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Abstract

In this paper we find an exact formula for the number of partitions of an element
z into m parts over a finite field, i.e. we find the number of nonzero solutions of
the equation x1 + x2 + · · ·+ xm = z over a finite field when the order of terms does
not matter. This is equivalent to counting the number of m-multi-subsets whose
sum is z. When the order of the terms in a solution does matter, such a solution
is called a composition of z. The number of compositions is useful in the study of
zeta functions of toric hypersurfaces over finite fields. We also give an application
in the study of polynomials of prescribed ranges over finite fields.

1 Introduction

Let n and m be positive integers. A composition of n is an ordered list of positive integers
whose sum is n. A m-composition of n is an ordered list of m positive integers (m parts)
whose sum is n. It is well known that there is a bijection between all m-compositions of n
and (m−1)-subsets of [n−1] = {1, 2, . . . , n−1} and thus there are

(
n−1
m−1

)
m-compositions

of n and 2n−1 compositions of n. Similarly, a weak composition of n is an ordered list of
non-negative integers whose sum is n and a weak m-composition of n is an ordered list
of m non-negative parts whose sum is n. Using substitution of variables, we can easily
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obtain that the number of weak m-compositions of n (i.e., the number of non-negative
integer solutions to x1 + x2 + · · · + xm = n) is equal to the number of m-compositions
of n + m (i.e., the number of positive integer solutions to x1 + x2 + · · · + xm = n + m),
which is

(
n+m−1
m−1

)
=
(
n+m−1

n

)
. The combinatorial interpretation of

(
n+m−1
m−1

)
=
(
n+m−1

n

)
is the number of ways in selecting n-multisets from a set M with m elements, which is
sometimes called n-combinations of M with repetitions. Disregarding the order of the
summands, we have the concepts of partitions of n into m parts, partitions of n into at
most m parts, and so on. For more details we refer the reader to [9].

Let Fq be a finite fields of q = pr elements. The subset problem over a subset D ⊆ Fq
is to determine for a given z ∈ Fq, if there is a nonempty subset {x1, x2, . . . , xm} ⊆ D
such that x1 +x2 + · · ·+xm = z. This subset sum problem is known to be NP -complete.
In the study of the subset sum problem over finite fields, Li and Wan [4] estimated
the number, N(m, z,D) = #{{x1, x2, . . . , xm} ⊆ D | x1 + x2 + · · ·xm = z}, of m-
subsets of D ⊆ Fq whose sum is z ∈ Fq. In particular, exact formulas are obtained
in cases that D = Fq or F∗q or Fq \ {0, 1}. Similarly, we are interested in the number
S(m, z,D) = #{(x1, x2, . . . , xm) ∈ D × D × · · · × D | x1 + x2 + · · · + xm = z}, that is,
the number of ordered m-tuples whose sum is z and each coordinate belongs to D ⊆ Fq,
as well as the number M(m, z,D) which counts the number of m-multisets of D ⊆ Fq
whose sum is z ∈ Fq. In particular, when D = Fq or F∗q, this motivated us to introduce
the following.

Definition 1. A partition of z ∈ Fq into m parts is a multiset of m nonzero elements in
F∗q whose sum is z. The m nonzero elements are the parts of the partition. We denote by

M(m, z,F∗q) or P̃m(z) the number of partitions of z into m parts over Fq. Similarly, we

denote by M(m, z,Fq) or P̂m(z) the number of partitions of z into at most m parts over
Fq and by P̃ (z) the total number of partitions of z over finite field Fq.

We remark that N(m, z,F∗q) is the number of partitions of an element z over finite field
Fq such that all summands are distinct, and M(m, z,F∗q) is the number of partitions of
an element z into m parts over finite field Fq, dropping the restriction that all summands
are distinct.

We also remark that in the study of polynomials of prescribed ranges over finite fields
[5] there has arisen a need as well for counting the number M(m, 0,Fq) of partitions of
0 with at most m parts over finite field Fq, which in turn leads us to answer a recent
conjecture by Gács et al on polynomials of prescribed ranges over finite fields [3].

In this article we first obtain an exact formula for the number of partitions of an
element z ∈ Fq into m parts over Fq.
Theorem 1. Let m be a non-negative integer, Fq be a finite field of q = pr elements with
prime p, and z ∈ Fq. The number of partitions of z into m parts over Fq is given by

P̃m(z) =
1

q

(
q +m− 2

m

)
+Dm(z),
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where

Dm(z) =



0, if m 6≡ 0 (mod p) and m 6≡ 1 (mod p);
q−1
q

(
q/p−1+j

j

)
, if m = jp, j > 0, and z = 0;

− q−1
q

(
q/p−1+j

j

)
, if m = jp+ 1, j > 0, and z = 0;

−1
q

(
q/p−1+j

j

)
, if m = jp, j > 0, and z ∈ F∗q;

1
q

(
q/p−1+j

j

)
, if m = jp+ 1, j > 0, and z ∈ F∗q.

Similarly, we have the following definition of compositions over finite fields.

Definition 2. A composition of z ∈ Fq with m parts is a solution (x1, x2, . . . , xm) to the
equation

z = x1 + x2 + · · ·+ xm, (1)

with each xi ∈ F∗q. Similarly, a weak composition of z ∈ Fq with m parts is a solution
(x1, x2, . . . , xm) to Equation (1) with each xi ∈ Fq. We denote the number of compositions
of z having m parts by S(m, z,F∗q) or Sm(z). The number of weak compositions of z with
m parts is denoted by S(m, z,Fq). The total number of compositions of z over Fq is
denoted by S(z).

A formula for the number of compositions over Fp can be found on page 295 in [1].
A general formula for Sm(z) over Fq for arbitrary q and nonzero z can be obtained using
a remark on the normalized Jacobi sum of the trivial character given in [2] (see Remark
1 on page 144). In fact, the numbers Sm(1) are the simplest example of the number of
rational points on an affine toric variety over a finite field (namely a toric hyperplane);
see for example [6], [7], and [8]. In order to compare with the formula for partitions, we
only present a recurrence formula for compositions as follows.

Proposition 1. Let m > 2, Fq be a finite field of q = pr elements with prime p, and z ∈ Fq.
The number of compositions of z with m parts over Fq is given by

Sm(z) = (q − 1)m−2(q − 2) + Sm−2(z).

It follows that

Sm(0) =
(q − 1)m + (−1)m(q − 1)

q

and

Sm(z) =
(q − 1)m − (−1)m

q
, if z 6= 0.

Using the fact that additive group (Fq,+) is isomorphic to the additive group (Frp,+),
we obtain that the numbers of partitions and compositions of elements over Frp are the
same as the numbers of partitions and compositions of corresponding elements over Fq.

Finally, we demonstrate an application of Theorem 1 in the study of polynomials of
prescribed range. First let us recall that the range of the polynomial f(x) ∈ Fq[x] is a
multiset M of size q such that M = {f(x) : x ∈ Fq} as a multiset (that is, not only values,
but also multiplicities need to be the same). Here and also in the following sections we
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abuse the set notation for multisets as well. In [3], there is a nice connection between
polynomials with prescribed ranges and hyperplanes in vector spaces over finite fields.
We refer the reader to this paper for more details. In this paper, we obtain the following
result as an application of Theorem 1.

Theorem 2. Let Fq be a finite field of q = pr elements. For every ` with q
2
6 ` < q − 3

there exists a multiset M with
∑

b∈M b = 0 and the highest multiplicity ` achieved at
0 ∈ M such that every polynomial over the finite field Fq with the prescribed range M
has degree greater than `.

We note that Theorem 2 generalizes Theorem 1 in [5] which disproves Conjecture 5.1
in [3]. In the following sections, we give the proofs of Theorems 1-2 respectively.

2 Proof of Theorem 1

In this section we prove Theorem 1. First of all we prove a few technical lemmas.

Lemma 1. Let a ∈ F∗q and m be a positive integer. Then P̃m(a) = P̃m(1).

Proof. Let x1 + x2 + · · ·+ xm = 1. The following mapping between two multisets defined
by

{x1, x2, . . . , xm} 7→ {ax1, ax2, . . . , axm}

for some a ∈ F∗q is one-to-one and onto, which results in ax1 + ax2 + . . .+ axm = a. Thus

P̃m(a) = P̃m(1).

It is obvious to see that P̃1(z) = 1 if z ∈ F∗q and P̃1(0) = 0. However, we can show

that P̃m(0) = P̃m(z) if m 6≡ 0 (mod p) and m 6≡ 1 (mod p) as follows.

Lemma 2. Let m be any positive integer satisfying m 6≡ 0 (mod p) and m 6≡ 1 (mod p).
Then P̃m(0) = P̃m(1).

Proof. Let x1 + x2 + · · ·+ xm = 0 be a partition of 0 into m parts. Then (x1 + 1) + (x2 +
1) + · · · + (xm + 1) = m is a partition of m ∈ F∗q with at most m parts (if xj = p − 1
then xj + 1 = 0), but since xj 6= 0 there is no xj + 1 = 1. Moreover, there is a bijective
correspondence of multisets {x1, . . . , xm} 7→ {x1 + 1, . . . , xm + 1}. Therefore, in order to
find the number P̃m(0) of partitions of 0 into m parts over Fq, we need to find the number
of partitions of m with at most m parts but no element is equal to 1. This means these
partitions of m can have parts equal to the zero.

Let x1 + x2 + · · · + xm = m. We assume that the parts equal to 1 (if any) appear in
the beginning of the list: x1, x2, . . . , xm. If x1 = 1 then x1 + x2 + · · · + xm = m implies
x2 + · · · + xm = m− 1. Conversely, each partition of m into m− 1 parts can generate a
partition of m into m parts with the first part equal to 1. So the number of partitions of
m into m parts with at least one part equal to 1 is equal to the number of partitions of
m− 1 into m− 1 parts. Let U0 be the family of partitions of m into m parts without zero
elements and no part is equal to 1. Therefore |U0| = P̃m(m)− P̃m−1(m− 1).
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Let U1 be the family of partitions of m with m parts with exactly one element equal
to 0 and no element equal to 1. Let x1 +x2 + · · ·+xm = m be a partition in U1 and x1 = 0
and xj 6= 0, 1 for j = 2, . . . ,m. Obviously, it is equivalent to a partition x2 + · · ·+xm = m
of m into m − 1 parts with all parts not equal to 1. Similarly as in the case for U0 we
have |U1| = P̃m−1(m)− P̃m−2(m− 1).

More generally, let Ui be the family of partitions with m parts with i parts equal to
the zero, say x1 = x2 = . . . = xi = 0, and xj 6= 0, 1 for j = i + 1, . . . ,m. Then we have
a partition of m into m − i parts, xi+1 + · · · + xm = m, such that no part is equal to 1.
Similarly, we have |Ui| = P̃m−i(m)− P̃m−i−1(m− 1). In particular, for i = m− 1 there is
only one solution of the equation xm = m and thus |Um−1| = P̃1(m) = 1.

We note that these families of Ui’s are pairwise disjoint and their union is the family
of partitions of m into m parts with no part equal to 1. Therefore we have P̃m(0) =
|U0|+ |U1|+ · · ·+ |Um−1| = (P̃m(m)− P̃m−1(m− 1)) + (P̃m−1(m)− P̃m−2(m− 1)) + · · ·+
(P̃2(m)− P̃1(m− 1)) + P̃1(m).

If m 6≡ 0 (mod p) and m 6≡ 1 (mod p), then m− 1 and m are both nonzero elements
in Fq. By Lemma 1, we can cancel P̃i(m − 1) = P̃i(m) for i = 1, . . . ,m − 1. Hence
P̃m(0) = P̃m(m) = P̃m(1).

Using the above two lemmas, we obtain the exact counts of P̃m(z) when m 6≡ 0 (mod
p) and m 6≡ 1 (mod p).

Lemma 3. If z ∈ Fq and m is any positive integer satisfying m 6≡ 0 (mod p) and m 6≡
1 (mod p) then we have

P̃m(z) =
1

q

(
q +m− 2

m

)
.

Proof. We note that there are
(
(q−1)+m−1

m

)
multisets of m nonzero elements from Fq in

total and the sum of elements in each multiset can be any element in Fq. Using Lemmas 1
and 2 we have ∑

s∈Fq

P̃m(s) = qP̃m(1) =

(
(q − 1) +m− 1

m

)
and therefore

P̃m(z) = P̃m(1) =
1

q

(
q +m− 2

m

)
for every z ∈ Fq.

In order to consider other cases, we use an interesting result by Li and Wan [4], which
gives the number N(k, b,F∗q) of sets with (all distinct) k nonzero elements that sums to
b ∈ Fq. Namely,

N(k, b,F∗q) =
1

q

(
q − 1

k

)
+ (−1)k+bk/pc

ν(b)

q

(
q/p− 1

bk/pc

)
, (2)

where ν(b) = −1 if b 6= 0 and ν(b) = q − 1 if b = 0 (see Theorem 1.2 in [4]).
First we can prove
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Lemma 4. Let N(k, b,F∗q) be the number of sets with k nonzero elements that sums to
b ∈ Fq and m > 1 be a positive integer. Then

P̃m(0) =
(

(q − 1)N(1, 1,F∗q)P̃m−1(1) +N(1, 0,F∗q)P̃m−1(0)
)

−
(

(q − 1)N(2, 1,F∗q)P̃m−2(1) +N(2, 0,F∗q)P̃m−2(0)
)

+ . . .

+(−1)m−1
(

(q − 1)N(m− 2, 1,F∗q)P̃2(1) +N(m− 2, 0,F∗q)P̃2(0)
)

+(−1)m(q − 1)N(m− 1, 1,F∗q) + (−1)m+1N(m, 0,F∗q).

Proof. Denote by U the family of all multisets of m nonzero elements that sums to zero,
i.e. P̃m(0) = |U|. Let Ba be the family of all multisets of m nonzero elements such that
a is a member of each multiset and the sum of elements of each multiset is equal to 0.
Namely, Ba ∈ Ba implies

∑
s∈Ba

s = 0 and a ∈ Ba. Obviously, U =
⋃
a∈F∗

q
Ba.

Now we will use the principle of inclusion-exclusion to find the cardinality of U . For
distinct a1, . . . , ak ∈ F∗q and k > m, it is easy to see that

Ba1 ∩ Ba2 ∩ . . . ∩ Bak = ∅,

because each multiset Ba1 contains only m nonzero elements. Moreover, if k = m then
the number of multisets in the union of intersections is N(m, 0,F∗q).

If B ∈ Ba1 ∩ Ba2 ∩ . . . ∩ Bak and k 6 m− 1 then

B = {a1, a2, . . . , ak, xk+1, . . . , xm}.

Because xk+1 + · · · + xm = −(a1 + · · · + ak), the number of elements in the intersection
Ba1 ∩Ba2 ∩ . . .∩Bak is the same as the number of partitions of −(a1 + · · ·+ak) into m−k
parts, i.e.

|Ba1 ∩ Ba2 ∩ . . . ∩ Bak | = P̃m−k(−a1 − · · · − ak).
We note that none of ai’s (i = 1, . . . , k) is equal to zero and N(k, b,F∗q) = N(k, 1,F∗q) for
any b ∈ F∗q. In particular, if k < m− 1, then the sum a1 + · · ·+ am−1 can be any element

in Fq and thus there are (q − 1)N(k, 1,F∗q)P̃m−k(1) + N(k, 0,F∗q)P̃m−k(0) such multisets
B ∈ Ba1 ∩ Ba2 ∩ . . . ∩ Bak for all choices of nonzero distinct a1, . . . , ak.

If k = m− 1 then the sum a1 + · · · + am−1 can not be equal to the zero, there are in
total (q− 1)N(m− 1, 1,F∗q) such multisets contained in the intersection of m− 1 families
of Bai ’s.

Finally we combine the above cases and use the principle of inclusion-exclusion to
complete the proof.

In the sequel we also need the following identity which is a special instance of Chu-
Vandermonde identity.

Lemma 5. For all positive integers s, we have

s∑
j=1

(−1)j+1

(
q − 1

j

)(
q − 2 + s− j

s− j

)
=

(
q − 2 + s

s

)
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Proof. The result follows from Chu-Vandermonde theorem 2F1(−s;−(q − 1);−(q − 2 +
s); 1) = 0. Here we also include a direct proof. Multiplying (1 + x)q−1 =

∑q−1
k=0

(
q−1
j

)
xj

and series
1

(1 + x)q−1
=
∞∑
k=0

(
q − 2 + k

k

)
(−1)kxk,

We obtain

1 = (1 + x)q−1 · 1

(1 + x)q−1
=
( q−1∑
k=0

(
q − 1

j

)
xj
)( ∞∑

k=0

(
q − 2 + k

k

)
(−1)kxk

)
=

∞∑
s=0

( s∑
j=0

(−1)s−j
(
q − 1

j

)(
q − 2 + s− j

s− j

))
xs.

Therefore for s > 1 we have
∑s

j=0(−1)s−j
(
q−1
j

)(
q−2+s−j
s−j

)
= 0. This implies

s∑
j=1

(−1)s−j+1

(
q − 1

j

)(
q − 2 + s− j

s− j

)
= (−1)s

(
q − 2 + s

s

)
.

Finally multiplying both sides of the last equality by (−1)s we complete the proof.

Next we prove Theorem 1. In order to do so, we let

P̃m(z) =
1

q

(
q − 2 +m

m

)
+Dm(z). (3)

Without loss of generality, we can assume q > 2. Obviously, by Lemma 3, we have
Dm(z) = 0 for any z ∈ Fq if m 6≡ 0 (mod p) and m 6≡ 1 (mod p). Further Dm(z) =
Dm(1) by Lemma 1 for all z 6= 0. Because P̃m(0) + (q − 1)P̃m(1) =

(
q−2+m
m

)
, we have

Dm(0) + (q − 1)Dm(1) = 0, i.e., Dm(1) = − 1

q − 1
Dm(0). (4)

Next we use the convention that P̃0(0) = 1 and P̃0(1) = 0 so that D0(0) = q−1
q

and

D0(1) = −1
q
. Similarly, P̃1(0) = 0 and P̃1(1) = 1 and thus D1(0) = − q−1

q
and D1(1) = 1

q
.

For the rest of this section, we only need to compute Dm(0) when m = jp or m = jp+ 1
for some positive integer j because of Equation (4). To do this, we apply Lemmas 4 and
5, along with Equations (2) (3), and the following equation

(q − 1)N(m, 1,F∗q) +N(m, 0,F∗q) =

(
q − 1

m

)
. (5)

Let us consider m = up first. In this case, by Lemma 4 and Equation (3), we have:

P̃m(0) =
m−2∑
s=1

(−1)s+1

[
1

q

(
q − 2 +m− s

m− s

)(
(q − 1)N(s, 1,F∗q) +N(s, 0,F∗q)

)
+(q − 1)N(s, 1,F∗q)Dm−s(1) +N(s, 0,F∗q)Dm−s(0)

]
+(−1)m(q − 1)N(m− 1, 1,F∗q) + (−1)m+1N(m, 0,F∗q).
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Using Equations (5) and (2), we obtain

P̃m(0) =
1

q

m−2∑
s=1

(−1)s+1

(
q − 1

s

)(
q − 2 +m− s

m− s

)

+
m−2∑
s=1

(−1)s+11

q

(
q − 1

s

)
((q − 1)Dm−s(1) +Dm−s(0))

+
m−2∑
s=1

(−1)s+1(q − 1)(−1)s+bs/pc
1

q

(
q/p− 1

bs/pc

)
(−Dm−s(1) +Dm−s(0))

+(−1)m(q − 1)
1

q

(
q − 1

m− 1

)
+ (−1)m+11

q

(
q − 1

m

)
+(−1)m(q − 1)(−1)m−1+b(m−1)/pc

−1

q

(
q/p− 1

b(m− 1)/pc

)
+(−1)m+1(−1)m+bm/pc q − 1

q

(
q/p− 1

bm/pc

)
After rearranging terms, we use Lemma 5, Lemma 3, Equations (3) and (4) to simplify

the above as follows:

=
1

q

m∑
s=1

(−1)s+1

(
q − 1

s

)(
q − 2 +m− s

m− s

)
+

∑
1 6 s 6 m− 2
s ≡ 0, 1(modp)

(−1)s+1(−1)s+bs/pc
(
q/p− 1

bs/pc

)
Dm−s(0)

+(−1)u−1
q − 1

q

[(q/p− 1

u− 1

)
+

(
q/p− 1

u

)]
=

1

q

(
q − 2 + up

up

)
+

∑
1 6 s 6 up

s ≡ 0, 1(modp)

(−1)1+bs/pc
(
q/p− 1

bs/pc

)
Dup−s(0),

where we use Lemma 5 and −D0(0) = D1(0) = − q−1
q

to obtain the last equality. Now let
us rewrite this as

P̃up(0) =
1

q

(
q − 2 + up

up

)
+

u−1∑
t=0

(−1)1+(u−t)
(
q/p− 1

u− t

)
Dtp(0)

+
u−1∑
t=0

(−1)(u−t)
(
q/p− 1

u− t− 1

)
Dtp+1(0). (6)
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Similarly, for m = up+ 1, we have

P̃up+1(0) =
1

q

(
q − 2 + (up+ 1)

up+ 1

)
+

∑
1 6 s 6 up− 1
s ≡ 0, 1(modp)

(−1)1+bs/pc
(
q/p− 1

bs/pc

)
Dup+1−s(0)

=
1

q

(
q − 2 + up+ 1

up+ 1

)
+

u−1∑
t=1

(−1)1+u−t
(
q/p− 1

u− t

)
(Dtp(0) +Dtp+1(0))−Dup(0).

Next we show Dup+1(0) = −Dup(0) for all u > 0 by mathematical induction. The base
case u = 0 holds because D1(0) = D0(0) = − q−1

q
. Assume now −Dsp(0) = Dsp+1(0) for

all 0 6 s < u and plug into the above formula we obtain

P̃up+1(0) =
1

q

(
q − 2 + up+ 1

up+ 1

)
−Dup(0)

Because P̃up+1(0) = 1
q

(
q−2+up+1
up+1

)
+Dup+1(0), we conclude that Dup+1(0) = −Dup(0). Hence

it is true for all u > 0. Using this relation we simplify Equation (6) to

P̃up(0) =
1

q

(
q − 2 + up

up

)
+

u−1∑
t=0

(−1)u−t+1

((
q/p− 1

u− t

)
+

(
q/p− 1

u− t− 1

))
Dtp(0)

=
1

q

(
q − 2 + up

up

)
+

u−1∑
t=0

(−1)u−t+1

(
q/p

u− t

)
Dtp(0) (7)

and by using P̃up(0) = 1
q

(
q−2+up
up

)
+Dup(0) we obtain

Dup(0) =
u−1∑
t=0

(−1)u−t+1

(
q/p

u− t

)
Dtp(0). (8)

Let f(x) =
∑∞

j=0Djp(0)xj be the generating function of the sequence {Dup(0) : u =
0, 1, 2, . . .}. Then

(1− x)q/pf(x) =

 q/p∑
l=0

(
q/p

l

)
(−1)lxl

( ∞∑
j=0

Djp(0)xj

)

= D0(0) +
∞∑
u=1

((
u−1∑
t=0

(
q/p

u− t

)
(−1)u−tDtp(0)

)
+Dup(0)

)
xu

= D0(0) +
∞∑
u=1

(−Dup(0) +Dup(0))xu = D0(0) =
q − 1

q
.

Now (1− x)q/pf(x) = q−1
q

implies

f(x) =
q − 1

q

1

(1− x)q/p
=
q − 1

q

∞∑
t=0

(
q/p− 1 + t

t

)
xt.
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Hence Djp(0) = q−1
q

(
q/p−1+j

j

)
for j = 0, 1, 2 . . .. Moreover, we use Equation (4) and

Djp+1(0) = −Djp(0) to conclude

Djp(0) =
q − 1

q

(
q/p− 1 + j

j

)
; Djp(1) = −1

q

(
q/p− 1 + j

j

)
;

Djp+1(0) = −q − 1

q

(
q/p− 1 + j

j

)
; Djp+1(1) =

1

q

(
q/p− 1 + j

j

)
.

Finally, together with Lemma 3 we complete the proof of Theorem 1.
Finally we note that it is straightforward to derive the following corollary.

Corollary 1. Let m be a non-negative integer, Fq be a finite field of q = pr elements with
prime p, and z ∈ Fq. The number of partitions of z into at most m parts over Fq is given
by

P̂m(z) =
m∑
k=0

P̃k(z) =
1

q

(
q − 1 +m

m

)
+ D̃m(z),

where

D̃m(z) =

{
Dm(z), if m ≡ 0 (mod p);
0, otherwise.

3 Proof of Theorem 2

Let ` = q − m. The assumption q
2
6 ` < q − 3 implies that 4 6 m 6 q

2
. As in [5], we

denote by T the family of all subsets of Fq of cardinality m, i.e.,

T = {T | T ⊆ Fq, |T | = m}.

Denote by M the family of all multisets M of order q containing 0 with the highest
multiplicity ` = q −m and the sum of elements in M is equal to 0, i.e.,

M = {M | 0 ∈M, multiplicity(0) = q −m,
∑
b∈M

b = 0}.

We note that the polynomial with the least degree q − m such that it sends q − m
values to 0 can be represented by

f(λ,T )(x) = λ
∏

s∈Fq\T

(x− s), (9)

which uniquely determines a mapping

F : F∗q × T →M, (10)

defined by
(λ, T ) 7→ range(fλ,T (x)).
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In Lemma 2 [3] we found an upper bound for the number |range(F)| of the images of
the polynomial with the least degree q−m such that it sends q−m values to 0, whenm < p.
Using this upper bound, we proved that, for every m with 3 < m 6 min{p−1, q/2}, there
exists a multiset M with

∑
b∈M b = 0 and the highest multiplicity q−m achieved at 0 ∈M

such that every polynomial over Fq with the prescribed range M has degree greater than
q −m (Theorem 1, [5]). This result disproved Conjecture 5.1 in [3]. In this section, we
drop the restriction of m < p and then use the formula obtained in Theorem 1 to prove
Theorem 2, which generalizes Theorem 1 in [5]. First of all, we prove the following result.

Lemma 6. Let q be a prime power, m 6 q
2

be a positive integer and d = gcd(q−1,m−1).
Let F : F∗q × T →M be defined as in Equation (10). Then

|range(F)| 6 (q − 1)(q − 2) . . . (q −m+ 1)

m!
+
∑

i|d, i>1

φ(i)

( q−1
i

m−1
i

)
+
δ(q − 1)

q

(
q/p

m/p

)
,

where δ = 1 if p | m and zero otherwise.

Proof. As in Lemma 2 of [3] we consider the group G of all non-constant linear polynomials
in Fq[x] acting on the set F∗q × T with action Φ : (cx + b, (λ, T )) 7→ (cm−1λ, cT + b). All
the elements of the same orbit in F∗q×T are all mapped to the same range M ∈M. Thus
we need to find the number N of orbits under this group action. Using the Burnside’s
Lemma, we need to find the number of fixed points |(F∗q × T )g| in F∗q × T under the

action of g(x) = cx + b. As in Lemma 2 [3], for g(x) = x there are (q − 1)
(
q
m

)
elements

fixed by g(x). Moreover, if g(x) = cx + b, c 6= 1 then elements are fixed by g(x) only if

i = ord(c) | d = gcd(q − 1,m − 1) and in this case we have |(F∗q × T )g| = (q − 1)
( q−1

i
m−1

i

)
.

Under the assumption m < p in Lemma 2 [3], we don’t need to consider g(x) = x + b,
b 6= 0, because it has p-cycles of the form (x, x + b, . . . , x + (p − 1)b) and has no fixed
elements. However, for arbitrary m, we must consider this case. In fact, if g(x) = x + b
fixes some subset T of Fq with m elements then we must have p | m and T consists of

p-cycles. In particular, there are
( q

p
m
p

)
of such subsets T fixed by g(x) = x + b for each

b ∈ F∗q. Varying λ and b, we therefore obtain |(F∗q × T )g| = δ(q − 1)2
(
q/p
m/p

)
. Now using

Burnside’s Lemma we obtain

N =
1

|G|
∑
g∈G

|(F∗q × T )g|

=
1

q(q − 1)

(
(q − 1)

(
q

m

)
+ q(q − 1)

∑
i>0,i|d

φ(i)

( q−1
i

m−1
i

)
+ δ(q − 1)2

(
q/p

m/p

))
=

1

q

(
q

m

)
+
∑
i>0,i|d

φ(i)

( q−1
i

m−1
i

)
+
δ(q − 1)

q

(
q/p

m/p

)
.
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In order to prove Theorem 2 it is clear that we only need to show

(q − 1)(q − 2) . . . (q −m+ 1)

m!
+
∑

i|d, i>1

φ(i)

( q−1
i

m−1
i

)
+
δ(q − 1)

q

(
q/p

m/p

)
< P̃m(0). (11)

By Theorem 1, it is enough to show

(q − 1) . . . (q −m+ 1)

m!
+
∑

i|d, i>1

φ(i)

( q−1
i

m−1
i

)
+
q − 1

q

( q
p
− 1 + j

j

)
<

1

q

(
q +m− 2

m

)
. (12)

for m = jp+ 1 and

(q − 1)(q − 2) . . . (q −m+ 1)

m!
+
∑

i|d, i>1

φ(i)

( q−1
i

m−1
i

)
<

1

q

(
q +m− 2

m

)
, (13)

for all other cases, because q−1
q

(
q/p
m/p

)
= q−1

q

(
q/p
j

)
6 q−1

q

(
q/p−1+j

j

)
when m = jp and j > 1.

For the cases m = 4 and m = 5, because q > 2m, we can check directly that Inequal-
ity (13) holds and thus Inequality (11) holds.

We now show Inequalities (12) and (13) hold for m > 5 by using a combinatorial
argument. Let G =< a > be a cyclic group of order q − 1 with generator a. Let M′ be
the set of all multisets with m elements chosen from G. Then |M′| =

(
q−2+m
m

)
. To estimate

the left hand side of Inequalities (12) and (13) we count now the number of multisets
in some subsets of M′ defined as follows. These subsets of multisets of m elements are
defined from subsets of k-subsets of G when k 6 m. First of all, let M0 be the set of all
subsets of G with m elements. So M0 ⊆M′ and |M0| =

(
q−1
m

)
.

Let A be the set of all subsets of G with m − 1 elements. For each A = {au1 , au2 ,
. . . , aum−1} ∈ A where 0 6 u1 < u2 < . . . < um−1 < q − 1 we can find a multiset
M = {au1 , au1 , au2 , au3 , . . . , aum−1} corresponding to A in the unique way. We can use
notation s(i) to denote an element s in a multiset M with multiplicity i. Hence the above
multiset M can also be denoted by

M = {(au1)(2), au2 , au3 , . . . , aum−1}.

The set of all these multisets M , denoted by M1, has |A| =
(
q−1
m−1

)
elements. Moreover

M0 ∩M1 = ∅. Now let M01 =M1 ∪M1. Then |M01| =
(
q−1
m

)
+
(
q−1
m−1

)
=
(
q
m

)
.

For each i satisfying m−1 > i > 2 and i | d, we let Si =< ai > be a cyclic subgroup of
G with q−1

i
elements. From each set Ci of all subsets of Si with m−1

i
elements, we can define

two disjoint subclasses ofM containing multisets with m elements in G corresponding to
Ci.

First, let B = {au1i, au2i, . . . , aum−1
i
i} be a subset of Si where 0 6 u1 < u2 < . . . < q−1

i
.

For each fixed t such that 0 6 t < i and gcd(i, t) = 1, we can construct a multiset
corresponding to B as follows:

M = {(atau1i)(i), (atau2i)(i), . . . , (ataum−1
i
i
)(i), am}
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where am is arbitrarily element in G. For each fixed t this class of multisets formed from

Ci is denote by Mt
i. Then |Mt

i| = (q − 1)
( q−1

i
m−1

i

)
.

Secondly, for B = {au1i, au2i, . . . , aum−1
i
i} ∈ Ci and each fixed t, we can construct

another multiset

M̃ = {(at+1au1i)(i), (atau2i)(i), . . . , (ata
um−1

i
i
)(i),1},

corresponding to B. The set of these multisets is denoted by M̃t
i. Then |M̃t

i| =
( q−1

i
m−1

i

)
.

Note that i 6 m−1
2

implies Mt
i ∩ M̃t

i = ∅. Hence we have

|Mi| =

∣∣∣∣∣
⋃

16t<i
gcd(i,t)=1

Mt
i ∪ M̃t

i

∣∣∣∣∣ = φ(i)

(
(q − 1)

( q−1
i

m−1
i

)
+

( q−1
i

m−1
i

))
= qφ(i)

( q−1
i

m−1
i

)
.

Finally, if m − 1 - q − 1 then we let Mm = ∅. Otherwise, if (m − 1) | q − 1 then
we let Mt

m−1 contains all the multisets of the form M = {(at+j(m−1))(m−1), am}, for j =
0, 1, . . . , q−1

m−1 − 1, any positive integer t < m− 1 with gcd(m− 1, t) = 1, and any am ∈ G.

Let M̃t
m−1 contain all the multisets of the form {(at+j(m−1))(m−2), (am−1)(2)}. It is obvious

that am−1 6= at+j(m−1). By comparing the multiplicities of two multisets we see that
Mt

m−1 ∩ M̃t
m−1 = ∅. Moreover,

|Mm−1| =

∣∣∣∣∣
⋃

16t<m−1
gcd(m−1,t)=1

Mt
m−1 ∪ M̃t

m−1

∣∣∣∣∣
= φ(m− 1)

(
(q − 1)

( q−1
m−1
1

)
+

( q−1
m−1
1

))
= qφ(m− 1)

( q−1
m−1
m−1
m−1

)
.

Finally, if m 6= jp + 1 for some j > 1 we let Mm = ∅. Otherwise, if m = jp + 1 for
some j > 1 we let C = {s1, s2, . . . , sq/p} be a subset of G with q/p < q − 1 elements. For
each subset of j elements from C we find a corresponding multiset M inMm fromM in
the following way

M = {s(p)1 , s
(p)
2 , . . . , s

(p)
j , am}

where am is arbitrary chosen to be an element from G. Thus there are (q − 1)
(
q/p+j−1

j

)
multisets in Mm. Obviously, Mm is disjoint Mi where i | gcd(m − 1, q − 1) because
the multiplicity of at least one of its element is p - q − 1. Indeed, it could possibly have
common elements only with Mm−1 but in this case m − 1 = jp - q − 1 so Mm−1 = ∅.
Now |Mm| = (q − 1)

(
q/p+j−1

j

)
.
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Define δ′ = 0 if m 6= jp+ 1 for some j and δ′ = 1 if m = jp+ 1. Then we obtain

|MLHS| :=

∣∣∣∣∣M01

⋃( ⋃
i|gcd(m−1,q−1)

i>1

Mi

)⋃
Mm

∣∣∣∣∣
=

(
q

m

)
+ q

∑
i|d, i>1

φ(i)

( q−1
i

m−1
i

)
+ δ′(q − 1)

(
q/p+ (m− 1)/p− 1

(m− 1)/p

)
.

We note that the multiset {1, 1, 1, a, a2, . . . , am−3} is not included in the MLHS and
thus |MLHS| < |M′|. Dividing both sides by q, we have

1

q

(
q

m

)
+
∑

i|d, i>1

φ(i)

( q−1
i

m−1
i

)
+
δ′(q − 1)

q

(
q/p+ (m− 1)/p− 1

(m− 1)/p

)
<

1

q

(
q +m− 2

m

)
. (14)

Hence both Inequalities (12) and (13) are satisfied. This completes the proof of Theorem 2.
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