− j) (−1)rP

and we get

T1,j,k+N
2
= (−1)r N(ℓ− j, ℓ+ 2− j)r+1,r+1 t1,j+r+ℓ+1 = N(ℓ− j, ℓ+ 2− j)r+1,r+1 tr,ℓ+2−j.

As k is even, we have ℓ−j = r+1 mod 2, and the partition function N(ℓ−j, ℓ+2−j)r+1,r+1

only depends on the top part of the network matrix, namely the V U diamond:

Vr(v, a, b)Ur(b, c, u) = cb

v

u

a =

r

bc
uv+ac

b
c

u
c

v
c

r+1 r+1

r

with b = tr,ℓ+1−j and c = tr,ℓ+2−j. Therefore, N(ℓ− j, ℓ+ 2− j)r+1,r+1 = tr,ℓ+1−j/tr,ℓ+2−j ,
and

T1,j,k+N
2
= tr,ℓ+1−j/tr,ℓ+2−j × tr,ℓ+2−j = T1,r,ℓ+1−j

Corollary 5.25. The solution of the ℓ-restricted Ar T -system satisfies the following half-
periodicity relation:

Ti,j,k+N
2
= Tr+1−i,ℓ+1−j,k (i ∈ [1, r], j ∈ [1, ℓ], k ∈ Z) (5.44)

with N = 2(ℓ+ r + 2).
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Proof. Lemma 1.8 gives

Ti,j,k+N
2
= det

16a,b6i
(T1,j+a−b,k+N

2
+a+b−i−1) = det

16a,b6i
(Tr,ℓ+1−j−a+b,k+a+b−i−1). (5.45)

Using the Desnanot-Jacobi identity (1.9) it is possible to write solutions Ti,j,k with i < r
in terms of (r + 1− i)× (r + 1− i) determinants of the Tr,j′,k′ ’s,

Ti,j,k = det
16a,b6r+1−i

(Tr,j+a−b,k+a+b−r−2+i).

Therefore,
Tr+1−i,ℓ+1−j,k = det

16a,b6i
(Tr,ℓ+1−j+a−b,k+a+b−i−1),

Comparing this with (5.45), and noting that the transposed matrix has the same deter-
minant yields (5.44).

In particular, we have that Tr,j,k+N
2
= T1,ℓ+1−j,k. Combining this with Theorem 5.24,

we deduce that T1,j,k+N = T1,j,k, and therefore Ti,j,k+N = Ti,j,k. This completes the proof
of the periodicity.

5.7 Positivity: Proof of Theorems 5.9 and 1.5

Theorem 5.9 is the claim that solutions of the Ar T -system of type (ii) are Laurent
polynomials with non-negative integer coefficients of the initial data t.

Lemma 5.26. The solutions T1,j,k of the half-space Ar T -system of type (ii) with initial
conditions X+(t) (5.4) on the surface k0 = {(i, j, i + j mod 2) : i ∈ [1, r], j > 0} are
Laurent polynomials of {ti,j : i ∈ [1, r], j > 0} with non-negative integer coefficients.

Proof. First, use Theorem 5.6 to identify T1,j,k as the solution of the Ar T -system of type
(i) with initial data t+. Consider the projection of (1, j, k) onto k0, with minimum j0 and
maximum j1. We will show that the partition function for paths starting at (1, j0) and
ending at (1, j1) on the network N(j0, j1), and with weights t+, is equal to the partition
function from (i0, j̄0) to (1, j1) on the network N(j̄0, j1), for some i0 ∈ [1, r + 1] and
j̄0 ∈ [0, j1]. The latter portion N(j̄0, j1) of the network has only positive weights from the
set t+, hence positivity follows.

The formula for (i0, j̄0) depends on the value of j0. Three cases may occur:

• j0 > 0: (i0, j̄0) = (1, j0). The solution is identical to that of the unrestricted Ar

T -system of type (i), and positivity follows from Theorem 1.3.

• j0 6 −r − 1: (i0, j̄0) = (r + 1,−r − 1 − j0). This is a consequence of the collapse
relations on the network solution,

T1,j,k =
[

N(j0, j1)
]

1,1
t1,j1 =

[

PN(j̄0, j1)
]

1,1
t1,j1 =

[

N(j̄0, j1)
]

r+1,1
t1,j1 ,

where j̄0 = −r − 1− j0 (see Figure 9 for an illustration).
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P
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1

2[|j  |/2]+1
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Figure 9: The cases (ii) j0 6 −r − 1 and (iii) −r 6 j0 6 −1 for the position of the
minimum of the projection of (1, j, k) onto k0. We have represented in both cases the
resulting network and the position of the starting and ending point of the paths whose
partition function produces T1,j,k/T1,j1,k

(0)
j1

.

• −r 6 j0 6 −1: (i0, j̄0) = (2⌊ |j0|
2
⌋ + 1, 0). This follows by applying Lemma 5.18 to

the network solution:

T1,j,k =
[

N(j0, j1)
]

1,1
t1,j1 =

[

P−j0N(0, j1)
]

1,1
t1,j1 =

[

N(0, j1)
]

2⌊
|j0|
2

⌋+1,1
t1,j1 .

(see the right of Figure 9 for an illustration).

Corollary 5.27. The solutions Ti,j,k of the half-space Ar T -system of type (ii) are non-
negative Laurent polynomials of the initial data {ti,j : i ∈ [1, r], j > 0}, assigned at points
on k0 with j > 0.

Proof. We use the determinant formula (1.8) for Ti,j,k. Let j0(b) = j − k + i − 2(b − 1),
b = 1, 2, . . . , i and j1(a) = j + k − i + 2(a − 1), a = 1, 2, . . . , i be respectively the
minima and the maxima of the projections of the i2 points (1, j + a− b, k+ a+ b− i− 1)
involved in the formula. From the proof of the previous lemma, the quantity Za,b =
T1,j+a−b,k+a+b−i−1/t1,j1(a) is the partition function for paths on N(0, j1), ending at position
(1, j1(a)) and starting at position (i0(b), j̄0(b)), defined as the pair (i0, j̄0) of Lemma 5.26
for j0 = j0(b). The Lindström-Gessel-Viennot Theorem [19, 20] gives an interpretation of
the determinant Ti,j,k/

∏i
a=1 t1,j1(a) = det16a,b6i(Za,b), as the partition function of i non-

intersecting paths on the network of N(0, j1) with i starting points (i0(b), j̄0(b)) (b ∈ [1, i]),
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and with i ending points at positions (1, j1(a)) (a ∈ [1, i]). We deduce the positive Laurent
property from the positivity of weights.

We have the analogous result for the left half-space T -system:

Lemma 5.28. The solutions of the left half-space Ar T -system (iii) are Laurent poly-
nomials with non-negative integer coefficients of the initial data {ti,j : i ∈ [1, r], j 6 ℓ}
assigned at the points of the surface k0 with j 6 ℓ.

Proof. The proof is identical to that of Lemma 5.26 and Corollary 5.27. We start from
Theorem 5.7 to identify T1,j,k as the solution of the Ar T -system of type (i) with initial
data t−. Consider the projection of (1, j, k) onto k0, with minimum j0 and maximum j1.
We will show that the product of t1,j1 with the partition function for paths starting at
(1, j0) and ending at (1, j1) on the network N(j0, j1), and with weights t−, is equal to the
product of tλ1,j̄1 with the partition function from (1, j0) to (i1, j̄1) on the network N(j0, j̄1),
for some λ1 ∈ [1, r], i1 ∈ [1, r + 1] and j̄1 ∈ [j0, ℓ + 1]. The latter portion N(j0, j̄1) of the
network has only positive weights from the set t−, hence positivity follows.

The formula for (λ1, i1, j̄1) reads as follows. Three cases may occur:

• j1 6 ℓ+1: (λ1, i1, j̄1) = (1, 1, j1). The solution is identical to that of the unrestricted
Ar T -system of type (i), and positivity follows from Theorem 1.3.

• j1 > ℓ+ r + 2: (λ1, i1, j̄1) = (r, r + 1, 2ℓ + r + 3− j1). This is a consequence of the
collapse relations on the network solution, and of the symmetries of t−:

T1,j,k =
[

N(j0, j1)
]

1,1
t1,j1 =

[

N(j0, j̄1)(−1)rP
]

1,1
(−1)rtr,j̄1 =

[

N(j0, j̄1)
]

r+1,1
tr,j̄1 ,

where we have used Lemma 5.19 and j̄1 = 2ℓ+ r + 3− j1.

• ℓ+1 < j1 < ℓ+r+2: (λ1, i1, j̄1) = (1, aℓ(j1− ℓ−1), ℓ+1), with aℓ(x) is as in (5.40).
This follows by applying Lemma 5.20 to the (regularized) network solution:

T1,j,k = lim
b1,...,br→0

[

N(j0, ℓ+ 1)P̃j1−ℓ−1({b})
]

1,1
b1,j1 =

[

N(j0, ℓ+ 1)
]

1,aℓ(j1−ℓ−1)
,

and noting that 1 = t1,ℓ+1.

The equivalent of Corollary 5.27 follows from interpreting à la Gessel-Viennot the quantity
Ti,j,k/

∏i
a=1 tλ1(a),j̄1(a), as the partition function for i non-intersecting paths on the network

that start at (1, j0(b)) (b ∈ [1, i]) and end at (i1(a), j̄1(a)) (a ∈ [1, i]). Positivity follows.

Theorem 1.5 follows from:

Lemma 5.29. The solutions of the Ar T -system with initial data of type t[1,ℓ] are Laurent
polynomials with non-negative integer coefficients of the variables {ti,j : i ∈ [1, r], j ∈
[1, ℓ]}, assigned along the points of k0 with 0 < j 6 ℓ.
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Proof. We start by proving the property for T1,j,k. The half-periodicity property of The-
orem 5.24 allows us to restrict to points (1, j, k) with 0 6 k 6

N
2
.

Let j0 and j1 be the minimum and maximum of the projection of (1, j, k) onto k0.
Using the definitions of i0, j̄0, λ1, i1, j̄1 given in the proofs of Lemmas 5.26 and 5.28, we
will show that the network partition function for paths from (1, j0) to (1, j1), multiplied
by t1,j1 is equal to tλ1,j̄1 times the partition function of paths from (i0, j̄0) to (i1, j̄1) where
0 6 j̄0 6 j̄1 6 ℓ + 1. The weights in this region of t[1,ℓ] are all positive, hence so is the
partition function. Define the following subsets of Z:

A = [0, ℓ+ 1], B = [−ℓ− r − 2,−r − 1], C = [−r,−1],

D = [r + ℓ+ 2, r + 2ℓ+ 3], E = [ℓ+ 2, r + ℓ+ 1].

When j0 or j1 ∈ A, the solution is identical to that of Theorem 1.3, Lemma 5.9 or
Corollary 5.28, in which positivity has been proven. There are four remaining cases.

• (j0, j1) ∈ B ×D: We use collapse relations on both sides:

T1,j,k =
[

PN(j̄0, j̄1)(−1)rP
]

1,1
t1,j1 =

[

N(j̄0, j̄1)
]

r+1,r+1
tr,j̄1 ,

• (j0, j1) ∈ B×E: We use collapse relations on the left, and Lemma 5.20 on the right:

T1,j,k = lim
b1,...,br→0

[

PN(j̄0, ℓ+ 1)P̃ ({b})j1−ℓ−1

]

1,1
b1,j1 =

[

N(j̄0, ℓ+ 1)
]

r+1,aℓ(j1−ℓ−1)

• (j0, j1) ∈ C × D: We use collapse relations on the right, and Lemma 5.18 on the
left:

T1,j,k =
[

P−j0N(0, j̄1)(−1)rP
]

1,1
t1,j1 =

[

N(0, j̄1)
]

a1(|j0|),r+1
tr,j̄1

• (j0, j1) ∈ C × E: We use Lemma 5.18 on the left and Lemma 5.20 on the right:

T1,j,k = lim
b1,...,br→0

[

P−j0N(0, ℓ+ 1)P̃j1−ℓ−1({b})
]

1,1
b1,j1 =

[

N(0, ℓ+ 1)
]

a1(|j0|),aℓ(j1−ℓ−1)

To summarize, in all cases T1,j,k is expressed in terms of the partition function for
paths on the same network but with different starting and ending positions, depending
on the values of j and k. We may now apply the Lindström-Gessel-Viennot theorem
[19, 20] to the determinant expression of Lemma 1.2. Let j0(b) = j − k+ i− 2(b− 1) and
j1(a) = j + k − i + 2(a − 1) be the minima and maxima of the projections of the points
(1, j′, k′) involved in the determinant. We interpret the quantity Ti,j,k/

∏i
a=1 tλ1(a),j̄1(a), as

the partition function for i non-intersecting paths on the network, starting at (i0(b), j̄0(b))
(b ∈ [1, i]) and ending at (i1(a), j̄1(a)) (a ∈ [1, i]). This proves positivity, as all the path
weights are positive Laurent monomials of the initial data ti,j in the positive part of t[1,ℓ].

Typically, depending on i, j, k, and as i 6 r, we may have at worst some of the
minima in A and the rest in C, or some in B and the rest in C, and similarly for the
maxima, either in A ∪ D or in A ∪ E. We illustrate this in Fig. 10 for r = 6 and
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Figure 10: A typical example of expression of Ti,j,k as non-intersecting path partition
function. Here (i, j, k) = (4, 12, 14), r = 6 and ℓ = 16. We have indicated the 16 terms
involved in the determinant of Lemma 1.2 by black dots, and by blue (resp. red dots) their
projection minima (resp. maxima) onto k0. The corresponding starting and endpoints
are indicated on the associated network picture in representation I.
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Figure 11: The pictorial representation II of the network of Fig.10, with starting points
circled in blue and endpoints circled in red. We have also represented a typical configu-
ration of non-intersecting paths on the network that contribute to T4,12,14.

ℓ = 16, and (i, j, k) = (4, 12, 14). In this case, A = [0, 17], B = [−24,−7], C = [−6,−1],
D = [24, 41], E = [18, 23]. The minima j0(1) = −4, j0(2) = −2 are both in C and give
rise to respective starting points (5, 0), (3, 0), while j0(3) = 0, j0(4) = 2 are both in A and
give rise to starting points (1, 0), (1, 2). The maxima are j1(1) = 22 in E giving rise to
the endpoint (aℓ(j1(1)− ℓ− 1), ℓ+ 1) = (6, 17), and j1(2) = 24, j1(3) = 26, j1(4) = 28, all
in D, giving rise to the endpoints (7, 17), (7, 15), (7, 13). The network partition function
for these 4 non-intersecting paths is equal to T4,12,14/(t6,13t6,15).

We have represented the corresponding network in the pictorial representation II in
Fig.11, together with a typical configuration of four non-intersecting paths that con-
tributes to T4,12,14.

6 Other boundary conditions

So far, we have used the network solution of the T systems of type A to find expressions
for their solutions for wall-type boundary conditions. In particular, in the ℓ-restricted
case, this gives a combinatorial proof of Zamolodchikov’s periodicity conjecture.

There are other interesting types of boundary conditions on the T -system, and we
comment on some of them below.
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6.1 Friezes

The so-called SL2 frieze patterns [3, 1] are known to obey the A1 T -system relation. In
[1], special boundaries were considered, coded by affine Dynkin diagrams. In particular,
the case of the affine Dynkin diagram Ãℓ with an acyclic orientation corresponds to the
A1 T -system with a periodic initial data path k, such that kj+ℓ = kj +m for some fixed
integer m and for all j ∈ Z, and periodic initial values t along this path, with tj+ℓ = tj
for all j ∈ Z. The Laurent positivity for this case follows immediately from that of the
unrestricted system. Note that the case of the ordinary Dynkin diagram Aℓ corresponds
to the ℓ-restricted boundaries.

In the context of higher rank T -systems, boundary conditions coded by pairs (G,G′)
of Dynkin diagrams lead to the most general periodicity conjecture of Zamolodchikov,
proved in [15]. In that context, the first Dynkin diagram codes the type of T -system (Ar

throughout this paper), while the second codes the particular boundary conditions (Aℓ

for the ℓ-restricted boundaries for instance).
In a way similar to frieze patterns, we may consider the case (Ar, Ãℓ−1), for even

integers ℓ > 2, where the Ar T -system solutions are ℓ-periodic in the j direction, with
Ti,j+ℓ,k = Ti,j,k. This is guaranteed by imposing that both the stepped surface k and the
attached initial data ti,j of (1.7) be ℓ-periodic in the j direction, i.e. ki,j+ℓ = ki,j +mi for
some fixed mi compatible with the stepped surface conditions of Def.1.1 and ti,j+ℓ = ti,j
for all i ∈ [1, r] and j ∈ Z. The positivity of the corresponding T -system follows from
Theorem 1.3.

We may also consider the case (Ãr−1, Ãℓ−1) for even r, ℓ > 2, in which the T -system
is wrapped on a torus, by imposing that the T -system solutions be doubly periodic, with
Ti+r,j,k = Ti,j+ℓ,k = Ti,j,k for all i, j, k ∈ Z. The solutions of the corresponding system are
obtained from those of the unrestricted A∞ T -system by imposing that both the stepped
surface and the initial data of (1.3) be doubly periodic as well. Positivity then follows
from Theorem 1.3.

6.2 Higher pentagram maps as T -system tori

The pentagram map has been shown to relate to cluster algebra, and its solution was
expressed in [10] in terms of some particular T -system solution. Higher versions of this
map were considered by [11]. In all cases, we note that these correspond to quivers that
are quotients of the T -system quiver by a torus, defined as follows.

Let us consider the solutions of the unrestricted A∞ T -system, with initial data t
along the stepped surface k0 satisfying a toric periodicity property. Let us fix ~a = (a1, a2),
~b = (b1, b2) two non-collinear vectors in Z

2 and such that a1+ a2 and b1+ b2 are even. We
impose the double periodicity property:

Θ~a,~b : ti+a1,j+a2 = ti,j ti+b1,j+b2 = ti,j

This is a generalization of the rectangular torus case (Ãr−1, Ãℓ−1) described in the previous

section, corresponding to ~a = (r, 0) and ~b = (0, ℓ).
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In the cluster algebra identification for the T -system, the seed of the cluster algebra is
made of a cluster and an exchange matrix, both of infinite size, as the rank is infinite. The
cluster is the set of initial values {ti,j} along the stepped surface k0, and gets mutated into
other initial data. The exchange matrix is coded by the quiver Q0 with vertices (j, i) ∈ Z

2

and oriented edges (j, i) → (j±1, i), and (j, i±1) → (j, i) for all i, j ∈ Z
2 with i+ j even.

Note that the edge configurations around even vertices ((j, i) with i+j even) are opposite
to those around odd ones ((j, i) with i+ j odd). The parity conditions (a1+a2 and b1+ b2
even) guarantee that only vertices of the same parity are identified. By taking a quotient

of Z2 by the lattice Z~a+ Z~b, this allows to fold the corresponding infinite quiver Q0 into
a finite one Q̃0. The example below illustrates the case ~a = (0, 2) and ~b = (3, 1):

The folded system obtained by considering torus-periodic initial values and performing a
quotient by Z~a+Z~b is also part of a cluster algebra. Its mutations µi,j correspond to con-
sidering infinite compound (mutually commuting) mutations

∏

m,n∈Z µi+na1,mb1,j+na2+mb2

and passing to the quotient.
The quiver of the initial seed of the cluster algebra underlying the pentagram map of

[10] was generalized to a quiver Qk,n for higher pentagram maps in [11] (the former case
corresponding to k = 3). The quiver Qk,n has two (even and odd) sets of vertices denoted
by pi, qi, i ∈ Z with periodic identifications pi+n = pi and qi+n = qi which makes the quiver
finite, with 2n vertices. It is easy to rewrite the (infinite) quiver before identifications as
that, Q0, of the unrestricted A∞ T -system with vertices (j, i) ∈ Z

2 as follows:

i

i+r’

q i+r’+1

p i+1

p i−1

q i−r−1

p i−r−1−r’

p i+r+r’+1

p i

q i−r

j

q

the electronic journal of combinatorics 20(1) (2013), #P3 56



where r, r′ are two non-negative integers such that r + r′ = k − 2 and r′ = r if k is even,
and r′ = r + 1 otherwise, and where we have represented by circles (resp. squares) the
vertices (j, i) ∈ Z

2 with i + j even (resp. odd). Note that horizontal arrows correspond
to a shift +r′ + 1 (resp. −r − 1) in the indices when the arrow points to the right (resp.
left), while vertical arrows correspond to a shift +r (resp. −r′) in the indices when the
arrow points up (resp. down). The identifications pi ≡ pi+n and qi = qi+n of the two
types of vertices are therefore equivalent to a double translational invariance. A simple
calculation shows that it corresponds to the torus Z2/Z~a+Z~b, with ~a = (−(k−2), k) and
~b = (−n, n) with a fundamental domain under these translations containing |~a ∧~b| = 2n
vertices. In all cases, the finite quiver Qk,n with 2n vertices is the corresponding folding
of Q0.

6.3 Cuts

We may consider solutions of the T -system with cuts defined as follows. We consider the
unrestricted A∞ T -system, and pick a set S of tetrahedra (called singular) along which
the T -system relation is not imposed. A natural question for this system is: for which
choices of S and of initial conditions does the positive Laurent property hold?

In the A1 case, S is a set of diamonds of the form (Wi, Si, Ei, Ni) =
(

(ji−1, ki), (ji, ki−
1), (ji+1, ki), (ji, ki+1)

)

for i = 1, . . . , |S|. The particular case of a single diamond |S| = 1
(which we refer to as “puncture”) may be solved by the techniques of the present paper.
Consider an initial data surface of the form:

y a2 a4

a1 a3 a5
b2b4

b1b3b5

x...
...

...
...

with the following initial conditions. Let ǫj = 0 if j is odd, ǫj = −1 if j is even positive
and ǫj = 1 if j is even negative. Then the initial data assignment for the system with a
puncture at ((−1, 0), (0,−1), (1, 0), (0, 1)) is:

Tj,ǫj =

{

aj if j > 0
bj if j < 0

T0,1 = x

T0,−1 = y

for x, y some formal invertible variables. The Laurent property of the solutions is a direct
consequence of Theorem 4.1. In fact, for any point above the initial data paths, the
solution is a Laurent polynomial of the a’s, b’s and of x, while for any point below the
initial data paths, the solution is a Laurent polynomial of the a’s, b’s and of y. More
interestingly, we may consider different initial data paths containing the edges of the
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puncture, such as the example below:

1
b2

b3 a1

a2

b

3a

x

y
...

...

...

...

where the two uncircled vertices of the puncture bear no assignment. It is easy to show
that a necessary condition for the Laurent property to still hold is that xy = 1. Conversely,
we have the following:

Theorem 6.1. The solution of the A1 T -system with a puncture, an arbitrary path of
initial conditions (passing by the puncture) as above, and with xy = 1, is a positive
Laurent polynomial of the initial data.

Proof. We start by reinterpreting the fundamental relation (2.5) as a flatness condition of
the form V (a, b′)U(b′, c)V (b, c)−1U(a, b)−1 = I, around each diamond where the T -system
relation holds. We see that the matrices V, U, V −1, U−1 corresponding to the 4 possible
oriented edges along the vectors (1,−1), (1, 1), (−1, 1), (−1,−1) respectively form a flat
connection on any domain made of diamonds on which the T -system relation holds. As a
consequence, the product of corresponding matrices along the boundary of any connected
domain made of diamonds where the T -system relation holds is the identity matrix. Due
to the presence of the puncture, we may only consider domains that do not contain it.
Let (j, k) be a point above the initial data paths, and j0, j1 the minimum and maximum
of its projection as usual. We consider the domain D shaded below:

j 1

b1
b2

b3 1

a2
a3

a

D

j 0 0

(j,k)

x

...

...

−1x

In particular, the two (topmost and bottommost) paths joining the minimum and maxi-
mum contribute the same matrix M , satisfying M1,1Tj1,kj1

= Tj,k, clear from the topmost
path expression of the form UU · · ·UV V · · ·V . The contribution from the bottommost
path is the product along the initial data path (including edges of the puncture) of the
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corresponding connection matrices. These have non-negative entries that are Laurent
monomials of the initial data, except for edges of the puncture namely V (x, w)U(x−1, w)−1

or V (v, x−1)−1U(v, x). The following local situations may occur in general:

an

an+1

x−1

a1

1a’

a’2
1

a b2

bn

1b’
b’2

bn+1

x−1

b

2

...

w

...

...
...

v

x x

leading to matrix products along the bottommost path of the form · · ·BL/R · · · , where
BL/R is the only term containing possibly negative or non-Laurent entries for the situation
on the left/right, with respectively:

BL = V (x, w)U(x−1, w)−1V (x−1, a1)V (a1, a2) · · ·V (an−1, an)U(an, an+1)

BR = V (bn+1, bn)U(bn, bn−1)U(bn−1, bn−2) · · ·U(b1, x
−1)V (x−1, v)−1U(v, x)

Applying the flat connection condition to the domain made of the n diamonds, we may
express respectively:

BL = V (x, w)V (w, a′1)V (a′1, a
′
2) · · ·V (a′n−1, an+1) (6.1)

BR = U(bn+1, b
′
n−1)U(b′n−1, b

′
n−2) · · ·U(b′1, v)U(v, x) (6.2)

where for a′n = an+1, a
′
0 = w, a0 = x−1 and b′n = bn+1, b

′
0 = v, b0 = x−1 we have the

following descending recursion relations:

a′m =
a′m+1am + 1

am+1

(m = n− 1, n− 2, . . . , 1, 0)

b′m =
b′m+1bm + 1

bm+1

(m = n− 1, n− 2, . . . , 1, 0)

It is straightforward to see that the a′m, b
′
m m = 1, 2, . . . , n−1, are all positive Laurent poly-

nomials of respectively (x−1, a1, a2, . . . , an+1) and (x−1, b1, b2, . . . , bn+1). Moreover possible
denominators involving v or w (which are not initial data) are suppressed in the products
(6.1) and (6.2). As a consequence both products (6.1) and (6.2) have entries that are
non-negative Laurent polynomials of the initial data. As the remainder of the matrix
products along the bottommost path only involve matrices with non-negative Laurent
monomial entries, the positivity follows.

We may consider more general cases where S is made of possibly several chains of
diamonds attached by their north/south vertices. We refer to such chains as “cuts”. We
observed that to guarantee the Laurent property, the N/S vertex assignments of diamonds
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along these chains must alternate between a value and its inverse x, x−1, x, x−1, . . .. Let
us consider a general situation as depicted below of arbitrary paths of initial data (empty
circles) separated by chains as above, with initial data x = x−1 = 1 (filled circles):

...

...

Then we conjecture that the solution to the A1 T -system is a positive Laurent polynomial
of the initial data at the empty circles.

In the Ar case, we expect the above to generalize analogously, namely that a general
situation with pieces of stepped surfaces separated by pieces of walls of singular octahedra
attached by their vertices (i, j, k) with the same value of j, at which the assigned value
of Ti,j,k is 1, leads to a solution that is a positive Laurent polynomial of the initial data
along the stepped surfaces.

This generalizes the ℓ-restricted situation of the present paper, in which we consider
two infinite parallel walls of singular tetrahedra and a finite stepped surface in-between.
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