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Abstract

A stable cutset in a graph is a stable set whose deletion disconnects the graph.
It was conjectured by Caro and proved by Chen and Yu that any graph with n
vertices and at most 2n − 4 edges contains a stable cutset. The bound is tight, as
we will show that all graphs with n vertices and 2n− 3 edges without stable cutset
arise recursively glueing together triangles and triangular prisms along an edge or
triangle. As a by-product, an algorithmic implication of our result will be pointed
out.
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1 Introduction

All graphs considered are finite and have no loops or multiple edges. For a graph G =
(V (G), E(G)) with vertex set V (G) and edge set E(G), write |G| = |V (G)| and ‖G‖ =
|E(G)|. A stable set (or an independent set) in G is a set of pairwise non-adjacent vertices.
A cutset (or separator) of G is a set S of vertices such that G − S is disconnected. A
stable cutset in G is a cutset of G which is also a stable set. Throughout this paper,
we consider the empty set as stable. So in particular, every disconnected graph contains
a stable cut set. It is naturally expected that graphs with few edges would have stable
cutsets. Indeed, the following theorem was conjectured by Caro and proved by Chen and
Yu.

Theorem 1 ([4]). Let G be a graph with ‖G‖ 6 2|G| − 4. Then G contains a stable
cutset.

Small stable cutsets are discussed in [3], and algorithmic and complexity aspects of
stable cutsets are discussed in [5, 1, 7, 8, 9]. The importance of stable cutsets in connection
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to perfect graphs are demonstrated in [6, 11]. In [2] it is noted that graphs containing
stable cutsets play a role in some decomposition algorithms.

Actually, Chen and Yu proved the following stronger result.

Theorem 2 ([4]). Let G be 2-connected a graph with ‖G‖ 6 2|G| − 4. Then for every
vertex x ∈ V (G), there is a stable cutset not containing x.

This implies immediately the following corollary; a vertex x is a cut vertex if {x} is a
cutset.

Corollary 3. Let G be a graph with ‖G‖ 6 2|G| − 4, and x ∈ V (G). Unless x is the
unique cut vertex in G, there is a stable cutset not containing x.

The bound in Theorem 1 is tight. In the next section we describe all graphs with n
vertices and 2n− 3 edges that have no stable cutset (Theorem 5). In the last section we
will point out an algorithmic implication of our result.

Notation and definitions. Let G be a graph. The complement of G is written G.
The neighborhood of a vertex v in G, denoted by NG(v), is the set of all vertices in G
adjacent to v; if the context is clear, we simply write N(v). Set deg(v) = |N(v)|, the
degree of the vertex v. For a subset W ⊆ V (G), N(W ) =

⋃
w∈W N(w) \W , and G[W ] is

the subgraph of G induced by W ; write G−W = G[V (G) \W ] and G− w = G− {w}.
Given another graph H, an H-cutset S of G is a cutset such that G[S] is isomorphic to
H, while a k-cutset is a k-element cutset. An edge cut of G is a set M of edges such that
G −M = (V (G), E(G) \M) is disconnected. A matching cut in G is an edge cut of G
that is also a matching.

Pk stands for the path with k vertices and k− 1 edges, Ck is the cycle with k vertices
and k edges. A complete graph with k vertices is denoted Kk; K−k is Kk minus an edge.
The K3 is also called a triangle and the C6 is also called a triangular prism; see Figure 1.

Figure 1: The triangular prism C6.

We will make use of the following well-known graph operation. A clique in a graph is a
set of pairwise adjacent vertices. Let G1, G2 be disjoint graphs which each have nonempty
cliques Q1, respectively, Q2 of the same size. A graph obtained from G1 and G2 by first
choosing a bijection f : Q1 → Q2 and then identifying each x in Q1 with f(x) in Q2

is said to arise from G1 and G2 by clique identification. If the chosen cliques have two,
respectively, three vertices, we also speak of edge identifications, respectively, triangle
identifications. Finally, for convenience, we consider G1 and G2 as induced subgraphs of
the graph arising from G1 and G2 by clique identification. Thus, a graph G arises from
two graphs by clique identification if and only if there exist induced subgraphs G1 and
G2 in G such that G = G1 ∪G2 and G1 ∩G2 is a clique.
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2 The Result

Let Gsc be the the class of graphs one gets by recursively glueing together triangles and
triangular prisms along an edge or triangle. More precisely,

1. K3 ∈ Gsc and C6 ∈ Gsc.

2. If G1, G2 ∈ Gsc and G is obtained from G1 and G2 by edge identification, then
G ∈ Gsc.

3. If G1, G2 ∈ Gsc and G is obtained from G1 and G2 by triangle identification, then
G ∈ Gsc.

Notice that we may restrict to G2 ∈ {K3, C6} in the above definition without changing
the class Gsc, which effects the complexity of the algorithm considered in the last section
of the paper.

Proposition 4. Any graph G ∈ Gsc has ‖G‖ = 2|G| − 3 edges and no stable cutset.

Proof. The statement is obvious for triangles and triangular prisms. Let G arise from
G1, G2 ∈ Gsc by edge or triangle identification, and write G = G1 ∪ G2 with clique
Q = G1 ∩G2 of size two or three. Then

|G| = |G1|+ |G2| − |Q| and ‖G‖ = ‖G1‖+ ‖G2‖ − ‖Q‖,

and hence, by induction,

‖G‖ = (2|G1| − 3) + (2|G2| − 3)− ‖Q‖ = (2|G| − 3) + (2|Q| − 3− ‖Q‖) = 2|G| − 3.

Note that, as Q is a clique, any stable cutset in G is also a stable cutset in G1 or G2.
Hence, by induction again, G has no stable cutset.

Theorem 5. Let G be a graph with ‖G‖ 6 2|G| − 3. Then G contains a stable cutset or
G ∈ Gsc.

Proof. Our proof starts with a number of claims. For the sake of contradiction, we assume
that G is a minimal counterexample to Theorem 5. Then, by Theorem 1,

Claim 6. ‖G‖ = 2|G| − 3.

Claim 7. Every vertex v lies in a triangle.

Otherwise, N(v) would be a stable cutset in G.

Claim 8. G contains no K2-cutset and no K3-cutset.

Otherwise, let G contain a cutset Q isomorphic to K2 or K3. Write G = G1 ∪G2 with
G1 ∩G2 = Q. Since G has no stable cutset and Q is a clique, G1 and G2 have no stable
cutset. By Theorem 1, ‖Gi‖ > 2|Gi| − 3, i = 1, 2, hence, by Claim 6, ‖Gi‖ = 2|Gi| − 3.
Therefore, by the minimality of G, Gi ∈ Gsc, and thus G ∈ Gsc, a contradiction.
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Claim 9. G is 3-connected.

Otherwise, by Claim 8, G would contain a stable cutset.

Claim 10. G contains no 3-edge matching cut.

Otherwise, let M = {x1y1, x2y2, x3y3} be a matching cut of G. Since G is 2-connected,
G −M has exactly two components, say G1 and G2. Then the set of all edges between
G1 and G2 is exactly M , and we may assume that x1, x2, x3 ∈ V (G1), y1, y2, y3 ∈ V (G2).
Now, if {x1, x2, x3} is not a clique, say x1x2 6∈ E(G), then {x1, x2, y3} is a stable cutset
of G, a contradiction. So, {x1, x2, x3} and, by symmetry, {y1, y2, y3} are cliques. Since
G 6= C6, at least one of these cliques must be a cutset of G, contradicting Claim 8.

Claim 11. G contains no K−4 .

Otherwise, contract the edge between the two vertices of degree 3 in this (not nec-
essarily induced) subgraph, resulting in a graph G′. By Claim 9, G′ is 2-connected. By
Claim 6, ‖G′‖ 6 ‖G‖ − 3 = 2|G| − 6 = 2|G′| − 4. By Theorem 2, G′ contains a stable
cutset not containing the new vertex, which is also a stable cutset in G.

Claim 12. For any two non-adjacent vertices x, y we have |N(x) ∩N(y)| 6 2.

Otherwise, contract the two vertices, and get a (2-connected) graph G′ with ‖G′‖ 6
2|G′| − 4. Then, G′ has a stable cutset by Theorem 1 which yields a stable cutset in G.

Claim 13. G contains no P3-cutset.

Otherwise, let {x, y, z} be a cutset of G such that xy, yz ∈ E(G), and let G1 and G2

be induced subgraphs of G with G = G1 ∪G2 and G1 ∩G2 = {x, y, z}. Then

‖G1‖+ ‖G2‖ = ‖G‖+ 2 = 2|G| − 1 = 2|G1|+ 2|G2| − 7.

Thus, by symmetry ‖G1‖ 6 2|G1| − 4, and note that, by Claim 9, y is not a cut vertex of
G1. Therefore, by Corollary 3, G1 contains a stable cutset not containing y. But this is
then also a stable cutset in G.

Claim 14. In every triangle, at least two vertices belong to other triangles as well.

Proof of Claim 14: Assume that xyz is a triangle and y and z are in no other triangles.
Then there is an edge y′z′ with y′ ∈ N(y) and z′ ∈ N(z) as otherwise, by Claim 11,
(N(y) ∪ N(z)) \ {y, z} is a stable cutset. Contracting {y, z′} to a new vertex v yields a
graph G′ with ‖G′‖ 6 2|G′| − 3. Since every stable cutset in G′ yields a stable cutset in
G, G′ has no stable cutset. So G′ ∈ Gsc by the minimality of G.

Now assume that G′ contains a 3-edge matching cut M . Then by Claim 10, v is in
one of the edges in M , say M = {au, bv, cw}, and further, we have by′, bz ∈ E(G). Let
the two triangles in G′ enclosing M be abc and uvw, where b ∈ {y′, z} by Claim 12.

Let G1 be the component of G−{au, by′, bz, cw} containing abc. By Claim 8, G1 = abc.
Let G2 = G − G1, and note that ‖G2‖ = 2|G2| − 4. Further, G2 is 2-connected as any
1-cutset in G2 would yield a 2-cutset in G if we add b to it. We may assume by symmetry
that z′w ∈ E(G) (we will not use the fact that y lies in only one triangle, so y and z′ are
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symmetric in the following argument). Further assume that yu ∈ E(G). By Theorem 2,
G2 contains a stable cutset X not containing w. As X is not a stable cutset of G, y is
in a different component of G2 −X than w. Thus, u ∈ X and X ∪ {b} is a cutset of G,
and as this is not a stable cutset, z′ ∈ X. But then X ∪ {c} is a stable cutset in G, a
contradiction. So yu /∈ E(G) and therefore z′u ∈ E(G). By Theorem 2, G2 contains a
stable cutset X not containing z′, with y and z′ in different components of G2 −X. But
then X ∪ {b} is a stable cutset in G, a contradiction. Therefore, G′ contains no 3-edge
matching cut.

As a result, G′ can be built by starting with a triangle and recursively glueing on
triangles along an edge (G′ is a so-called 2-tree). As G is 3-connected, every such 2-cutset
in G′ has the form uv, and u is connected to exactly one of y and z′ by Claim 13. Further,
every vertex of degree at least 3 in G′ lies in such a cutset.

On the other hand, there are at least two vertices of degree 2 inG′. AsG is 3-connected,
such vertices must lie in NG(y) ∩ NG(z′), but by Claim 12, NG(y) ∩ NG(z′) = {y′, z}.
Thus, exactly the two vertices y′ and z have degree 2 in G′, and NG(z) = {x, y, z′}. By
a symmetric argument using a contraction of {y′, z} instead of {y, z′} in the beginning,
NG(y) = {x, y′, z}. But this implies that NG(z′) = V (G) \ {y, z′}, as every vertex in
V (G) \ {y, z′} is in NG′(v) = NG(y)∪NG(z′). In particular, xz′ ∈ E(G). This contradicts
Claim 11, as G[{x, y, z, z′}] is then a K−4 , hence Claim 14 follows.

Consider the vertex-triangle incidence graph H of G, i.e., the bipartite graph with
partite sets V (G) and the set of all triangles T (G) in G, with an edge between a vertex
v ∈ V (G) and a triangle T ∈ T (G) if v ∈ V (T ). By Claim 14, H is not a tree.

Let x1T1x2T2 . . . xkTkx1 be a shortest cycle in H. By Claim 11, H has no cycles of
length less or equal to 6, so k > 4. Then C = x1x2 . . . xkx1 is a cycle in G, and V (Ti)\V (C)
consists of a distinct vertex for every 1 6 i 6 k.

If we contract P = x1x2 . . . xk−1 to a new vertex v, we get a graph G′ with ‖G′‖ 6
2|G′|−4. If v is not the unique cut vertex of G′, then we can use Corollary 3 to find a stable
cutset ofG′ not containing v, which is then also a stable cutset ofG, a contradiction. Thus,
v is the unique cut vertex of G′. Let Y be a component of G\V (P ) and 1 6 r 6 s 6 k−1,
such that

{xr, xs} ⊆ N(Y ) ∩ V (P ) ⊆ {xr, . . . , xs},

and
N(Z) ∩ V (P ) \ {xr+1, . . . , xs−1} 6= ∅

for all components Z of G\V (P ). Note that s > r+ 2 as G is 3-connected. Now contract
xr+1 . . . xs−1 to a new vertex x and call the resulting graph G′′. Then ‖G′′‖ 6 2|G′′| − 3,
and let G1 := G′′[Y ∪ {xr, x, xs}] and G2 := G′′ \ Y . As in Claim 13, we have

‖G1‖+ ‖G2‖ = ‖G′′‖+ 2 6 2|G′′| − 1 = 2|G1|+ 2|G2| − 7.

Further, x is neither a cut vertex of G1 nor of G2. Thus, by Corollary 3, either G1 or G2 has
a stable cutset not containing x. But this is also a stable cutset of G, a contradiction.
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3 Complexity Issues

With stable cutset we mean the following decision problem: ‘Does a given graph admit
a stable cutset?’ The computational complexity of stable cutset has been addressed in
a number research papers, e.g., [5, 1, 7, 8, 9]. To sum up, stable cutset is NP-complete
for graphs of maximum degree five (even for K4-free planar graphs with maximum degree
five [8] and for 5-regular line graphs of bipartite graphs [9]), and is trivial for graphs of
maximum degree three (by Theorem 1, such graphs with more than seven vertices always
have a stable cutset). The complexity status of stable cutset is still open for graphs
with maximum degree four.

By Theorem 1, stable cutset for graphs with maximum degree four remains open
only in four cases, namely for graphs with n vertices and m edges where 2n−3 6 m 6 2n.

Thus, the following problem is of interest and has been addressed in [9, 10]:

stable cutset(n,m). Given a graph G with n vertices and m edges. Does G have a
stable cutset?

It was shown in [9] that, for any given ε > 0, stable cutset(n,m) is NP-complete for
m > (2 + ε)n. By Theorem 1, stable cutset(n,m) is trivial for m 6 2n − 4. By
Theorem 5, we obtain the following:

Corollary 15. stable cutset(n, 2n− 3) is solvable in polynomial time.

Proof. Let G be a graph with n vertices and m = 2n − 3 edges. Then, by Theorem 5,
G has a stable cutset, or else G must belong to Gsc. Since the members of Gsc can be
recognized in time O(n4) in an obvious way, Corollary 15 follows.

In fact, the recognition of G ∈ Gsc can be performed in quadratic time, based on the
following observations. For every edge xy, we can in linear time test if {x, y} is a cutset
and determine the components of G − {x, y}. If G ∈ Gsc, performing this for all 2n − 3
edges, this process yields in quadratic time a set of at most n−2 components with at most
a total of 3n − 6 vertices, where each component is obtained from copies of K3 and C6

via triangle identification. In particular, every vertex is in exactly one K3. Further, every
vertex of degree 2 is in a K3-component, and the non-separating K3 in other components
consist exactly of the vertices of degree 3. This way, we can easily recover the building
blocks, the C6, used to build up the components in quadratic time, by cutting off one C6

which includes a non-separating K3 at a time (linear time for each step, linear number of
steps).

With a bit more effort, one can show that one can decide if G ∈ Gsc in time O(n log n),
but for the sake of exposition we do not present the argument here.
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