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Abstract

Let G = (V,E) be a graph and k > 0 an integer. A k-independent set S ⊆ V is a
set of vertices such that the maximum degree in the graph induced by S is at most
k. With αk(G) we denote the maximum cardinality of a k-independent set of G. We
prove that, for a graph G on n vertices and average degree d, αk(G) > k+1

⌈d⌉+k+1n,

improving the hitherto best general lower bound due to Caro and Tuza [Improved
lower bounds on k-independence, J. Graph Theory 15 (1991), 99–107].
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1 Introduction

Let G = (V,E) be a graph on n vertices and k > 0 an integer. A k-independent set S ⊆ V
is a set of vertices such that the maximum degree in the graph induced by S is at most k.
With αk(G) we denote the maximum cardinality of a k-independent set ofG and it is called
the k-independence number of G. In particular, α0(G) = α(G) is the usual independence
number of G. The Caro-Wei bound α(G) >

∑

v∈V
1

deg(v)+1
[11, 41] is an improvement

of the well-known Turán bound for the independent number α(G) >
n

d(G)+1
[40], where

d(G) is the average degree of G. Various results concerning possible improvements and
generalizations of the Caro-Wei bound are known (see [1, 2, 3, 6, 10, 22, 23, 25, 26, 33,
35, 37, 38]). A well known generalization to the k-independence number of r-uniform
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hypergraphs was obtained by Caro and Tuza [12] improving earlier results of Favaron [19]
and was extended to non-uniform hypergraphs by Thiele [39]. See also the recent papers
[15, 17] for updates. An extension of the notion of residue of a graph, notably developed by
Fajtlowicz in [18] and Favaron et al. in [20], to the notion of k-residue has been developed
by Jelen [29]. There has been also much interest in using the Caro-Tuza theorem to
algorithmic aspects (see [24, 31, 36]). Yet all these lower bounds give asymptotically
αk(G) >

k+2
2(d+1)

n for k fixed and d = d(G). It is easy to see that in general we cannot

hope to get better than k+1
d+1

n, as can be seen from the graph G = mKd+1, consisting of m
disjoint copies of the complete graph Kd+1 and where d > k and n = m(d+ 1). So there
is still an asymptotic multiplicative gap of a factor of 2k+1

k+2
. It is worth to mention that

there is no known modification of the charming probabilistic proof of the lower bound of
Caro-Wei theorem to the situation of k-independence that gives a better bound than the
Caro-Tuza lower bound. Here, for the sake of being self-contained and to use the same
notation, we restate and give the short proof of the Caro-Tuza theorem for graphs. Then
we show how to improve this result using further ideas and, in particular, we close the
multiplicative gap proving, as a corollary of our main result, that αk(G) > k+1

⌈d(G)⌉+k+1
n.

Doing so, we solve a “folklore” conjecture stated explicitly in [6].
All along this paper, we will use the following notation and definitions. Let G be a

graph. By V (G) we denote the set of vertices of G and n(G) = |V (G)| is the order of
G. E(G) stands for the set of edges of G and e(G) denotes its cardinality. For a vertex
v ∈ V (G), deg(v) = degG(v) is the degree of v in G. By ∆(G) we denote the maximum
degree of G and by d(G) the average degree 1

n(G)

∑

v∈V (G) deg(v). For a subset S ⊆ V (G),

we write G[S] for the graph induced by S in G and degS(v) stands for the degree degG[S](v)
of v in G[S]. Lastly, for a vertex v ∈ V (G), G− v represents the graph G without vertex
v and all the edges incident to v and, for an integer m > 1, mG is the graph consisting
of m disjoint copies of G.

The paper is divided into five sections. After this introduction section, we deal in
Section 2 with a first naive approach to obtain a lower bound on αk(G) by deleting
iteratively vertices of maximum degree until certain point where an old theorem of Lovász
[32] is applied. In Section 3, we proceed the same way, taking however a better control
on the number of vertices that are deleted and we prove that, for a graph G on n vertices
and average degree d, αk(G) > k+1

⌈d⌉+k+1
n, improving the hitherto best general lower bound

due to Caro and Tuza. For this purpose, we define a parameter f(k, d) which approaches

from below the best possible ratio α(G)
n(G)

for graphs G with d(G) 6 d, we calculate the

exact value of f(1, d) and prove some lower bounds on f(k, d). In Section 4, we develop
some upper bounds on f(k, d). Finally, we present in Section 5 some open problems for
further research.

the electronic journal of combinatorics 20(1) (2013), #P33 2



2 The naive approach: first improvement

Let fk : [0,∞) → R be the function defined by

fk(x) =

{

1− x
2(k+1)

, if 0 6 x 6 k + 1
k+2

2(x+1)
, if x > k + 1.

Observe the following properties of fk(x):

(P1) fk(x) is a convex function and is strictly monotone decreasing on [0,∞).

(P2) fk(i)− fk(i+ 1) > fk(j)− fk(j + 1), for j > i > 0.

(P3) ifk(i− 1) = (i+ 1)fk(i), for i > k + 1.

(P4) fk(0) = 1 and fk(k + 1) = 1
2
.

Theorem 1 (Caro-Tuza for Graphs, [12]). Let G be a graph with degree sequence
d1, d2, . . . , dn. Then αk(G) >

∑n

i=1 fk(di).

Proof. For a subset X ⊆ V (G), define s(X) =
∑

x∈X fk(degX(x)). Among all subsets of
X ⊆ V (G) such that s(X) is maximum, choose B such that B has the smallest cardinality.
In particular, |B| > s(B) > s(V (G)) =

∑

x∈V (G) fk(deg(x)). We will show that B is a

k-independent set of G. Suppose there is a vertex y ∈ B such that degB(y) = d > k + 1.
Let y be the vertex of maximum degree in G[B]. We will show that s(B \ {y}) > s(B), a
contradiction to the minimality of |B|. For x ∈ B \ {y}, let z(x) = 1 if xy is an edge in
G and 0 otherwise. Then

s(B \ {y}) =
∑

x∈B\{y}

fk(degB\{y}(x)) =
∑

x∈B\{y}

fk(degB(x)− z(x))

=

(

∑

x∈B

fk(degB(x)− z(x))

)

− fk(d)

= s(B)− fk(d) +
∑

x∈B

(fk(degB(x)− z(x))− fk(degB(x)))

= s(B)− fk(d) +
∑

x∈B

z(x) (fk(degB(x)− 1)− fk(degB(x)))

= s(B)− fk(d) +
∑

x∈B∩N(y)

(fk(degB(x)− 1)− fk(deg(x))) .

With (P2) we obtain that the last term is at least s(B)− fk(d) + d(fk(d− 1)− fk(d)) =
s(B)− (d+1)fk(d)+ dfk(d− 1) and, since dfk(d− 1) = (d+1)fk(d) by (P3), this is equal

the electronic journal of combinatorics 20(1) (2013), #P33 3



to s(B). It follows that s(B \ {y}) > s(B), which is a contradiction to the choice of B.
Hence, B is a k-independent set and thus

αk(G) > |B| > s(B) > s(V ) =
∑

x∈V (G)

fk(deg(x)).

Note that, for k = 0, Theorem 1 yields the Caro-Wei bound. By convexity, the above
bound yields also the following corollary.

Corollary 2. For a graph G on n vertices, αk(G) > fk(d(G))n.

Note that, for k = 0, Corollary 2 yields the Turán bound α(G) >
1

d(G)+1
n. Also, if

d(G) > k + 1, we obtain from this corollary the following one.

Corollary 3. Let G be a graph on n vertices. If d(G) > k + 1, then αk(G) > k+2
2(d(G)+1)

n.

For a graph G, we will denote with χk(G) the k-chromatic number of G, i.e. the
minimum number t such that there is a partition V (G) = V1 ∪V2∪ . . . Vt of the vertex set
V (G) such that ∆(G[Vi]) 6 k for all 1 6 i 6 t. The following theorem is due to Lovász.

Theorem 4 (Lovász [32], 1966). Let G be a graph with maximum degree ∆. If k1, k2, . . . ,
kt > 0 are integers such that ∆ + 1 =

∑t

i=1(ki + 1), then there is a partition V (G) =
V1 ∪ V2 ∪ . . . ∪ Vt of the vertex set of G such that ∆(G[Vi]) 6 ki for 1 6 i 6 t.

Several proofs and generalizations of Lovász’s theorem are known. We refer the reader
to [8, 9, 13, 14, 34]. An algorithmic analysis of Lovász theorem with running time O(n3) is
given in [24]. An immediate and well known corollary of Lovász’s theorem is Corollary 5,
which is useful in the study of defective colorings also known as improper colorings (see
[4, 16, 21, 27]).

Corollary 5. If G is a graph of maximum degree ∆, then χk(G) 6 ⌈∆+1
k+1

⌉.

Since αk(G) >
n

χk(G)
, the following bound proved in 1986 by Hopkins and Staton

follows trivially from the above corollary.

Theorem 6 (Hopkins, Staton [28] 1986). Let G be a graph of order n and maximum
degree ∆. Then

αk(G) >
n

⌈

∆+1
k+1

⌉ .

The following theorem is a direct consequence of Theorem 6 which generalizes and
improves several results concerning relations between αp(G) and αq(G) (see e.g. [5]).

Theorem 7. Let G be a graph and q > p > 0 two integers. Then αq(G) 6
⌈

q+1
p+1

⌉

αp(G).
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Proof. Let S be a maximum q-independent set of G. Then ∆(G[S]) 6 q and, by Theo-
rem 6,

αp(G) > αp(G[S]) >
|S|

⌈

∆(G[S])+1
p+1

⌉ >
αq(G)
⌈

q+1
p+1

⌉ ,

which implies the statement.

Completing ∆+ 1 to the next multiple of k + 1, the following observation is straight-
forward from Theorem 6.

Observation 8. Let G be a graph of order n and maximum degree ∆ and let r be an
integer such that 0 6 r 6 k and ∆+ 1 + r ≡ 0 (mod k + 1). Then

αk(G) >
k + 1

∆ + r + 1
n.

Proof. As clearly ⌈∆+1
k+1

⌉ = ∆+r+1
k+1

, Theorem 6 implies then αk(G) > k+1
∆+r+1

n.

When the graph is d-regular, we can set ∆ = d = d(G) in Observation 8 and we obtain
the following one.

Observation 9. Let G be a d-regular graph on n vertices and let r be an integer such
that 0 6 r 6 k and d+ 1 + r ≡ 0 (mod k + 1). Then αk(G) > k+1

d+r+1
n.

So this observation shows that indeed, for d-regular graphs, we can close the multi-
plicative gap of 2k+1

k+2
using Lovász’s theorem. This serves as an inspiration to trying to

close the multiplicative gap in general.
Note that, in practice, the Hopkins-Staton bound can be poor if the maximum degree

is far from the average degree. So, our first naive strategy will be to delete a vertex with
large degree and, if possible, use induction on the number of vertices. Otherwise, if ∆(G)
is near to the average degree d(G), we will apply Theorem 6. This is precisely what is
done in the next result.

Theorem 10. Let G be a graph on n vertices. Then αk(G) > k+1
d(G)+2k+2

n.

Proof. We will proceed by induction on n. If n = 1, the statement is trivial. If n = 2,
G is either K2 or K2. If G = K2, then d(G) = 1 and k+1

d(G)+2k+2
n = 2(k+1)

3+2k
< 1 6 αk(G)

for any k > 0. If G = K2, then d(G) = 0 and thus k+1
d(G)+2k+2

n = 1 < 2 = αk(G) for all
k > 0. Suppose now that n > 3 and that the statement holds for n − 1. Let G be a
graph on n vertices and v ∈ V (G) a vertex of maximum degree ∆. Define G∗ = G − v.
Since any k-independent set of G∗ is also a k-independent set of G, αk(G) > αk(G

∗). We
distinguish two cases.
Case 1. Suppose that ∆ 6 ⌈d(G)⌉+ k. Then, by Observation 8, we have

αk(G) >
k + 1

∆ + k + 1
n >

k + 1

⌈d(G)⌉+ 2k + 1
n >

k + 1

d(G) + 2k + 2
n
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and we are done.
Case 2. Suppose that ∆ > ⌈d(G)⌉+ k + 1. By induction and with ∆ > ⌈d(G)⌉+ k + 1 >

d(G) + k + 1, we obtain

αk(G) > αk(G
∗) >

(k + 1)(n− 1)

d(G∗) + 2k + 2
=

(k + 1)(n− 1)
2e(G∗)
n−1

+ 2k + 2

=
(k + 1)(n− 1)

2e(G)−2∆
n−1

+ 2k + 2
=

(k + 1)(n− 1)
d(G)n−2∆

n−1
+ 2k + 2

>
(k + 1)(n− 1)

d(G)n−2(d(G)+k+1)
n−1

+ 2k + 2
=

(k + 1)n

(d(G) + 2k + 2) (n−2)n
(n−1)2

>
k + 1

d(G) + 2k + 2
n

and the statement follows.

Note that the bound in the previous theorem is better than the Caro-Tuza bound for
k = 1 and d > 8 and for k > 2 and d > 2k + 5. Note also that Theorem 10 already
closes the multiplicative factor of 2k+1

k+2
for fixed k as d(G) grows. However, to obtain an

even better lower bound, we need to get more control on the number of vertices of large
degrees that are deleted and to apply Observation 8 in its full accuracy. This will be done
in the next section.

We close this section with the following algorithm for obtaining a k-independent set
of cardinality at least k+1

d(G)+2k+2
n for any graph G on n vertices that yields us the proof

of Theorem 10.

Algorithm 1

INPUT: a graph G on n vertices and m edges.

(1) Compute ∆(G) and d(G). GO TO (2).

(2) If ∆(G) 6 ⌈d(G)⌉ + k, perform a Lovász partition into k-independent sets, choose
the largest class S and END. Otherwise choose a vertex v of maximum degree ∆(G),
set G := G− v and GO TO (1).

OUTPUT: S

The algorithm terminates as, at some step, ∆(G) 6 ⌈d(G)⌉+ k must hold (the latest
when G is the empty graph). As already mentioned, the Lovász partition requires a
running time of O(n3), while each other step takes at most O(n) time and the number
of iteration steps before performing Lovász partition is at most n. Hence, the algorithm
runs in at most O(n3) time.
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3 Deletions, partitions and a better lower bound on

αk(G) - second improvement

Definition 11. Let d, k > 0 be two integers. We define

f(k, d) = inf

{

αk(G)

n(G)
: G is a graph with d(G) 6 d

}

.

Observation 12. Let d, k > 0 be two integers. For every graph G on n vertices and
average degree d(G) 6 d, αk(G) > f(k, d)n.

The next theorem shows that f(k, d) is convex as a function of d.

Theorem 13. Let d, k, t > 0 be integers and t 6 d. Then 2f(k, d) 6 f(k, d−t)+f(k, d+t).

Proof. We will show that for any two graphs G1 and G2 such that d(G1) 6 d − t and

d(G2) 6 d + t, there is a graph G with d(G) 6 d such that 2αk(G)
n(G)

6
αk(G1)
n(G1)

+ αk(G2)
n(G2)

. Let

G1 and G2 be such graphs and let n(Gi) = ni and V (Gi) = Vi, i = 1, 2. Define the graph
G = n2G1 ∪ n1G2. Then

2n1n2d(G) = n(G)d(G) = n2

∑

x∈V1

degG1
(x) + n1

∑

y∈V2

degG2
(y)

= n2n1d(H1) + n1n2d(G2)

6 n2n1(d− t) + n1n2(d+ t) = 2n1n2d,

implying that d(G) 6 d and thus f(k, d) 6 αk(G)
n(G)

. Moreover,

2f(k, d) 6 2
αk(G)

n(G)
=

n2αk(G1) + n1αk(G2)

n1n2

=
αk(G1)

n1

+
αk(G2)

n1

.

As G1 and G2 were arbitrarily chosen, it follows that 2f(k, d) 6 f(k, d−t)+f(k, d+t).

Before coming to the main theorems of this section, we need the following lemmas.

Lemma 14. Let d, t > 0 be two integers and let G be a graph on n vertices with average
degree d(G) 6 d. Then G has a subgraph H such that either ∆(H) 6 d + t − 1 and
n(H) > n− ⌊ n

d+2t+1
⌋ or d(H) 6 d− 1 and n(H) = n− ⌈ n

d+2t+1
⌉.

Proof. For an r > 0, let {v1, v2, . . . , vr} be a set of vertices of maximum cardinality
such that degGi+1

(vi) > d + t, where Gi+1 = Gi − vi and G0 = G. Suppose first that
r 6 ⌊ n

d+2t+1
⌋ and let H = Gr+1. Then H has at least n − r > n − ⌊ n

d+2t+1
⌋ vertices

and ∆(H) 6 d + t − 1. Now suppose that r > ⌈ n
d+2t+1

⌉. Let now H = Gq+1, where
q = ⌈ n

d+2t+1
⌉. Then n(H) = n− ⌈ n

d+2t+1
⌉. Further,

d(H) =
2e(H)

n(H)
6

2(e(G)− (d+ t)q)

n− q
6

dn− 2(d+ t)q

n− q
=

d(n− 2(d+t)
d

q)

n− q
.
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Since, for any real numbers a > 0 and b > 1, the function a−bx
a−x

is monotonically decreasing

in [0,∞), setting a = n and b = 2(d+t)
d

, we obtain with q = ⌈ n
d+2t+1

⌉ > n
d+2t+1

d(H) 6
d(n− 2(d+t)

d
q)

n− q
6

d(n− 2(d+t)
d

n
d+2t+1

)

n− n
d+2t+1

=
d(d+ 2t+ 1)− 2(d+ t)

d+ 2t
=

d(d+ 2t)− (d+ 2t)

d+ 2t
= d− 1.

Hence, we have shown that G has a subgraph H with either d(H) 6 d − 1 and n(H) =
n− ⌈ n

d+2t+1
⌉ or ∆(H) 6 d+ t− 1 and n(H) = n− ⌊ n

d+2t+1
⌋.

The following corollary is straightforward from this lemma.

Corollary 15. Let d, t > 0 be two integers. Let G be a graph on n vertices with average
degree d(G) 6 d and such that d + 2t + 1 divides n. Then G has a subgraph H on
n(H) > d+2t

d+2t+1
n vertices such that either d(H) 6 d− 1 or ∆(H) 6 d+ t− 1.

Lemma 16. Let G be a graph on n vertices with average degree d(G) 6 d and such
that d + 2s + 1 does not divide n. Then there is a graph H such that d + 2s + 1 divides
m = n(H), d(H) = d(G) 6 d and αk(H)

m
= αk(G)

n
.

Proof. Let H = (d+2s+1)G. Then m = n(H) = (d+2s+1)n is multiple of d+2s+1,

d(H) = d(G) and αk(H)
m

= (d+2s+1)αk(G)
(d+2s+1)n

= αk(G)
n

.

Let n be an even integer. We denote by Jn the graph consisting of a complete graph
on n vertices minus a 1-factor. We are now ready to present the exact value of f(1, d)
and the consequences of this result.

Theorem 17. Let d > 0 be an integer. Then the following statements hold.

(1) f(1, d) =

{

2
d+2

, if d ≡ 0 (mod 2)
2(d+2)

(d+1)(d+3)
, if d ≡ 1 (mod 2).

(2) The equality f(1, d) = α1(G)
n(G)

is attained by the graph G = Jd+2, when d is even, and

by G = (d+ 3)Jd+1 ∪ (d+ 1)Jd+3, when d is odd.

(3) f(1, d) > 2
d+2

.

(4) For every graph G on n vertices, α1(G) > 2n
⌈d(G)⌉+2

.

Proof. (1) We will prove by induction on d that

f(1, d) >

{

2
d+2

, if d ≡ 0 ( mod 2)
2(d+2)

(d+1)(d+3)
, if d ≡ 1 ( mod 2).

For d = 0, clearly f(1, 0) = 1 = 2
0+2

, as the only possible graph G with d(G) 6 0 is
the empty graph. For d = 1, let G be a graph with d(G) 6 1. Setting s = 1, we can
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suppose by Lemma 16 that 4 divides n(G) = n. Hence, Corollary 15 implies that there
is a subgraph H of G on n(H) >

3
4
n vertices with d(H) 6 0 or ∆(H) 6 1. In both

cases we have clearly α1(G) > α1(H) = n(H) >
3
4
n and hence f(1, 1) = inf{α1(G)

n(G)
:

G graph with d(G) 6 1} >
3
4
= 2(1+2)

(1+1)(1+3)
.

Assume we have proved the statement for f(1, d − 1). Now we will prove it for f(1, d),
where d > 1. Let G be a graph on n vertices such that d(G) 6 d. We distinguish two
cases.
Case 1. Suppose that d ≡ 0 (mod 2). Setting s = 0, we can suppose by Lemma 16 that
d + 1 divides n. By Corollary 15, there is a subgraph H of G on at least d

d+1
n vertices

with either d(H) 6 d− 1 or ∆(H) 6 d− 1. Hence, in both cases d(H) 6 d− 1 and thus,
by induction, we have

α1(G) > α1(H) > f(1, d− 1)n(H) >
2(d+ 1)d

d(d+ 2)(d+ 1)
n =

2

d+ 2
n.

Hence, f(1, d) = inf{α1(G)
n(G)

: G graph with d(G) 6 d} >
d

d+2
and we are done.

Case 2. Suppose that d ≡ 1 (mod 2). Set s = 1. By Lemma 16, we can suppose that
d + 3 divides n. By Corollary 15, there is a subgraph H of G on at least d+2

d+3
n vertices

with either d(H) 6 d − 1 or ∆(H) 6 d. If d(H) 6 d − 1, we can apply the induction
hypothesis on H and we obtain

α1(G) > α1(H) > f(1, d− 1)n(H) >
2(d+ 2)

(d+ 1)(d+ 3)
n

and we are done. Suppose finally that ∆(H) 6 d. Then, by Theorem 6 and as d is odd,
we have

α1(G) > α1(H) >
n(H)

⌈

∆(H)+1
2

⌉ >

d+2
d+3

n
⌈

d+1
2

⌉ =
2(d+ 2)

(d+ 1)(d+ 3)
n.

Thus, in both cases, f(1, d) = inf{α1(G)
n(G)

: G graph with d(G) 6 d} >
2(d+2)

(d+1)(d+3)
Hence, by

induction, the statement holds.
Let d be even. Clearly α1(Jd+2) = 2 and hence, f(1, d) 6 α1(Jd+2)

d+2
= 2

d+2
. For d odd, the

graph G = (d+ 3)Jd+1 ∪ (d+ 1)Jd+3 has α1(G) = (d+ 3)2 + (d+ 1)2 = 4(d+ 2). Hence

f(1, d) 6 α1(G)
n(G)

= 4(d+2)
2(d+1)(d+3)

. Together with the inequalities proven above, it follows

f(1, d) =

{

2
d+2

, if d ≡ 0 ( mod 2)
2(d+2)

(d+1)(d+3)
, if d ≡ 1 ( mod 2).

(2) This follows from the discussion in (1).

(3) It is easily seen that 2(d+2)
(d+1)(d+3)

>
2

d+2
. Hence we have always f(1, d) > 2

d+2
.

(4) From item (3), we obtain α1(G) > f(1, ⌈d(G)⌉)n >
2

⌈d(G)⌉+2
n.

We can now state and prove our main result generalizing the proof of Theorem 17 to
arbitrary k and d.
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Theorem 18. Let d, k > 0 be two integers. Then the following statements hold.

(1) f(k, d) > (k+1)(d+2t)
(d+k+t+1)(d+t)

>
k+1

d+k+1
, where t is such that d ≡ k+1− t (mod k+1) and

1 6 t 6 k + 1.

(2) For k > d, f(k, d) >
2k+2−d
2k+2

. For k > d = 1, the bound is realized by the graph

K1,k+1 ∪ kK1 and thus f(k, 1) = 2k+1
2k+2

.

(3) For any graph G on n vertices, αk(G) > k+1
⌈d(G)⌉+k+1

n.

Proof. (1) We will proceed to prove the inequality f(k, d) > (k+1)(d+2t)
(d+k+t+1)(d+t)

by induction

on d. If d = 0, then d ≡ (k + 1)− (k + 1) and clearly f(k, 0) = 1 = (k+1)(0+2(k+1))
(0+k+(k+1)+1)(0+(k+1))

,

as the only possible graph G with d(G) 6 0 is the empty graph.

Assume f(k, d−1) > (k+1)(d−1+2t′)
(d+k+t′)(d−1+t′)

, where d−1 ≡ k+1−t′ (mod k+1), 1 6 t′ 6 k+1,
and d > 1. We will prove the statement for d. Herefor, we distinguish two cases.
Case 1. Suppose that d ≡ 0 (mod k+1). Then t = k+1. Let G be a graph on n vertices
such that d(G) 6 d. By Lemma 16, setting there s = 0, we can suppose that d+1 divides
n. Then from Corollary 15 it follows that there is a subgraph H of G on at least d

d+1
n

vertices such that d(H) 6 d − 1 or ∆(H) 6 d − 1. In both cases we have d(H) 6 d − 1.
Then, as d− 1 ≡ (k + 1)− 1 (mod k + 1), we obtain by induction

αk(G) > αk(H) >
(k + 1)(d+ 1)

(d+ k + 1)d
n(H) >

k + 1

d+ k + 1
n

=
(k + 1)(d+ 2t)

(d+ 2t)(d+ k + 1)
n =

(k + 1)(d+ 2t)

(d+ k + t+ 1)(d+ t)
n.

Thus, f(k, d) = inf{αk(G)
n(G)

: G graph with d(G) 6 d} >
(k+1)(d+2t)

(d+k+t+1)(d+t)
and we are done.

Case 2. Suppose that d ≡ k+1−t (mod k+1) for some t with 1 6 t 6 k. Using Lemma 16
with s = t, we can suppose that d+2t+1 divides n. By Corollary 15, there is a subgraph
H of G on n(H) > d+2t

d+2t+1
n vertices with either d(H) 6 d − 1 or ∆(H) 6 d + t − 1. If

∆(H) 6 d+ t− 1, then Theorem 6 yields

αk(G) > αk(H) >
n(H)

⌈

∆(H)+1
k+1

⌉ >

d+2t
d+2t+1

n
⌈

d+t
k+1

⌉ =
(k + 1)(d+ 2t)

(d+ 2t+ 1)(d+ t)
n

>
(k + 1)(d+ 2t)

(d+ k + t+ 1)(d+ t)
n.

Hence, f(k, d) = inf{αk(G)
n(G)

: G graph with d(G) 6 d} >
(k+1)(d+2t)

(d+k+t+1)(d+t)
and we are done.

Suppose now that d(H) 6 d− 1. Since d− 1 ≡ (k + 1)− (t+ 1), we obtain by induction

αk(G) > αk(H) >
(k + 1)((d− 1) + 2(t+ 1))

((d− 1) + k + (t+ 1) + 1)((d− 1) + (t+ 1))
n(H)

>
(k + 1)(d+ 2t+ 1)

(d+ k + t+ 1)(d+ t)
·

d+ 2t

d+ 2t+ 1
n

=
(k + 1)(d+ 2t)

(d+ k + t+ 1)(d+ t)
n.
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Thus, again, f(k, d) > (k+1)(d+2t)
(d+k+t+1)(d+k+1)

and Case 2 is done.

Hence, by induction, the statement holds. Finally, the inequality (k+1)(d+2t)
(d+k+t+1)(d+t)

>
k+1

d+k+1

follows easily.
(2) Let k > d and let t be such that d ≡ k + 1− t (mod k + 1) and 1 6 t 6 k + 1. Then
d = k + 1− t. Hence, with (1),

f(d, k) >
(k + 1)(d+ 2t)

(d+ k + t+ 1)(d+ t)

=
(k + 1)(d+ 2(k + 1− d))

(d+ k + (k + 1− d) + 1)(d+ (k + 1− d))
=

2k + 2− d

2k + 2
.

Let G = K1,k+1 ∪ kK1. Then αk(G) = 2k + 1, n(G) = 2k + 2 and d(G) = 2k+2
2k+2

= 1.

Hence, 2k+1
2k+2

6 f(k, 1) 6 αk(G)
n(G)

= 2k+1
2k+2

, obtaining thus equality.

(3) If G is a graph on n vertices, then, using (1), we obtain

αk(G)

n
> f(k, ⌈d(G)⌉) >

k + 1

⌈d(G)⌉+ k + 1
.

The proofs of Lemma 14 and Theorem 18 yield us an algorithm for finding, for any
graph G on n vertices, a k-independent set of cardinality at least k+1

⌈d(G)⌉+k+1
n. It works

the following way. It computes d = d(G) and ∆(G) and finds the integer t such that
0 6 t 6 k and d ≡ k + 1 − t (mod k + 1) (note that the case t = 0 corresponds here to
the case t = k + 1 of Theorem 18). Then it checks if the graph satisfies the condition
∆(G) 6 d + t − 1. If so, then it performs a Lovász partition into k-independent sets,
selects the largest set from it and gives this as output. If not, then a vertex of maximum
degree is deleted and the condition on the maximum degree is checked again on the re-
maining graph. This deletion step is repeated up to ⌈ n

d+2t+1
⌉ times, as, by Lemma 14, if

the maximum degree is still larger than d+t−1, then we are left with a graph with smaller
average degree, with which the algorithm starts over again, doing here the inductive step
of Theorem 18.

Algorithm 2

INPUT: a graph G on n vertices and m edges.
(1) Compute ∆(G) and d(G). Set d = ⌈d(G)⌉ and determine t such that 0 6 t 6 k and

d ≡ k + 1− t (mod k + 1). Set r := 0 and GO TO (2).

(2) If ∆(G) 6 d+ t− 1, perform a Lovász partition into k-independent sets, choose the
largest class S and END. Otherwise GO TO (3).

(3) Set r := r + 1. If r > ⌈ n
d+2t+1

⌉, set n := n − ⌈ n
d+2t+1

⌉ and GO TO (1). Otherwise
choose a vertex v of maximum degree ∆(G), set G := G − v, compute ∆(G) and
GO TO (2).

OUTPUT: S

The algorithm terminates as, at some step, ∆(G) 6 ⌈d(G)⌉ + t − 1 must hold (the
latest when G is the empty graph). Again, the algorithm has a running time of at most
O(n3).
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4 Upper bounds on f (k, d) and determination of f (k, d)

for further small values

Observe that after Theorems 17(1) and 18(2), we know the exact value of f(k, d) in case
min{d, k} 6 1. The first pair (k, d) for which an exact value of f(k, d) is not known yet
is (2, 2). In this section, we develop several upper bounds on f(k, d) as a starting point
to future research to obtain further exact values of f(k, d). We will use the following
theorem.

Theorem 19 (see [7], p.108). Let r, g > 3 be two integers. If m is an integer with

m >
(r−1)(g−1)−1

r−2
, then there exists an r-regular graph of girth at least g and order 2m.

Define the function h(r) = (r−1)r+3−1
r−2

. We will use the particular form of this theorem
with m > h(r), implying that there is an r-regular graph of girth at least r+4 and order
2m.

In the proof of the following theorem, we use the following notation. G denotes the
complementary graph of G. If F ⊆ E(G), then G − F represents the graph G without
the edges contained in F . For a graph H on at most n vertices, Kn − E(H) stands for
the complete graph Kn without the edges of a subgraph H. Further, given two graphs G
and H, G ∪H is the graph consisting of one copy of H and one copy of G. Finally, the
girth of a graph G is denoted by g(G).

Theorem 20. Let d, k > 0 be two integers. Then the following statements hold.

(1) For d > k, k+1
d+k+1

6 f(k, d) 6 k+1
d+1

.

(2) For d > k, d ≡ 0 (mod 2) and k ≡ 1 (mod 2), f(k, d) 6 k+1
d+2

.

(3) For d > k, f(k, d) 6 k+2
d+3

.

(4) For k > 3, d > 2h(k)− k − 1 and d+ k + 1 ≡ 0 (mod 2), f(k, d) 6 k+2
d+k+1

.

(5) For 2 6 d 6 4 + 6q, where q > 0 is an integer, 3
d+3

6 f(2, d) 6 3
d+1+ 1

q+1

.

(6) For k > 2, k
k+1

6 f(k, 2) 6 k+1
k+2+ 1

k+1

.

(7) For k > 3, there is a constant c > 0 auch that f(k, d) < k+2

d+c( d
2
)

1
k+2+1

.

Proof. (1) The lower bound follows from Theorem 18. The upper bound follows from

f(k, d) 6 αk(Kd+1)

d+1
= k+1

d+1
.

(2) Let G be the graph Kd+2 minus a 1-factor (this is possible, as d is assumed even).
Then d(G) = d. Let T ⊆ V (G) be any subset of k + 2 vertices. As k + 1 ≡ 0 (mod 2),
not every vertex of T is covered by the edges of the 1-factor in G[T ]. Hence, at least one
vertex from T is adjacent in G to all other vertices from T . Hence, no subset of k + 2
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vertices can be a k-independent set and thus αk(G) 6 k + 1. This implies f(k, d) 6 k+1
d+2

.
(3) Let d > k. Consider the graph G = Kd+3 − E(Cd+3), where Cd+3 is a cycle of
length d + 3 in Kd+3. Then d(G) = d. Let T ⊆ V (G) a subset of k + 3 vertices. Since
k + 3 < d + 3 = n(G), the graph G[T ] contains no cycles. Hence there is at least one
vertex in v ∈ V (T ) which is adjacent in G[T ] to all but at most one vertex and hence
degG[T ](v) > k + 1. This implies that αk(G) 6 k + 2 and thus f(k, d) 6 k+2

d+3
.

(4) Let k > 3, d > 2h(k)− k − 1 and d+ k + 1 ≡ 0 (mod 2). By Theorem 19, there is a
k-regular graph H with g(H) > k+4 and n(H) = d+k+1 = n. Consider now the graph
G = Kn−E(H). Then d(G) = n−1−k = d. Let T ⊆ V (G) be a subset of k+3 vertices.
Since g(H) > k+4, G[T ] is a forest. Hence there is at least one vertex in v ∈ V (T ) which
is adjacent in G[T ] to all but at most one vertex and hence degG[T ](v) > k + 1. Thus,

αk(G) 6 k + 2 and we obtain f(k, d) 6 k+2
d+k+1

.
(5) Consider the graphG = (Kd+2−E(K3))∪q(Kd+1−E(K3)). Then n(G) = (q+1)d+q+2
and d(G)n(G) = (d−1)(d+1)+3(d−1)+q((d−2)d+3(d−2)) = (q+1)d2+(q+3)d−(4+6q).
Since d 6 4 + 6q, it follows that

d(G) =
(q + 1)d2 + (q + 3)d− (4 + 6q)

(q + 1)d+ q + 2
6

(q + 1)d2 + (q + 3)d− d

(q + 1)d+ q + 2
= d.

As clearly α2(G) = 3(q + 1), we obtain therefore, together with Theorem 18 (1),

3

d+ 3
6 f(2, d) 6

3(q + 1)

(q + 1)d+ q + 2
=

3

d+ q+2
q+1

=
3

d+ 1 + 1
q+1

.

(6) Let k > 2 and consider the graph G = (Kk+3 − E(Kk+1)) ∪ kK1,k+1. Then n(G) =
k+3+k(k+2) = k2+3k+3 and d(G)n(G) = 2(k+2)+(k+1)2+2k(k+1) = 2(k2+3k+3) =
2n(G). Hence, d(G) = 2. Moreover, it is easy to see that αk(G) = (k + 1)2. Thus this
implies that

f(k, 2) 6
αk(G)

n(G)
=

(k + 1)2

k2 + 3k + 3
=

k + 1

k + 2 + 1
k+1

.

Together with the bound from item(2) of Theorem 18, we obtain

k

k + 1
6 f(k, 2) 6

k + 1

k + 2 + 1
k+1

.

(7) By Theorem 19 there is an r-regular graph H with g(H) > k + 4 and n = n(H) >
2((r−1)k+3−1)

r−2
. Take n even and let G = Kn − E(H). Then d = d(G) = n − 1 − r. Let

T ⊆ V (G) be a subset of k+ 3 vertices. As g(H) > k+ 4, G[T ] is a forest and thus there
is a vertex in T which is adjacent in G to all other vertices from T with the exception
of at most one. Hence, T cannot be a k-independent set and thus αk(G) 6 k + 2. This

implies that f(k, d) 6 αk(G)
n

6
k+2

d+r+1
. As d ∼ 2rk+2, we have r ∼ (d

2
)

1
k+2 , and thus there

is a constant c > 0 such that r = c(d
2
)

1
k+2 , implying that f(k, d) 6 k+2

d+c( d
2
)

1
k+2+1

.
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5 Open problems

We close this paper with the following open problems.

Problem 21. Is f(k, d) in fact a minimum for every k and d? Namely, does

inf

{

αk(G)

n(G)
: G graph with d(G) 6 d

}

= min

{

αk(G)

n(G)
: G graph with d(G) 6 d

}

hold?

In case the answer to this problem is positive, this may have several consequences in
computing f(k, d).

Problem 22. Is the bound f(k, d) > 2k+2−d
2k+2

of Theorem 18 (2) sharp for k > d > 2?

Below are the best possible bounds on f(2, d) we have for d = 0, 1, . . . , 10.

lower upper theorem used
d bound∗ bound graph for upper bound for

upper bound
0 1 1 K1 -
1 5/6 5/6 K1,k+1 ∪ kK1 18(2)
2 2/3 9/13 (K5 − E(K3)) ∪ 2K1,3 20 (6)
3 1/2 3/5 K5 − E(K3) 20 (5), q = 0
4 4/9 1/2 K6 − E(K3) 20 (5), q = 0
5 7/18 6/13 (K7 − E(K3)) ∪ (K6 − E(K3)) 20 (5), q = 1
6 1/3 2/5 (K8 − E(K3)) ∪ (K7 − E(K3)) 20 (5), q = 1
7 11/36 6/17 (K9 − E(K3)) ∪ (K8 − E(K3)) 20 (5), q = 1
8 5/18 6/19 (K10 − E(K3)) ∪ (K9 − E(K3)) 20 (5), q = 1
9 1/4 2/7 (K11 − E(K3)) ∪ (K10 − E(K3)) 20 (5), q = 1
10 7/30 6/23 (K12 − E(K3)) ∪ (K11 − E(K3)) 20 (5), q = 1

*Lower bounds are from Thm. 18(2) in case d = 1 and Thm. 18(1) else.

Problem 23. Improve upon the values given in the table.

In order to better understand f(k, d), we can define

f(k, d,∆) = inf

{

αk(G)

n(G)
: G is a graph with d(G) 6 d and ∆(G) 6 ∆

}

,

where ∆ > d, and k are all nonnegative integers. Observe that f(k, d) = inf{f(k, d,∆) : ∆ > d}
and hence a knowledge on f(k, d,∆) may help in obtaining better bounds on f(k, d). For
instance, let us take f(2, 2, 3). Observe that, from Theorem 18 (2), f(2, 2, 3) > f(2, 2) >

2
3 .

Further, consider the graph G = R8 ∪ 4K1,3 on 24 vertices, where R8 is the graph depicted
below (note that R8 is the extremal graph for Reed’s upper bound of 3

8n on the domination
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The graph R8.

number for graphs on n vertices with minimum degree at least 3), and observe that α2(G) = 17,
n(G) = 24 and ∆(G) = 3. Then, it follows that 2

3 6 f(2, 2) 6 f(2, 2, 3) 6 17
24 .

But if we consider for instance the graph H = (K5 − E(K3)) ∪ 2K1,3, then we have there
α2(H) = 9, n(H) = 13 and ∆(H) = 4 and thus 2

3 6 f(2, 2) 6 f(2, 2, 4) 6 9
13 , which is better

than the bound 17
24 obtained with the graph G. Thus, we would like to state the following

question.

Problem 24. Obtain lower and upper bounds on f(k, d,∆).
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