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Abstract

Using computational techniques we derive six new upper bounds on the classical two-
color Ramsey numbers: R(3, 10) 6 42, R(3, 11) 6 50, R(3, 13) 6 68, R(3, 14) 6 77,
R(3, 15) 6 87, and R(3, 16) 6 98. All of them are improvements by one over the
previously best known bounds.

Let e(3, k, n) denote the minimum number of edges in any triangle-free graph on
n vertices without independent sets of order k. The new upper bounds on R(3, k)
are obtained by completing the computation of the exact values of e(3, k, n) for
all n with k 6 9 and for all n 6 33 for k = 10, and by establishing new lower
bounds on e(3, k, n) for most of the open cases for 10 6 k 6 15. The enumeration
of all graphs witnessing the values of e(3, k, n) is completed for all cases with k 6 9.
We prove that the known critical graph for R(3, 9) on 35 vertices is unique up to
isomorphism. For the case of R(3, 10), first we establish that R(3, 10) = 43 if and
only if e(3, 10, 42) = 189, or equivalently, that if R(3, 10) = 43 then every critical
graph is regular of degree 9. Then, using computations, we disprove the existence
of the latter, and thus show that R(3, 10) 6 42.
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1 Definitions and Preliminaries

In this paper all graphs are simple and undirected. Let G be such a graph. The vertex
set of G is denoted by V (G), the edge set of G by E(G), and the number of edges in G by
e(G). The set of neighbors of v in G will be written as Nv(G) (or just N(v) if G is fixed).
The independence number of G, denoted α(G), is the order of the largest independent
set in G, degG(v) is the degree of vertex v ∈ V (G), and δ(G) and ∆(G) are the minimum
and maximum degree of vertices in G, respectively. For graphs G and H, G ∼= H means
that they are isomorphic.

For positive integers k and l, the Ramsey number R(k, l) is the smallest integer n
such that if we arbitrarily color the edges of the complete graph Kn with 2 colors, then
it contains a monochromatic Kk in the first color or a monochromatic Kl in the second
color. If the edges in the first color are interpreted as a graph G and those in the second
color as its complement G, then R(k, l) can be defined equivalently as the smallest n such
that every graph on n vertices contains Kk or has independence α(G) > l. A regularly
updated dynamic survey by the second author [17] lists the values and the best known
bounds on various types of Ramsey numbers.

Any Kk-free graph G on n vertices with α(G) < l and e(G) = e will be called a
(k, l;n, e)-graph, and by R(k, l;n, e) we will denote the set of all (k, l;n, e)-graphs. We
will often omit the parameter e, or both e and n, or give some range to either of these
parameters, when referring to special (k, l;n, e)-graphs or sets R(k, l;n, e). For example,
a (k, l)-graph is a (k, l;n, e)-graph for some n and e, and the set R(3, 9; 35,6 139) consists
of all 35-vertex triangle-free graphs with α(G) 6 8 and at most 139 edges (later we will
prove that this set is empty). Any (k, l;R(k, l)− 1)-graph will be called critical for (k, l).

Let e(k, l, n) denote the minimum number of edges in any (k, l;n)-graph (or ∞ if no
such graph exists). The sum of the degrees of all neighbors of v in G will be denoted by
ZG(v) (or Z(v) if G is fixed), i.e.

Z(v) = ZG(v) =
∑

{u,v}∈E(G)

degG(u). (1)

In the remainder of this paper we will study only triangle-free graphs. Note that
for any G ∈ R(3, k) we have ∆(G) < k, since all neighborhoods of vertices in G are
independent sets.

Let G be a (3, k;n, e)-graph. For any vertex v ∈ V (G), we will denote by Gv the
graph induced in G by the set V (G) \ (NG(v)∪ {v}). If d = degG(v), then clearly Gv is a
(3, k − 1;n− d− 1, e(G)− ZG(v))-graph. Note that this implies that

γ(v) = γ(v, k,G) = e− ZG(v)− e(3, k − 1, n− d− 1) > 0, (2)

where γ(v) is the so called deficiency of vertex v [8]. Finally, the deficiency of the graph
G is defined as

γ(G) =
∑

v∈V (G)

γ(v, k,G) > 0. (3)
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The condition that γ(G) > 0 will be often sufficient to derive good lower bounds on
e(k, l, n), though a stronger condition that all summands γ(v, k,G) of (3) are non-negative
sometimes implies even better bounds. It is easy to compute γ(G) just from the degree
sequence of G [8, 10]. If a (3, k;n, e)-graph G has ni vertices of degree i, then

γ(G) = ne−
∑
i

ni

(
i2 + e(3, k − 1, n− i− 1)

)
> 0, (4)

where n =
∑k−1

i=0 ni and 2e =
∑k−1

i=0 ini.

2 Summary of Prior and New Results

In 1995, Kim [12] obtained a breakthrough result by establishing the exact asymptotics
of R(3, k) using probabilistic arguments. Recently, the fascinating story of developments
and results related to the infinite aspects of R(3, k) was written by Spencer [21].

Theorem 1 ([12]) R(3, k) = Θ(n2/ log n).

Theorem 1 gives the exact asymptotics of R(3, k), while computing the values for
concrete cases remains an open problem for all k > 10. Still, the progress obtained in
the last 50 years in this area is remarkable. Known exact values of R(3, k) for k 6 9,
and the best lower and upper bounds for higher k, are listed in [17] together with all the
references. We note that much of this progress was obtained with the use of knowledge
about e(3, k, n). This direction is also the main focus of our paper: we compute new exact
values of e(3, k, n) in several cases and give improved lower bounds for many other, which
in turn permits us to prove new upper bounds on R(3, k) for k = 10, 11, 13, 14, 15 and 16.
Likely, more new upper bounds could be obtained for some 17 6 k 6 21, but we did not
perform these computations.

General formulas for e(3, k, n) are known for all n 6 13k/4 − 1 and for n = 13k/4
when k = 0 mod 4.

Theorem 2 ([18, 20]) For all n, k > 1, for which e(3, k + 1, n) is finite,

e(3, k + 1, n) =


0 if n 6 k,
n− k if k < n 6 2k,
3n− 5k if 2k < n 6 5k/2,
5n− 10k if 5k/2 < n 6 3k,
6n− 13k if 3k < n 6 13k/4− 1.

(5)

Furthermore, e(3, k + 1, n) = 6n − 13k for k = 4t and n = 13t, and the inequality
e(3, k+1, n) > 6n−13k holds for all n and k. All the critical graphs have been characterized
whenever the equality in the theorem holds for n 6 3k.
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Theorem 2 is a cumulative summary of various contributions [8, 10, 18, 19, 20]. It
captures many of the small cases, as presented in Table 3 in Section 4. For example,
Theorem 2 gives the exact values of e(3, 9, n) for all n 6 26, of e(3, 10, n) for n 6 28, and
of e(3, 13, n) for all n 6 39.

The inequality e(3, k + 1, n) > (40n − 91k)/6, which is better than e(3, k + 1, n) >
6n−13k for larger parameters, and a number of other improvements and characterizations
of graphs realizing specific number of edges, was credited in 2001 by Lesser [13] to an
unpublished manuscript by Backelin [1]. As of 2012, the manuscript by Backelin already
exceeds 500 pages and it contains numerous additional related results [1, 2], but it still
needs more work before it can be published. Therefore, in the remainder of this paper
we will not rely on the results included therein, however in several places we will cite
the bounds obtained there for reference. In summary, the behavior of e(3, k + 1, n) is
clear for n 6 13k/4 − 1, it seems regular but very difficult to deal with for n slightly
larger than 13k/4, and it becomes hopelessly hard for even larger n. In this work we
apply computational techniques to establish lower bounds for e(3, k, n) for larger n, for
k 6 15. Immediately, our results imply better upper bounds on R(3, k) in several cases,
but we hope that they also may contribute to further progress in understanding the general
behavior of e(3, k, n).

Full enumeration of the sets R(3,6 6) was established in [18, 16]. The knowledge of
the exact values of e(3, 7, n) was completed in [18], those of e(3, 8,6 26) in [19], and the
last missing value for α(G) < 8, namely e(3, 8, 27) = 85, was obtained in [4]. The thesis by
Lesser [13] contains many lower bounds on e(3, k, n) better than those in [19]. We match
or improve them in all cases for k 6 10. For k > 11 and n slightly exceeding 13k/4 − 1,
the bounds by Lesser (in part credited also to [1]) are better than ours in several cases,
however we obtain significantly better ones for larger n.

The general method we use is first to compute, if feasible, the exact value of e(3, k, n)
for concrete k and n, or to derive a lower bound using a combination of (2), (3) and
(4), and computations. Better lower bounds on e(3, k − 1,m) for m = n − d − 1 and
various d, lead in general to better lower bounds on e(3, k, n). If we manage to show that
e(3, k, n) =∞, i.e. no (3, k;n)-graph exists, then we obtain an upper bound R(3, k) 6 n.
An additional specialized algorithm was needed to establish R(3, 10) 6 42.

Section 3 describes extension algorithms which we used to exhaustively construct all
(3, k;n, e)-graphs for a number of cases of (n, e), for k 6 10. These results are described
in detail in the sequel. This leads to many new lower bounds on e(3, k, n) and full
enumerations of (3, k;n)-graphs with the number of edges equal to or little larger than
e(3, k, n), which are presented in Section 4 (and Appendix 1). These results are then
used in Section 5 to prove that there exists a unique critical 35-vertex graph for the
Ramsey number R(3, 9). It is known that [5] 40 6 R(3, 10) 6 43 [19]. We establish
that R(3, 10) = 43 if and only if e(3, 10, 42) = 189, or equivalently, that if R(3, 10) = 43
then every critical graph in this case is regular of degree 9. Then, in Section 6, using
computations we prove that the latter do not exist, and thus obtain R(3, 10) 6 42. Finally,
in Section 7, we describe the second stage of our computations, which imply many new

the electronic journal of combinatorics 20(1) (2013), #P30 4



lower bounds on e(3,> 11, n). This stage uses only degree sequence analysis of potential
(3, k;n, e)-graphs, which have to satisfy (4). This in turn leads to the new upper bounds
on the classical two-color Ramsey numbers marked in bold in Table 1, which presents the
values and best bounds on the Ramsey numbers R(3, k) for k 6 16. All the improvements
in this work are better by one over the results listed in the latest 2011 revision #13 of the
survey [17]. The bound R(3, 16) 6 98 was also obtained by Backelin in 2004, though it
was not published [1, 2]. The lower bound R(3, 11) > 47 was recently obtained by Exoo
[6]. The references for all other bounds and values, and the previous upper bounds, are
listed in [17].

k R(3, k) k R(3, k)
3 6 10 40–42
4 9 11 47–50
5 14 12 52–59
6 18 13 59–68
7 23 14 66–77
8 28 15 73–87
9 36 16 79–98

Table 1: Ramsey numbers R(3, k), for k 6 16.

3 Algorithms

Maximum Triangle-Free Method

One method to determine e(3, k, n) is by first generating all maximal triangle-free (3, k;n)-
graphs. A maximal triangle-free graph (in short, an mtf graph) is a triangle-free graph
such that the insertion of any new edge forms a triangle. It is easy to see that there
exists a (3, k;n)-graph if and only if there is an mtf (3, k;n)-graph. In [4], an algorithm
is described that can generate all mtf (3, k;n)-graphs efficiently. Using this algorithm, it
is much easier to generate all mtf (3, k;n)-graphs instead of all (3, k;n)-graphs, because
the number of the former is in most cases much smaller. For example, there are 477142
(3, 8; 27)-graphs, but only 21798 mtf graphs with the same parameters. By recursively
removing edges in all possible ways from these mtf (3, k;n)-graphs and testing if the
resulting graphs G still satisfy α(G) < k, the complete set R(3, k;n) can be obtained.

We applied this method to generate the sets R(3, 7; 21),R(3, 7; 22),R(3, 8; 26,6 77)
and R(3, 8; 27) (see Appendix 1 for detailed results). All (3, 7; 22)- and (3, 7;n, e(3, k, n))-
graphs were already known [18], other enumerations are new. This mtf method is infeasible
for generating (3,> 9;n)-graphs for n which were needed in this work. Nevertheless, we
used it for verifying the correctness of our other enumerations, and the results agreed in
all cases in which more than one method was used (see Appendix 2).
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Minimum Degree Extension Method

In their 1992 paper establishing R(3, 8) = 28, McKay and Zhang [16] proved that the set
R(3, 8; 28) is empty by generating several sets R(3, k;n, e) with additional restrictions on
the minimum degree δ(G). Suppose that one wants to generate all (3, k;n, e)-graphs. If G
is such a graph and one considers its minimum degree vertex v, then we can reconstruct G
given all possible graphs Gv. McKay and Zhang described such dependencies, designed an
algorithm to reconstruct G, and completed the proof of R(3, 8) = 28 using this algorithm.

We implemented and used this method by McKay and Zhang [16], and in all cases
where more than one algorithm was used it agreed with the other results. However, using
this method it was not feasible to generate most classes of graphs with higher parameters
needed for our project. For example, we could not generate all (3, 9; 28,6 69)-graphs with
this method, as the graphs with δ(G) = 4 are obtained from (3, 8; 23,6 53)-graphs, but
there are already 10691100 (3, 8; 23,6 52)-graphs (Table 13 in Appendix 1).

Neighborhood Gluing Extension Method

Our general extension algorithm for an input (3, k;m)-graph H produces all (3, k+1;n, e)-
graphs G, often with some specific restrictions on n and e, such that for some vertex
v ∈ V (G) graph H is isomorphic to Gv. We used the following strategy to determine if
the parameters of input graphs to our extender were such that the output was guaranteed
to contain all (3, k + 1;n,6 e)-graphs.

Let mi = n − i − 1, where i ranges over possible degrees in any graph G we look
for, δ(G) 6 i 6 ∆(G). In the broadest case we have δ(G) = max{n − R(3, k), 0} and
∆(G) = k, but we also identified a number of special cases where this range was more
restricted. Let ti be an integer such that we have extended all (3, k;mi, < e(3, k,mi)+ ti)-
graphs as potential Gv’s of G. Now, if we use e(3, k,mi) + ti instead of e(3, k,mi) in (4)
for all relevant values of i, and (4) has no solutions for (3, k + 1;n,6 e)-graphs, then we
can conclude that all such graphs were already generated. We illustrate this process by
an example.

Example. Table 2 lists specific parameters of the general process when used to obtain
all (3, 8; 25,6 65)-graphs. Every vertex v in any (3, 8; 25,6 65)-graph has degree i, for
some 2 6 i 6 7. The corresponding graph Gv is of type (3, 7;mi, e(Gv)). The values of
e(3, 7,m) are included in Table 3 of Section 4, and let ti’s be as in Table 2. If we use the
values e(3, 7,mi) + ti instead of e(3, 7,mi) in (4), then there are no solutions for degree
sequences of (3, 8; 25,6 65)-graphs. Thus, if we run the extender for all possible graphs
Gv with the number of edges listed in the last column of Table 2, then we will obtain all
(3, 8; 25, e)-graphs for e 6 65.

The set of increments ti accomplishing this goal is not unique, there are others which
work. We just tried to minimize the amount of required computations in a greedy way.
Note that the largest increments ti to e(3, 7,mi) occur for i’s which are close to the average
degree of G.
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i = degG(v) mi = |V (Gv)| e(3, 7,mi) ti e(Gv) = e− Z(v)
2 22 60 1 60
3 21 51 1 51
4 20 44 2 44, 45
5 19 37 3 37, 38, 39
6 18 30 2 30, 31
7 17 25 1 25

Table 2: Obtaining all (3, 8; 25,6 65)-graphs.

Implementation

In this section we present some details about the extension algorithms implementations for
the minimum degree and neighborhood gluing method. Implementation of the algorithm
to generate maximal triangle-free Ramsey graphs is described in [4].

Given a (3, k;n, f)-graph G′ as input and an expansion degree d, a desired maximum
number of edges e, and the minimum degree dm as parameters, our program constructs
all (3, k+1;n+d+1,6 e)-graphs G with δ(G) > dm for which there is a vertex v ∈ V (G)
such that deg(v) = d and Gv

∼= G′. More specifically, the program adds to G′ a vertex
v with neighbors u1, . . . , ud and connects them to independent sets of G′ in all possible
ways, so that the resulting graph is a (3, k + 1;n + d + 1,6 e)-graph with δ(G) > dm.
Note that the neighbors of v have to be connected to independent sets of G′, otherwise
the expanded graph would contain triangles, and, clearly, ∆(G) 6 k.

The extension program first determines all independent sets of G′ of orders t that are
possible, namely dm−1 6 t 6 k−1. The program then recursively assigns the d neighbors
of v to the eligible independent sets of G′, adds the edges joining ui’s to their associated
independent sets, and tests if the resulting G is a valid (3, k + 1;n + d + 1,6 e)-graph.
If it is, then we output it. This general process is greatly accelerated by the techniques
described in the following.

We bound the recursion if a given partial assignment cannot lead to any (3, k+ 1;n+
d+1,6 e)-graphs. Suppose that i independent sets S1, . . . , Si have already been assigned.
If V (G′)\(S1∪· · ·∪Si) induces an independent set I of order k+1−i, then this assignment
cannot lead to any output since I ∪ {u1, . . . , ui} would form an independent set of order
k + 1 in G. We could test this property for all subsets of Si’s, but we found it to be
most efficient to do it only for all pairs. Namely, if S1, . . . , Si is already assigned and we
consider the next independent set S, we test if for all j, 1 6 j 6 i, V (G′) \ (Sj ∪ S) does
not induce any independent set of order k − 1. The list of independent sets which can
still be assigned is dynamically updated.

For the efficiency of the algorithm it is vital that testing for independence in V (G′) \
(S1 ∪ · · · ∪Si) is fast, and hence we precompute the independence numbers of all induced
subgraphs of G′. This precomputation also needs to be done very efficiently. We represent
a set of vertices S ⊂ V (G′) by a bitvector. The array indep_number[S] of 2n elements
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stores the independence number of the graph induced by S in G′. It is very important
that indep_number[] fits into the memory. On the computers on which we performed
the expansions this was still feasible up to n = 31. We investigated various approaches to
precompute indep_number[S], and Algorithm 1 below was by far be the most efficient
one. If the superset S ′ of S already has indep_number[S’] > j, then we can break the
recursion of making the supersets. Usually one can break very quickly. For small extension
degrees d 6 3, it is more efficient not to precompute these independence numbers, but
instead to compute them as needed.

Algorithm 1 Precomputing independence number

for i = 0 upto 2n − 1 do
set indep_number[i] = 0

end for
for j = k − 1 downto k + 1− d do

for all independent sets S of order j in G′ do
Recursively make all supersets S ′ of S, and
if indep_number[S’] = 0 then set indep_number[S’] = j
else break making supersets of S

end for
end for

If a neighbor ui of v has been assigned to an independent set S, we also update the
degrees of the vertices in G′. If ui is being connected to S, the degree of every vertex of
S increases by one. If the degree of a vertex w of G′ becomes k, then other neighbors of v
cannot be assigned to independent sets which contain w. We call such vertices which are
no longer eligible forbidden vertices, and all of them are stored in a dynamically updated
bitvector. We also dynamically update the list of independent sets which can still be
assigned to ui’s. Independent sets which contain forbidden vertices are removed from the
list of eligible independent sets. We perform bitvector operations whenever suitable. If no
eligible independent sets are left, we can bound the recursion. Note that we cannot break
the recursion when the number of eligible independent sets is smaller than the number
of neighbors of v that still have to be considered, since they can be assigned to the same
independent set. If i neighbors of v are already assigned and the forbidden vertices form
an independent of set order k+1−(d−i), then the recursion can also be bounded, though
this criterion in general is weak.

We assign the neighbors ui of v to independent sets in ascending order, i.e. if ui is
assigned to Si, then |Si| 6 |Si+1| for all 1 6 i < d. Doing this rather than in descending
order allows us to eliminate many candidate independent sets early in the recursion. If
|Si| is small, then it is very likely that V (G′) \Si induces a large independent set. Hence,
it is also very likely that Si cannot be assigned to a new ui or that assigning Si eliminates
many eligible independent sets.

Assigning sets in ascending order also gives us an easy lower bound for the number of
edges in any potential output graph which can be obtained from the current graph and
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assignment. If the sets S1, . . . , Si have already been assigned to neighbors of v and the
current minimal order of eligible independent sets is t, then any expanded graph will have
at least f = e(G′) + d+ |S1|+ · · ·+ |Si|+ t(d− i) edges. If f > e, then we can bound the
recursion as well.

The pseudocode of the recursive extension is listed below as Algorithm 2. It is as-
sumed that indep_number[] (see Algorithm 1) and the list of eligible independent sets
are already computed. The parameters for Construct() are the order of the sets which
are currently being assigned and the number of neighbors of v which were already assigned
to independent sets. The recursion is bounded if any of the bounding criteria described
above can be applied.

Algorithm 2 Construct(current order, num assigned)

if num assigned = d then
expand graph G′ to G
if G is a (3, k + 1;n+ d+ 1,6 e)-graph then

output G
end if

else
for every eligible set S of order current order do

assign S to unum assigned+1

update the set of eligible independent sets
Construct(current order, num assigned + 1)

end for
if current order < k − 1 then
Construct(current order + 1, num assigned)

end if
end if

Our extension program does not perform any isomorphism rejection. We canonically
label the output graphs with nauty [14, 15] and remove the isomorphic copies. This is
not a bottleneck as there are usually only a few (3, k + 1;n + d + 1,6 e)-graphs which
are constructed by our program. The results obtained by our extension algorithms are
described in Sections 4 and 6. In the appendices we describe how the correctness of our
implementation was tested.

Degree Sequence Feasibility

Suppose we know the values or lower bounds on e(3, k,m) for some fixed k and we wish
to know all feasible degree sequences of (3, k + 1;n, e)-graphs. We construct the system
of integer constraints consisting of n =

∑k
i=0 ni, 2e =

∑k
i=0 ini, and (4). If it has no

solutions then we conclude that e(3, k+ 1, n) > e. Otherwise, we obtain solutions for ni’s
which include all desired degree sequences. This algorithm is similar in functionality to
the package FRANK developed by Lesser [13].
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4 Progress on Computing Small e(3, k, n)

vertices k
n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 1
4 2 1
5 5 2 1
6 ∞ 3 2 1
7 6 3 2 1
8 10 4 3 2 1
9 ∞ 7 4 3 2 1
10 10 5 4 3 2 1
11 15 8 5 4 3 2 1
12 20 11 6 5 4 3 2 1
13 26 15 9 6 5 4 3 2 1
14 ∞ 20 12 7 6 5 4 3 2 1
15 25 15 10 7 6 5 4 3 2 1
16 32 20 13 8 7 6 5 4 3 2 1
17 40 25 16 11 8 7 6 5 4 3 2
18 ∞ 30 20 14 9 8 7 6 5 4 3
19 37 25 17 12 9 8 7 6 5 4
20 44 30 20 15 10 9 8 7 6 5
21 51 35 25 18 13 10 9 8 7 6
22 60 42 30 21 16 11 10 9 8 7
23 ∞ 49 35 25 19 14 11 10 9 8
24 56 40 30 22 17 12 11 10 9
25 65 46 35 25 20 15 12 11 10
26 73 52 40 30 23 18 13 12 11
27 85 61 45 35 26 21 16 13 12
28 ∞ 68 51 40 30 24 19 14 13
29 77 58 45 35 27 22 17 14
30 86 66 50 40 30 25 20 15
31 95 73 56 45 35 28 23 18

Table 3: Exact values of e(3, k, n), for 3 6 k 6 16, 3 6 n 6 31.

Table 3 presents the exact values of e(3, k, n) for small cases, where clear regularities are
well described by Theorem 2. Empty entries in the upper-right triangle of the table are
0’s, while those in the lower-left triangle are equal to ∞. The columns correspond to
fixed values of k. Almost all entries are given by Theorem 2. We list them for a better
perspective and completeness. The entries beyond the range of Theorem 2 are marked in
bold, and they were obtained as follows: e(3, 6, 16) and e(3, 6, 17) in [8], all cases for k = 7
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in [8, 10, 18], all cases for k = 8 and 22 6 n 6 26 in [19], e(3, 8, 27) = 85 was computed
in [4], and those for k > 9 are obtained here. The smallest n for which there is an open
case is 32, namely that of e(3, 11, 32). Tables 4 and 5 below and 7–11 in Section 7 present
the details of what we found about these harder parts of each column k, for 9 6 k 6 16.

The exact counts of (3, k;n, e)-graphs for k = 7, 8, 9, 10 which were obtained by the
algorithms described in Section 3 are listed in Tables 12, 13, 14, 15, respectively, in
Appendix 1. All (3,6 9;n, e(3, k, n))-graphs which were constructed by our programs can
be obtained from the House of Graphs [3] by searching for the keywords “minimal ramsey
graph”.

Exact values of e(3, 9, n)

The values of e(3, 9,6 26) are determined by Theorem 2. The values of e(3, 9, n) for
27 6 n 6 34 were obtained by computations, mostly by the gluing extender algorithm
described in Section 3, and they are presented in Table 4. All of these values improve
over previously reported lower bounds [19, 13]. The equality e(3, 9, 35) = 140 will be
established by Theorem 3 in Section 5.

n e(3, 9, n) comments
27 61
28 68
29 77
30 86
31 95
32 104 not enough for R(3, 10) 6 42
33 118 just enough for Theorem 4
34 129 122 required for R(3, 10) 6 43
35 140 Theorem 3
36 ∞ hence R(3, 9) 6 36, old bound

Table 4: Exact values of e(3, 9, n), for n > 27

Values and lower bounds on e(3, 10, n)

The values of e(3, 10,6 28) are determined by Theorem 2. The values for 29 6 n 6 33
were obtained by the gluing extender algorithm described in Section 3. The lower bounds
on e(3, 10,> 34) are included in the second column of Table 5. They are based on solving
integer constraints (3) and (4), using the exact values of e(3, 9, n) listed in Table 4. Our
bounds on e(3, 10, n) improve over previously reported lower bounds [19, 13] for all n > 30.

By Theorem 4 (see Section 5) we know that any (3, 10; 42)-graph must be 9-regular
with 189 edges, and thus its all graphs Gv are necessarily of the type (3, 9; 32, 108). There
exists a very large number of the latter graphs. Their generation, extensions to possible
(3, 10; 42, 189)-graphs, and implied nonexistence of any (3, 10; 42)-graphs will be described
in Section 6.
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n e(3, 10, n) > comments
29 58 exact, the same as in [13]
30 66 exact
31 73 exact
32 81 exact
33 90 exact
34 99
35 107
36 117
37 128
38 139 146 required for R(3, 11) 6 49
39 151 as required for R(3, 11) 6 50, Theorem 7
40 161
41 172 184 maximum
42 ∞ hence R(3, 10) 6 42, new bound, Theorem 6
43 ∞ hence R(3, 10) 6 43, old bound

Table 5: Values and lower bounds on e(3, 10, n), for n > 29.

5 Better Lower Bounds for e(3, 9, 35) and e(3, 10, 42)

Sometimes we can improve on the lower bounds on e(3, k, n) implied by (3) and (4) by
a more detailed analysis of feasible degree sequences. Such improvements typically can
be done in cases for which (4) gives a small number of possible degree sequences, none
of which is of a regular graph, furthermore with only one heavily dominating degree. We
have such a situation in the proofs of the two following theorems.

Theorem 3 There exists a unique (3, 9; 35)-graph, and e(3, 9, 35) = 140.

Proof. Any (3, 9; 35)-graph G has ∆(G) 6 8, hence we have e(G) 6 140. Suppose
G ∈ R(3, 9; 35, 140 − s) for some s > 0. Since R(3, 8) = 28, the degrees of vertices in G
are 7 or 8, and let there be n7 and n8 of them, respectively. We have n7+n8 = 35, n7 = 2s.
In this case there are five solutions to (4) with 0 6 s 6 4. In particular, this shows that
e(3, 9, 35) > 136. If n7 > 0 (equivalently s > 0), then consider graph H induced in G by
n7 vertices of degree 7. Observe that δ(H) 6 s, since H is triangle-free on 2s vertices.
Let v be a vertex in V (G) of degree 7 connected to at most s other vertices of degree 7.
Thus we have ZG(v) > 7s + 8(7 − s) = 56 − s, and e(Gv) 6 (140 − s) − (56 − s) = 84.
However Gv is a (3, 8; 27)-graph which contradicts the fact that e(3, 8, 27) = 85.

The computations extending all (3, 8; 26, 76)-graphs, using the neighborhood gluing
extension method described in Section 3, established that there exists a unique (up to
isomorphism) 8-regular (3, 9; 35)-graph. We note that it is a cyclic graph on 35 ver-
tices with circular distances {1,7,11,16}, found by Kalbfleisch [11] in 1966. Clearly, any
(3, 9; 35, 140)-graph must be 8-regular, and thus the theorem follows. 2
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Theorem 4 R(3, 10) = 43 if and only if e(3, 10, 42) = 189.

Proof. It is known that R(3, 10) 6 43 [19], i.e. there are no (3, 10; 43)-graphs. We
will prove the theorem by showing that any (3, 10; 42)-graph must be regular of degree 9.
The essence of the reasoning is very similar to that for e(3, 9, 35) = 140 in the previous
theorem, except that this time it is little more complicated.

Suppose G ∈ R(3, 10; 42, 189 − s) for some s > 0. The computations described in
Section 3 established that G cannot have the unique (3, 9; 35)-graph as one of its Gv’s.
Hence, 7 6 degG(v) 6 9 for all vertices v ∈ V (G). The solutions ni to (4) which contain
all possible degree sequences for G with this restriction are presented in Table 6.

n7 n8 n9 e(G) γ(G) s

0 8 34 185 24 4
1 6 35 185 25 4
2 4 36 185 26 4
3 2 37 185 27 4
4 0 38 185 28 4
0 6 36 186 60 3
1 4 37 186 61 3
2 2 38 186 62 3
3 0 39 186 63 3
0 4 38 187 96 2
1 2 39 187 97 2
2 0 40 187 98 2
0 2 40 188 132 1
1 0 41 188 133 1
0 0 42 189 168 0

Table 6: Solutions to (4) for (3, 10; 42, 189− s)-graphs.

Note that for all 0 6 s 6 4 we have 0 6 n7 6 s, n8 + 2n7 = 2s, n9 = 42 − n8 − n7,
and e(G) = 189− s. Since e(3, 9, 34) = 129, using (2) we see that Z(v) 6 60− s for every
vertex v of degree 7. Similarly, since e(3, 9, 33) = 118, Z(v) 6 71− s for every vertex v of
degree 8. If s = 0, then we are done, otherwise consider graph H induced in G by 2s−n7

vertices of degree 7 or 8. Observe that δ(H) 6 s− n7/2, since H is triangle-free.

Case 1: n7 = 0. Let v be a vertex in V (G) of degree 8 connected to at most s other
vertices of degree 8. This gives ZG(v) > 8s+ 9(8− s) = 72− s, which is a contradiction.

Case 2: n8 = 0. Let v be a vertex in V (G) of degree 7 connected to at most s/2 other
vertices of degree 7 (in this case |V (H)| = s). This gives ZG(v) > 7s/2+9(7−s/2) = 63−s,
which is a contradiction.

Case 3: n7 = 1. If v is the only vertex of degree 7, then n8 = 2s− 2 and we easily have
ZG(v) > 8n8 + 9(7− n8) = 65− 2s > 60− s, which again is a contradiction.
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Case 4: n7 = 2. Both vertices of degree 7 must have ZG(v) > 7 + 8n8 + 9(7− n8 − 1) =
61− (2s− 2n7) = 65− 2s, which is a contradiction.

Case 5: n7 > 2. The only remaining degree sequence not covered by previous cases is
n7 = 3 and n8 = 2, for s = 4 and e = 185. There is a vertex v of degree 7 connected to at
most one other of degree 7, and thus ZG(v) > 7 + 2 · 8 + 4 · 9 > 60− s, a contradiction. 2

6 R(3, 10) 6 42

Theorem 4 implies that any (3, 10; 42)-graph G must be regular of degree 9 with 189
edges. Removing any vertex v with its neighborhood from G yields a (3, 9; 32, 108)-graph
Gv. Hence, our first task is to obtain all (3, 9; 32, 108)-graphs.

We used the neighborhood extension method to generate (3, 9; 32, 108)-graphs H
with a vertex v for which Hv is one of the following types: (3, 8; 27), (3, 8; 26,6 77),
(3, 8; 25,6 68), (3, 8; 24,6 59) or (3, 8; 23, 49). These extensions yielded the set of 2104151
(3, 9; 32, 108)-graphs X . Using notation of the example in Section 3, now with 4 6 i 6 8,
mi = 31−i, and ti = 10, 5, 4, 4, 1, respectively, the only remaining degree sequence passing
(4) for a (3, 9; 32, 108)-graph is n6 = 8, n7 = 24.

Potentially, the complete set of (3, 9; 32, 108)-graphs could be obtained by perform-
ing additional extensions of degree 6 to (3, 8; 25, 69)-graphs or extensions of degree 7
to (3, 8; 24, 60)-graphs. However, there are already 12581543 (3, 8; 25,6 68)-graphs and
3421512 (3, 8; 24,6 59)-graphs (see Table 13 in Appendix 1), and there are many more
with one additional edge. Hence, further refinement of the construction method of the
(3, 9; 32, 108)-graphs not in X was needed. It is described in the following Lemma 5,
which permitted a fast computation and the completion of the task.

Lemma 5 Every (3, 9; 32, 108)-graph H 6∈ X has n6 = 8, n7 = 24, and furthermore in
such H every vertex of degree 6 has exactly 3 neighbors of degree 7 and every vertex of
degree 7 has exactly 1 neighbor of degree 6.

Proof. As stated after the definition of X above, (4) implies the specified degree sequence
of H 6∈ X . Suppose that H has a vertex v of degree 6 with at least 4 neighbors of degree 7.
One can easily see that ZH(v) > 40 and thus e(Hv) 6 68. All such graphs, however, were
included in the set of inputs producing X , so we have a contradiction. Similarly, suppose
that H has a vertex v of degree 7 with no neighbors of degree 6. Then ZH(v) = 49 and
e(Hv) = 59, but all such graphs were used as inputs producing X , hence again we have
a contradiction. Now, by the pigeonhole principle, there are exactly 24 edges connecting
vertices of distinct degrees, and we can easily conclude that every vertex of degree 6 must
have exactly 3 neighbors of degree 7 and every vertex of degree 7 exactly 1 neighbor of
degree 6. 2

We adapted the extension algorithm from Section 3 to generate this very restricted
set of (3, 9; 32, 108)-graphs by performing extensions of all 64233886 (3, 8; 24, 60)-graphs
(Table 13 in Appendix 1). The result is that there are no (3, 9; 32, 108)-graphs not in X .
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Theorem 6 R(3, 10) 6 42.

Proof. For contradiction, suppose that G is a (3, 10; 42)-graph. By Theorem 4 it must
be a 9-regular (3, 10; 42, 189)-graph whose all Gv’s are (3, 9; 32, 108)-graphs. By Lemma
5 and the computations described above there are exactly 2104151 such graphs. A spe-
cialized extension algorithm (a modification of the gluing extender) was run for all of
them in an attempt to obtain a 9-regular (3, 10; 42, 189)-graph. The neighbors of v have
to be connected to independent sets of order 8 in Gv. For every pair of (possibly equal)
independent sets {Si, Sj} of order 8, we test if they can be assigned to two neighbors of v
by checking if V (Gv) \ (Si ∪ Sj) induces an independent set of order 8 in Gv, and if so we
can bound the recursion. We used for this task a precomputed table storing the results of
such tests for all pairs of independent sets of order 8. The concept of eligible candidates
(Section 3) was also used, and the condition ∆(G) = 9 turned out to be particularly
strong in pruning the recursion. No 9-regular (3, 10; 42, 189)-graphs were produced, and
thus R(3, 10) 6 42. 2

Theorem 6 improves over the bound R(3, 10) 6 43 obtained in 1988 [19]. The correct-
ness tests of our implementations and the computational effort required for various parts
of the computations are described in Appendix 2.

Geoffrey Exoo [6] found almost 300000 (3, 10; 39)-graphs, we extended this set to more
than 4 · 107 graphs, and very likely there are more of them. The known (3, 10; 39)-graphs
have the number of edges ranging from 161 to 175, hence we have 151 6 e(3, 9, 39) 6 161.
We expect that the actual value is much closer, if not equal, to 161. Despite many attempts
by Exoo, us, and others, no (3, 10; 40)-graphs were constructed. The computations needed
for the upper bound in Theorem 6 were barely feasible. Consequently, we anticipate that
any further improvement to either of the bounds in 40 6 R(3, 10) 6 42 will be very
difficult.

7 Lower Bounds for e(3, k, n) and

Upper Bounds for R(3, k), for k > 11

We establish five further new upper bounds on the Ramsey numbers R(3, k) as listed in
Theorem 7. All of the new bounds improve the results listed in the 2011 revision of the
survey [17] by 1. Note that we don’t improve the upper bound on R(3, 12).

Theorem 7 The following upper bounds hold:
R(3, 11) 6 50, R(3, 13) 6 68, R(3, 14) 6 77, R(3, 15) 6 87, and R(3, 16) 6 98.

Proof. Each of the new upper bounds R(3, k) 6 n can be obtained by showing that
e(3, k, n) = ∞. The details of the intermediate stages of computations for all k are
presented in the tables and comments of the remaining part of this section. For k = 16
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no data is shown except some comments in Table 11, in particular the data in this table
implies e(3, 16, 98) =∞ by (4). 2

In the Tables 7, 8 and 9, for k = 11, 12 and 13, respectively, we list several cases
in the comments column, where the lower bounds on e(3, k, n) listed in [13] (some of
them credited to [1]) are better than our results. This is the case for n slightly larger
than 13k/4 − 1, mostly due to the theorems claimed in the unpublished manuscript by
Backelin [1, 2]. Our lower bounds on e(3, k, n), and implied upper bounds on R(3, k),
do not rely on these results. We have checked that assuming the results from [1, 2, 13]
would not imply, using the methods of this paper, any further improvements on the upper
bounds on R(3, k) for k 6 16, but they may for k > 17. Hence, if the results in [1, 13]
are published, then using them jointly with our results may lead to better upper bounds
on R(3, k), at least for some k > 17.

Lower bounds for e(3, 11, n)

The exact values of e(3, 11,6 31) are determined by Theorem 2. The bounds for n = 32, 33
marked with a ‘t’ are from Theorem 2. The lower bounds on e(3, 11,> 32) are included
in the second column of Table 7. They are based on solving integer constraints (4), using
known values and lower bounds on e(3, 10, n) listed in Table 5 in Section 4. They are
better than those in [13] for all 36 6 n 6 50.
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n e(3, 11, n) > comments
32 62t 63 in [13], credit to [1]
33 68t 69 in [13], credit to [1]
34 75 76 in [13], credit to [1]
35 83 84 in [13], credit to [1]
36 92
37 100
38 109
39 117 unique solution, 6-regular
40 128
41 138
42 149
43 159
44 170
45 182
46 195 199 required for R(3, 12) 6 58
47 209
48 222 unique solution: n9 = 36, n10 = 12,

215 required for R(3, 12) 6 59, old bound
49 237 245 maximum
50 ∞ hence R(3, 11) 6 50, new bound, Theorem 7
51 ∞ hence R(3, 11) 6 51, old bound

Table 7: Lower bounds on e(3, 11, n), for n > 32.

The maximum number of edges in any (3, 11; 49)-graph is that of a 10-regular graph,
so a proof of e(3, 11, 49) > 245 would imply R(3, 11) 6 49. Observe that any graph Gv of
any 10-regular (3, 11; 50)-graph must be a (3, 10; 39, 150)-graph. Thus, our improvement
of the upper bound on R(3, 11) from 51 to 50 is mainly due to the new lower bound
e(3, 10, 39) > 151 (together with not-too-much-off adjacent bounds).

Lower bounds for e(3, 12, n)

The exact values of e(3, 12,6 34) are determined by Theorem 2. The bounds for 35 6
n 6 37 marked with a ‘t’ are from Theorem 2. The lower bounds on e(3, 12,> 35) are
included in the second column of Table 8. They are based on solving integer constraints
(4), using known values and lower bounds on e(3, 11, n) given in Table 7. They are better
than those in [13] for all 43 6 n 6 58.

An improvement of the upper bound on R(3, 12) obtained by Lesser [13] from 60 to 59
is now immediate (it formed a significant part of her thesis), but a further improvement
from 59 to 58 would require an increase of the lower bound on e(3, 12, 58) by 4.
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n e(3, 12, n) > comments
35 67t 68 in [13], credit to [1]
36 73t 74 in [13], credit to [1]
37 79t 81 in [13], credit to [1]
38 86 88 in [13], credit to [1]
39 93 95 in [13], credit to [1]
40 100 102 in [13]
41 109 111 in [13]
42 119 the same as in [13]
43 128
44 138
45 148
46 158
47 167
48 179
49 191
50 203
51 216
52 229
53 241
54 255 259 required for R(3, 13) 6 67
55 269 265 required for R(3, 13) 6 68, Theorem 7
56 283
57 299
58 316 319 maximum
59 ∞ hence R(3, 12) 6 59, old bound

Table 8: Lower bounds on e(3, 12, n), for n > 35.

Lower bounds for e(3, 13, n)

The exact values of e(3, 13,6 39) are determined by Theorem 2. The bound for n = 40 is
from Theorem 2. The lower bounds on e(3, 13,> 40) are included in the second column
of Table 9. They are based on solving integer constraints (4), using lower bounds on
e(3, 12, n) listed in Table 8. They are better than those in [13] for all 51 6 n 6 68.
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n e(3, 13, n) > comments
40 84t 86 in [13]
41 91 93 in [13], credit to [1]
42 97 100 in [13], credit to [1]
43 104 107 in [13], credit to [1]
44 112 114 in [13]
45 120 122 in [13]
46 128 130 in [13]
47 136 139 in [13], credit to [1]
48 146 148 in [13]
49 157 158 in [13]
50 167 the same as in [13]
51 177
52 189
53 200
54 212
55 223
56 234
57 247
58 260
59 275
60 289
61 303
62 319 326 required for R(3, 14) 6 76
63 334
64 350 345 required for R(3, 14) 6 77, Theorem 7
65 365
66 381
67 398 402 maximum
68 ∞ hence R(3, 13) 6 68, new bound
69 ∞ hence R(3, 13) 6 69, old bound

Table 9: Lower bounds on e(3, 13, n), for n > 40.

Lower bounds for e(3, 14, n)

The exact values of e(3, 14,6 41) are determined by Theorem 2. Only lower bounds on
e(3, 14,> 66) are included in the second column of Table 10, since these are relevant for
our further analysis of R(3, 15) and R(3, 16). They are based on solving integer constraints
(4), using lower bounds on e(3, 13, n) listed in Table 9. They are better than those in [13]
for all 66 6 n 6 77.
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n e(3, 14, n) > comments
66 321
67 334
68 350
69 365
70 381
71 398 407 required for R(3, 15) 6 86
72 415 414 required for R(3, 15) 6 87, Theorem 7
73 432
74 449
75 468
76 486 494 maximum
77 ∞ hence R(3, 14) 6 77, new bound
78 ∞ hence R(3, 14) 6 78, old bound

Table 10: Lower bounds on e(3, 14, n), for n > 66.

Lower bounds for e(3, 15, n)

The exact values of e(3, 15,6 44) are determined by Theorem 2. Only lower bounds on
e(3, 15,> 81) are included in the second column of Table 11, since these are relevant
for further analysis of R(3, 16). They are based on solving integer constraints (4), using
lower bounds on e(3, 14, n) listed in Table 10. They are better than those in [13] for all
81 6 n 6 87.

n e(3, 15, n) > comments
81 497
82 515 518 required for R(3, 16) 6 97

511 required for R(3, 16) 6 98, Theorem 7
83 533
84 552
85 572
86 592 602 maximum
87 ∞ hence R(3, 15) 6 87, new bound
88 ∞ hence R(3, 15) 6 88, old bound

Table 11: Lower bounds on e(3, 15, n), for n > 81.
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Appendix 1: Graph Counts

Tables 12–15 below contain all known exact counts of (3, k;n, e)-graphs for specified n,
for k = 7, 8, 9 and 10, respectively. All graph counts were obtained by the algorithms
described in Section 3. Empty entries indicate 0. In all cases, the maximum number
of edges is bounded by ∆(G)n/2 6 (k − 1)n/2. All (3,6 9;n,6 e(3, k, n) + 1)-graphs
which were constructed by our programs can be obtained from the House of Graphs [3]
by searching for the keywords “minimal ramsey graph” or from [7].

edges number of vertices n
e 16 17 18 19 20 21 22
20 2
21 15
22 201
23 2965
24 43331
25 498927 2
26 4054993 30
27 ? 642
28 ? 13334
29 ? 234279
30 ? 2883293 1
31 ? ? 15
32 ? ? 382
33 ? ? 8652
34 ? ? 160573
35 ? ? 2216896
36 ? ? ?
37 ? ? ? 11
38 ? ? ? 417
39 ? ? ? 10447
40 ? ? ? 172534
41 ? ? ? 1990118

42-43 ? ? ? ?
44 ? ? ? ? 15
45 ? ? ? ? 479
46 ? ? ? ? 10119
47 ? ? ? ? 132965
48 ? ? ? ? 1090842

49-50 ? ? ? ?
51 ? ? ? ? 4
52 ? ? ? 70
53 ? ? ? 717
54 ? ? ? 5167
55 ? ? 27289
56 ? ? 97249
57 ? ? 219623
58 ? 307464
59 ? 267374
60 ? 142741 1
61 43923 6
62 6484 30
63 331 60
64 59
65 25
66 10

Table 12: Number of (3, 7;n, e)-graphs, for n > 16.
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edges number of vertices n
e 19 20 21 22 23 24 25 26 27
25 2
26 37
27 763
28 16939
29 ?
30 ? 3
31 ? 60
32 ? 1980
33 ? 58649
34 ? 1594047
35 ? ? 1
36 ? ? 20
37 ? ? 950
38 ? ? 35797
39 ? ? 1079565

40-41 ? ? ?
42 ? ? ? 21
43 ? ? ? 1521
44 ? ? ? 72353
45 ? ? ? 2331462

46-48 ? ? ? ?
49 ? ? ? ? 102
50 ? ? ? ? 8241
51 ? ? ? ? 356041
52 ? ? ? ? 10326716

53-55 ? ? ? ? ?
56 ? ? ? ? ? 51
57 ? ? ? ? ? 3419
58 ? ? ? ? ? 129347
59 ? ? ? ? ? 3288695
60 ? ? ? ? ? 64233886

61-64 ? ? ? ? ? ?
65 ? ? ? ? ? ? 396
66 ? ? ? ? ? ? 21493
67 ? ? ? ? ? 613285
68 ? ? ? ? ? 11946369

69-72 ? ? ? ? ? ?
73 ? ? ? ? ? 62
74 ? ? ? ? 1625
75 ? ? ? ? 23409
76 ? ? ? ? 216151
77 ? ? ? ? 1526296

78-84 ? ? ? ?
85 ? ? 4
86 ? ? 92
87 ? ? 1374
88 ? 11915
89 ? 52807
90 ? 122419
91 ? 151308
92 99332
93 33145
94 4746

Table 13: Number of (3, 8;n, e)-graphs, for n > 19.
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edges number of vertices n
e 24 25 26 27 28 29 30 31 32 33 34 35
40 2
41 32
42 2089
43 115588

44-45 ?
46 ? 1
47 ? 39
48 ? 4113
49 ? 306415

50-51 ? ?
52 ? ? 1
53 ? ? 1
54 ? ? 444
55 ? ? 58484

56-60 ? ? ?
61 ? ? ? 700
62 ? ? ? 95164
63 ? ? ? 6498191

64-67 ? ? ? ?
68 ? ? ? ? 126
69 ? ? ? ? 17223
70 ? ? ? ? 1202362

71-76 ? ? ? ? ?
77 ? ? ? ? ? 1342
78 ? ? ? ? ? 156686

79-85 ? ? ? ? ? ?
86 ? ? ? ? ? ? 1800
87 ? ? ? ? ? ? 147335

88-94 ? ? ? ? ? ? ?
95 ? ? ? ? ? ? ? 560
96 ? ? ? ? ? ? ? 35154

97-103 ? ? ? ? ? ? ?
104 ? ? ? ? ? ? 39
105 ? ? ? ? ? 952
106 ? ? ? ? ? 18598
107 ? ? ? ? ? 234681
108 ? ? ? ? ? 2104151

109-117 ? ? ? ? ?
118 ? ? ? 5
119 ? ? ? 69
120 ? ? ? > 1223
121 ? ? > 13081
122 ? ? > 90235
123 ? ? > 401731
124 ? ? > 1188400
125 ? > 2366474
126 ? > 3198596
127 ? > 2915795
128 ? > 1758241
129 > 673600 1
130 > 153676 4
131 > 18502 > 15
132 > 922 > 40
133 > 54
134 > 43
135 > 20
136 > 7

137-139
140 1

Table 14: Number of (3, 9;n, e)-graphs, for n > 24.
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edges number of vertices n
e 29 30 31 32 33 34
58 5
59 1364

60–65 ?
66 ? 5084
67 ? 1048442

68–72 ? ?
73 ? ? 2657
74 ? ? 580667

75–80 ? ? ?
81 ? ? ? 6592

82–89 ? ? ? ?
90 ? ? ? ? 57099

91–98 ? ? ? ? ?
99 ? ? ? ? ? > 1

> 100 ? ? ? ? ? ?

Table 15: Number of (3, 10;n, e)-graphs, for 29 6 n 6 34.

We showed that e(3, 10, 34) > 99 (see Section 4), a (3, 10; 34, 99)-graph was constructed
by Backelin [2], and thus e(3, 10, 34) = 99.
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Appendix 2: Testing Implementations

Correctness

Since most results obtained in this paper rely on computations, it is very important
that the correctness of our programs has been thoroughly verified. Below we list the main
tests and agreements with results produced by more than one computation.

• For every (3, k)-graph which was output by our programs, we verified that it does
not contain an independent set of order k by using an independent program.

• For every (3, k;n, e(3, k, n))-graph which was generated by our programs, we verified
that dropping any edge creates an independent set of order k.

• For various (3, k;n,6 e)-graphs we added up to f edges in all possible ways to
obtain (3, k;n,6 e + f)-graphs. For the cases where we already had the complete
set of (3, k;n,6 e+ f)-graphs we verified that no new (3, k;n,6 e+ f)-graphs were
obtained. We used this, amongst other cases, to verify that no new (3, 9; 24,6 43),
(3, 9; 28,6 70), (3, 9; 30,6 87) or (3, 10; 30,6 67)-graphs were obtained.

• For various (3, k;n,6 e + f)-graphs we dropped one edge in all possible ways and
verified that no new (3, k;n,6 e + f − 1)-graphs were obtained. We used this
technique, amongst other cases, to verify that no new (3, 9; 24,6 42), (3, 9; 28,6
69), (3, 9; 33,6 119), (3, 9; 34,6 130), (3, 10; 30, 66) or (3, 10; 32, 81)-graphs were
obtained.

• For various sets of (3, k+ 1;n,6 e)-graphs we took each member G and constructed
from it all Gv’s. We then verified that this did not yield any new (3, k;n− deg(v)−
1,6 e−Z(v))-graphs for the cases where we have all such graphs. We performed this
test, amongst other cases, on the sets of (3, 9; 28,6 70)- and (3, 10; 31,6 74)-graphs.

• Various sets of graphs can be obtained by both the minimum degree extension
method and the neighborhood gluing extension method. We performed both ex-
tension methods for various cases (e.g. to obtain the sets of (3, 9; 24,6 43) and
(3, 9; 25,6 48)-graphs). In each of these cases the results obtained by both methods
were in complete agreement.

• The sets of (3, 7; 21,6 55), (3, 7; 22), (3, 8; 26,6 76) and (3, 8; 27,6 88)-graphs were
obtained by both the maximal triangle-free method [4] and the neighborhood gluing
extension method. The results were in complete agreement. As these programs are
entirely independent and the output sets are large, we think that this provides strong
evidence of their correctness.

• The counts of (3, 7; 16, 20), (3, 7; 17, 25), (3, 7; 18, 30), (3, 7; 19, 37), (3, 7; 20, 44),
(3, 7; 21, 51), and (3, 7; 22, e) for all 60 6 e 6 66, are confirmed by [18].

the electronic journal of combinatorics 20(1) (2013), #P30 27



• The counts of (3, 7; 18, 31), (3, 7; 19, 38), (3, 7; 20, 45) and (3, 7; 21,6 53)-graphs are
confirmed by [19].

• The counts of (3, 8; 19, 25), (3, 8; 20, 30), (3, 8; 21, 35) and (3, 9; 24, 40)-graphs are
confirmed by [20].

• The counts of (3, 7; 16, 21), (3, 7; 17, 26), (3, 8; 22, 42) and (3, 9; 25, 47)-graphs are
confirmed by [2].

Additional implementation correctness tests of specialized algorithms described in Sec-
tion 6 were as follows:

• The specialized program described in Section 6 was used to extend (3, 8; 26, 76)- to
(3, 9; 35, 140)-graphs and it produced the unique (3, 9; 35, 140)-graph.

• We relaxed the conditions to generate all (3, 9; 32, 108)-graphs from Lemma 5 by
dropping the requirement that each vertex of degree 6 has 3 neighbors of degree
7, and enforcing just one vertex of degree 7 with exactly one neighbor of degree 6.
This yielded 21602 graphs. We verified that each of these graphs was indeed already
included in the set X , and that X does not contain any additional such graphs.

Since our results are in complete agreement with previous results and since all our
consistency tests passed, we believe that this is strong evidence for the correctness of our
implementations.

Computation Time

The implementations of extension algorithms described in Sections 3 and 6 are written
in C. Most computations were performed on a cluster with Intel Xeon L5520 CPU’s at
2.27 GHz, on which a computational effort of one CPU year can be usually completed in
about 8 elapsed hours. The overall computational effort of this project is estimated to be
about 50 CPU years, which includes the time used by a variety of programs. The most
cpu-intensive tasks are listed in the following.

The first phase of obtaining (3, 9; 32, 108)-graphs required about 5.5 CPU years. The
bottlenecks of this phase were the computations required for extending all (3, 8; 24,6 59)-
graphs (which required approximately 3.5 CPU years), and extending the (3, 8; 25,6
68)-graphs (which took more than 2 CPU years). The second phase of obtaining the
special (3, 9; 32, 108)-graphs with n6 = 8, n7 = 24 as in Lemma 5 took about 5.8 CPU
years. The specialized program of Section 6 extended all (3, 9; 32, 108)-graphs to 9-regular
(3, 10; 42, 189)-graphs quite fast, in about only 0.25 CPU years. Performing computations
to generate all (3, 10; 39,6 150)-graphs (there are none of these), which were needed for
the bound R(3, 11) 6 50, took about 4.8 CPU years.

The CPU time needed to complete the computations of Section 7 was negligible,
however their variety caused that they were performed during the span of several weeks.
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