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Abstract

This paper determines all arc-transitive pentavalent graphs of order 4pq, where
q > p > 5 are primes. The cases p = 1, 2, 3 and p = q is a prime have been treated
previously by Hua et al. [Pentavalent symmetric graphs of order 2pq, Discrete Math.
311 (2011), 2259-2267], Hua and Feng [Pentavalent symmetric graphs of order 8p, J.
Beijing Jiaotong University 35 (2011), 132-135], Guo et al. [Pentavalent symmetric
graphs of order 12p, Electronic J. Combin. 18 (2011), #P233] and Huang et al.
[Pentavalent symmetric graphs of order four time a prime power, submitted for
publication], respectively.
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1 Introduction

For a simple, connected and undirected graph Γ , denoted by V Γ and AΓ the vertex
set and arc set of Γ , respectively. Let G be a subgroup of the full automorphism group
AutΓ of Γ . Then Γ is called G-vertex-transitive and G-arc-transitive if G is transitive
on V Γ and AΓ , respectively. An arc-transitive graph is also called symmetric. It is well
known that Γ is G-arc-transitive if and only if G is transitive on V Γ and the stabilizer
Gα := {g ∈ G | αg = α} for some α ∈ V Γ is transitive on the neighbor set Γ (α) of α
in Γ .

The cubic and tetravalent graphs have been studied extensively in the literature. It
would be a natural next step toward a characterization of pentavalent graphs. In recent
years, a series of results regarding this topic have been obtained. For example, a classifi-
cation of arc-transitive pentavalent abelian Cayley graphs is given in [1], a classification of
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1-regular pentavalent graph (that is, the full automorphism group acts regularly on its arc
set) of square-free order is presented in [12], and all the possibilities of vertex stabilizers
of pentavalent arc-transitive graphs are determined in [7, 18]. Also, for distinct primes
p and q, classifications of arc-transitive pentavalent graphs of order 8p, 12p, 2pq, 2p2 and
4pn are presented in [9, 8, 10, 14, 11], respectively. In the present paper, we shall classify
arc-transitive pentavalent graphs of order 4pq with q > p > 5 primes. By using the Fitting
subgroup (that is, the largest nilpotent normal subgroup) and the soluble radical (that is,
the largest soluble normal subgroup), the method used in this paper is more simple than
some relative papers.

We now give some necessary preliminary results. The first one is a property of the
Fitting subgroup, see [17, P. 30, Corollary].

Lemma 1.1. Let F be the Fitting subgroup of a group G. If G is soluble, then F 6= 1 and
the centralizer CG(F ) 6 F .

The maximal subgroups of PSL(2, q) are known, see [4, Section 239].

Lemma 1.2. Let T = PSL(2, q), where q = pn > 5 with p a prime. Then a maximal
subgroup of T is isomorphic to one of the following groups, where d = (2, q − 1).

(1) D2(q−1)/d, where q 6= 5, 7, 9, 11;

(2) D2(q+1)/d, where q 6= 7, 9;

(3) Zq:Z(q−1)/d;

(4) A4, where q = p = 5 or q = p ≡ 3, 13, 27, 37 (mod 40);

(5) S4, where q = p ≡ ±1 (mod 8)

(6) A5, where q = p ≡ ±1 (mod 5), or q = p2 ≡ −1 (mod 5) with p an odd prime;

(7) PSL(2, pm) with n/m an odd integer;

(8) PGL(2, pn/2) with n an even integer.

For a graph Γ and a positive integer s, an s-arc of Γ is a sequence α0, α1, . . . , αs of
vertices such that αi−1, αi are adjacent for 1 6 i 6 s and αi−1 6= αi+1 for 1 6 i 6 s − 1.
In particular, a 1-arc is just an arc. Then Γ is called (G, s)-arc-transitive with G 6 AutΓ
if G is transitive on the set of s-arcs of Γ . A (G, s)-arc-transitive graph is called (G, s)-
transitive if it is not (G, s + 1)-arc-transitive. In particular, a graph Γ is simply called
s-transitive if it is (AutΓ , s)-transitive.

The following lemma determines the stabilizers of arc-transitive pentavalent graphs,
refer to [7, 18].

Lemma 1.3. Let Γ be a pentavalent (G, s)-transitive graph, where G 6 AutΓ and s > 1.
Let α ∈ V Γ . Then one of the following holds, where D10, D20 and F20 denote the dihedral
groups of order 10 and 20, and the Frobenius group of order 20, respectively.
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(a) If Gα is soluble, then s 6 3 and |Gα| | 80. Further, the couple (s,Gα) lies in the
following table.

s 1 2 3
Gα Z5, D10, D20 F20, F20 × Z2 F20 × Z4

(b) If Gα is insoluble, then 2 6 s 6 5, and |Gα| | 29 · 32 · 5. Further, the couple (s,Gα)
lies in the following table.

s 2 3 4 5
Gα A5, S5 A4 × A5, (A4 × A5):Z2, ASL(2, 4),AGL(2, 4), Z6

2:ΓL(2, 4)
S4 × S5 AΣL(2, 4),AΓL(2, 4)

The next result may easily follow from [10, Proposition 2.3] and its proof.

Lemma 1.4. Let q > p > 5 be primes, and let T be a nonabelian simple group of order
2i · 3j · 5 · p · q, where 1 6 i 6 11 and 0 6 j 6 2. Then T lies in the following Table 1.

4−PD Order 5−PD Order
PSL(2, 52) 23 · 3 · 52 · 13 M22 27 · 32 · 5 · 7 · 11
PSU(3, 4) 26 · 3 · 52 · 13 PSL(5, 2) 210 · 32 · 5 · 7 · 31
PSp(4, 4) 28 · 32 · 52 · 17 PSL(2, 26) 26 · 32 · 5 · 7 · 13

PSL(2, 28) 28 · 3 · 5 · 17 · 257
PSL(2, q) q an odd prime

Table 1.

A typical method for studying vertex-transitive graphs is taking normal quotients.
Let Γ be a G-vertex-transitive graph, where G 6 AutΓ . Suppose that G has a normal
subgroup N which is intransitive on V Γ . Let V ΓN be the set of N -orbits on V Γ . The
normal quotient graph ΓN of Γ induced by N is defined as the graph with vertex set V ΓN ,
and B is adjacent to C in ΓN if and only if there exist vertices β ∈ B and γ ∈ C such
that β is adjacent to γ in Γ . In particular, if val(Γ ) = val(ΓN), then Γ is called a normal
cover of ΓN .

A graph Γ is called G-locally primitive if, for each α ∈ V Γ , the stabilizer Gα acts
primitively on Γ (α). Obviously, an arc-transitive pentavalent graph is locally primitive.
The following theorem gives a basic method for studying vertex-transitive locally primitive
graphs, see [15, Theorem 4.1] and [13, Lemma 2.5].

Theorem 1.5. Let Γ be a G-vertex-transitive locally primitive graph, where G 6 AutΓ ,
and let N CG have at least three orbits on V Γ . Then the following statements hold.
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(i) N is semi-regular on V Γ , G/N 6 AutΓN , and Γ is a normal cover of ΓN ;

(ii) Gα
∼= (G/N)γ, where α ∈ V Γ and γ ∈ V ΓN ;

(iii) Γ is (G, s)-transitive if and only if ΓN is (G/N, s)-transitive, where 1 6 s 6 5 or
s = 7.

For reduction, we need some information of arc-transitive pentavalent graphs of order
2pq, stated in the following proposition, see [10, Theorem 4.2], where Cn, following the no-
tation in [10], denotes the corresponding graph of order n. Noting that a G-arc-transitive
graph is bipartite if and only if G has a normal subgroup with index 2 which has exactly
two orbits on the vertex set.

Proposition 1.6. Let Γ be an arc-transitive pentavalent graph of order 2pq, where q >
p > 5 are primes. Then either AutΓ is soluble, or the couple (AutΓ , (AutΓ )α) lies in the
following Table 2, where α ∈ V Γ .

Row Γ (p, q) AutΓ (AutΓ )α Transitivity Remark
1 C574 (7, 41) PSL(2, 41) A5 2− transitive not bipartite
2 C406 (7, 29) PGL(2, 29) A5 2− transitive bipartite
3 C3422 (29, 59) PGL(2, 59) A5 2− transitive bipartite
4 C3782 (31, 61) PGL(2, 61) A5 2− transitive bipartite
5 C170 (5, 17) PSp(4, 4).Z4 Z6

2:ΓL(2, 4) 5− transitive bipartite

Table 2.

2 Examples

In this section, we give two examples of arc-transitive pentavalent graphs of order 4pq
with p, q > 5 distinct primes.

The standard double cover is a method to construct arc-transitive graphs from small
arc-transitive graphs. Let Γ be a graph. Its standard double cover, denoted by Γ (2), is
defined as a graph with vertex set V Γ×{1, 2} (Cartesian product) such that vertices (α, i)
and (β, j) are adjacent if and only if i 6= j and α is adjacent to β in Γ . The following
facts are well known: val(Γ ) = val(Γ (2)), Γ (2) is connected s-transitive if and only if Γ is
connected s-transitive and is not a bipartite graph.

Thus, by Proposition 1.6, the standard double cover C(2)574 is a connected 2-transitive
pentavalent graph of order 1148 = 4 · 7 · 41.

For the proof of Theorem 3.1 in Section 3, we need a necessary and sufficient condition
for a graph to be the standard double cover of its normal quotient graph, which can be
easily derived from [8, Proposition 2.6].

Lemma 2.1. Let Γ be a G-arc-transitive graph with G 6 AutΓ . Suppose that N CG acts
semi-regularly on V Γ . Then Γ is the standard double cover of the normal quotient graph

the electronic journal of combinatorics 20(1) (2013), #P36 4



ΓN if and only if N ∼= Z2, and there is H CX such that G = N ×H and H has exactly
two orbits on V Γ .

Another useful tool for constructing and studying arc-transitive graphs is the coset
graph. For a group G, a core-free subgroup H of G (that is, H contains no nontrivial
normal subgroup of G), and an element g ∈ G \ H, the coset graph Cos(G,H,HgH) is
defined as the graph with vertex set [G:H]: = {Hx | x ∈ G} and Hx is adjacent to Hy if
and only if yx−1 ∈ HgH. The following lemma is well known, see [16].

Lemma 2.2. Using notation as above. Then the coset graph Γ := Cos(G,H,HgH) is G-
arc-transitive and val(Γ ) = |H:H ∩Hg|. Moreover, Γ is undirected if and only if g2 ∈ H,
and Γ is connected if and only if 〈H, g〉 = G.

Conversely, each G-arc-transitive graph Σ with G 6 AutΣ is isomorphic to the coset
graph Cos(G,Gα, GαgGα), where α ∈ V Σ, and g ∈ NG(Gαβ) with β ∈ Γ (α) is a 2-
element.

Example 2.3. Let T = PSL(2, 79). Then T has two maximal subgroups H ∼= A5 and
K ∼= S4 such that H ∩K ∼= A4. Take an involution g ∈ K \H and define the coset graph
C4108 = Cos(T,H,HgH). Then C4108 is a connected arc-transitive pentavalent graph of
order 4108 and Aut(C4108) = T . Further, any connected arc-transitive pentavalent graph
of order 4108 admitting T as an arc-transitive automorphism group is isomorphic to C4108.

Proof. By Lemma 1.2, T has a maximal subgroup H ∼= A5. Let L ∼= A4 be a subgroup of
H. Then K: = NT (L) ∼= S4 is a maximal subgroup of T and H ∩K = L. Let g ∈ K \H
be an involution and define the coset graph C4108 = Cos(T,H,HgH). Since 〈H, g〉 = T
and |H:H ∩Hg| = 5, C4108 is a connected arc-transitive pentavalent graph of order 4108.

Now, let Γ be a connected arc-transitive pentavalent graph of order 4108 admitting
T as an arc-transitive automorphism group. Then, for α ∈ V Γ , |Tα| = |T |/4108 = 60
and so Tα ∼= A5 by Lemma 1.2. Noting that T has two conjugate classes of subgroups
isomorphic to A5, and let H1 = H and H2 be representatives of the two classes. Then up
to isomorphism of the graphs, we may assume that Tα = H1 or H2.

Suppose Tα = H1. By Lemma 2.2, Γ ∼= Cos(T,H,HfH) for some f ∈ T \ H such
that H ∩ Hf ∼= A4. Since H ∼= A5 has unique conjugate class of subgroups isomorphic
to A4, L = (H ∩ Hf )h for some h ∈ H. Then, as H ∩ Hfh = (H ∩ Hf )h = L, HfH =
HfhH and Cos(T,H,HfH) = Cos(T,H,HfhH), without lose of generality, we may
assume that H ∩ Hf = L and f ∈ NT (L) \ L. Now, since NT (L)/L ∼= S4/A4

∼= Z2,
we have NT (L) = L ∪ Lg, so f ∈ Lg. It follows that HfH = HgH, and hence Γ ∼=
Cos(T,H,HfH) = Cos(T,H,HgH) = C4108. Moreover, by [2], |AutΓ | = 246480 = |T |,
we have AutΓ = PSL(2, 79). Since (AutΓ )α ∼= A5, Γ ∼= C4108 is 2-transitive.

Suppose next Tα = H2. Arguing similarly as above, there also exists unique T -arc-
transitive pentavalent graph. Further, by [2], this graph and C4108 are isomorphic, thus
completes the proof. �
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3 Classification

For a given group G, the socle of G, denoted by soc(G), is the product of all minimal
normal subgroups of G. Obviously, soc(G) is a characteristic subgroup of G. Now, we
prove the main result of this paper.

Theorem 3.1. Let Γ be an arc-transitive pentavalent graph of order 4pq, where q > p > 5
are primes. Then Γ lies in the following Table 3, where α ∈ V Γ .

Γ (p, q) AutΓ (AutΓ )α Transitivity

C(2)574 (7, 41) PSL(2, 41)× Z2 A5 2− transitive
C4108 (13, 79) PSL(2, 79) A5 2− transitive

Table 3.

Proof. Set A = AutΓ . By Lemma 1.3, |Aα| | 29 · 32 · 5, and hence |A| | 211 · 32 · 5 · p · q. We
divide our discussion into the following two cases.

Case 1. Assume A has a soluble normal subgroup.
Let R be the soluble radical of A and let F be the Fitting subgroup of A. Then

R 6= 1 and F is also the Fitting subgroup of R. By Lemma 1.1, F 6= 1 and CR(F ) 6 F .
As |V Γ | = 4pq, A has no nontrivial normal Sylow s-subgroup where s 6= 2, p or q. So
F = O2(A)×Op(A)×Oq(A), where O2(A),Op(A) and Oq(A) denote the largest normal
Sylow 2-, p- and q-subgroups of A, respectively.

For each r ∈ {2, p, q}, since q > p > 5, Or(A) has at least 4 orbits on V Γ , by
Proposition 1.5, Or(A) is semi-regular on V Γ . Therefore, |O2(A)| 6 4, |Op(A)| 6 p and
|Oq(A)| 6 q.

If |O2(A)| = 4, by Proposition 1.5, the normal quotient graph ΓO2(A) is an A/O2(A)-
arc-transitive pentavalent graph of odd order pq, not possible.

If |Op(A)| = p, then ΓOp(A) is an arc-transitive pentavalent graph of order 4q, by [9,
Theorem 4.1], we have q = 3, which is not the case. Similarly, we may exclude the case
where |Oq(A)| = q.

Thus, F ∼= Z2. Then CR(F ) = F and R/F = R/CR(F ) 6 Aut(F ) = 1, it follows that
R = F ∼= Z2. In particular, A 6= R, that is, A is insoluble.

Now, ΓR is an A/R-arc-transitive pentavalent graph of order 2pq. Since Aut(ΓR) >
A/R is insoluble, by Proposition 1.6, ΓR and Aut(ΓR) lie in Table 2, and as A/R is
transitive on AΓR, we have 10pq | |A/R|, then checking the subgroups of Aut(ΓR) in
the Atlas [3], we easily conclude that soc(A/R) = soc(AutΓR). Set T = soc(A/R). We
consider all the possibilities of T lying in Table 2 one by one.

For row 1, (p, q) = (7, 41) and A = R.PSL(2, 41) ∼= Z2.PSL(2, 41). It follows that either
A = Z2 ×H: = Z2 × PSL(2, 41) or A = SL(2, 41). For the former, by Theorem 1.5, H has

at most two orbits on V Γ . Further, if H is transitive on V Γ , then |Hα| = |H|
4·7·41 = 30,

which is not possible as H = PSL(2, 41) has no subgroup of order 30. Thus, H has exactly

two orbits on V Γ , it then follows from Lemma 2.1 that Γ = C(2)574, as in row 1 of Table
3. For the latter, by Theorem 1.5(ii), A = SL(2, 41) > Aα

∼= A5. However, by [5, Lemma

the electronic journal of combinatorics 20(1) (2013), #P36 6



2.7], the group GL(2, a) for each prime a > 5 contains no nonabelian simple subgroup,
which is a contradiction.

For row 2, (p, q) = (7, 29), and T = PSL(2, 29) has exactly two orbits on V ΓR. Since
Out(PSL(2, 29)) = Z2, we have A/R = Aut(ΓR) = PGL(2, 29), and by Theorem 1.5 (ii),
Aα
∼= A5. Since A ∼= Z2.PSL(2, 29).Z2, we have that either A = (Z2 × PSL(2, 29)).Z2

or SL(2, 29).Z2. For the former case, A has a normal subgroup M1
∼= PSL(2, 29). By

Theorem1.5 (i), M1 has at most two orbits on V Γ . If M1 is transitive on V Γ , then
T ∼= (R ×M1)/R is transitive on V Γ , a contradiction. Therefore, M1 has exactly two

orbits on V Γ , and hence |(M1)α| = |M1|
2·7·29 = 30. By [3], (M1)α ∼= D30, which is not possible

as (M1)α 6 Aα
∼= A5. For the latter case, A has a normal subgroup M2

∼= SL(2, 29)

which has exactly two orbits on V Γ . It follows that |(M2)α| = |M2|
2·7·29 = 60. Then as

(M2)α 6 Aα
∼= A5, we obtain that (M2)α ∼= A5. which is not possible as SL(2, 29) has no

nonabelian simple subgroup by [5, Lemma 2.7].
Similarly, we may exclude the cases where T = PSL(2, 59) and PSL(2, 61), lying in

rows 3 and 4 of Table 2.
Finally, we treat the case T = PSp(4, 4), as in row 5 of Table 2. Then (p, q) = (5, 17)

and PSp(4, 4).Z2 6 A/R 6 PSp(4, 4).Z4 as T = PSp(4, 4) is not transitive on V ΓR. Since
the Schur Multiplier of PSp(4, 4) is trivial, we conclude that A = (Z2 × PSp(4, 4)).Z2 or
(Z2 × PSp(4, 4)).Z4. Thus A always has a normal subgroup M such that M ∼= PSp(4, 4).
By Theorem 1.5, M has at most two orbits on V Γ . However, by [3], PSp(4, 4) has no
subgroup with index 170 or 340, which is a contradiction as |V Γ | = 340.

Case 2. Assume A has no soluble normal subgroup.
Let N be a minimal normal subgroup of A. Then N = Sd, where S is a nonabelian

simple group and d > 1.
If N is semi-regular on V Γ , then |N | divides 4pq, we conclude that |S| = 4pq because

S is insoluble. Noting that q > p > 5, by [6, P. 12-14], no such simple group exists, a
contradiction.

Hence, N is not semi-regular on V Γ . Then by Theorem 1.5, N has at most two orbits
on V Γ , so 2pq divides |αN |. Moreover, since Γ is connected and 1 6= N C A, we have

1 6= N
Γ (α)
α C A

Γ (α)
α , it follows that 5 | |Nα|, we thus have 10pq | |N |. Since q > 5, q | |N |

and q2 does not divide |N | as |A| | 211 · 32 · 5 · p · q, we conclude that d = 1 and N = S is a
nonabelian simple group. Let C = CA(S). Then C C A, C ∩ S = 1 and 〈C, S〉 = C × S.
Because |C × S| divides 211 · 32 · 5 · p · q and 10pq | |S|, C is a {2, 3}-group, and hence
soluble. So C = 1 as R = 1. This implies A = A/C 6 Aut(S), that is, A is almost simple
with socle S.

Thus, soc(A) = S is a nonabelian simple group and satisfies the following condition.

Condition (∗): |S| lies in Table 1 such that 10pq | |S|, and |S:Sα| = 2pq or 4pq.

Suppose first that S has exactly four prime factors. Then S = PSL(2, 52),PSU(3, 4)
or PSp(4, 4). By Condition (∗) and [3], the only possibility is (S, Sα) = (PSL(2, 25),A5).
Now, (p, q) = (5, 13), |S:Sα| = 130 and S has two orbits on V Γ . Since Out(PSL(2, 25)) =
Z2

2, A 6 PSL(2, 52).Z2
2, hence either A = PΓL(2, 25) and Aα = S5, or A = PSL(2, 25):Z2 6
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PΓL(2, 25) and Aα
∼= A5. For the former, A has three conjugate classes of subgroups

isomorphic to S5. By [2], for each case, A has no suborbit of length 5, that is, there
is no pentavalent graph admitting A as an arc-transitive automorphism group, no ex-
ample appears. For the latter, PΓL(2, 25) has three subgroups which are semi-products
PSL(2, 25):Z2, and A is isomorphic to one of the three. Then by using [2], a direct com-
putation shows that A also has no suborbit of length 5 for each of the three cases, and
thus can not give rise example.

Suppose now that S has five prime divisors, as in column 3 of Table 1. Assume
S 6= PSL(2, q). If S = PSL(5, 2), then by [3], we have Sα = Z4

2:S6. As Out(PSL(5, 2)) = Z2,
Aα = Z4

2:S6 or Z4
2:(S6 × Z2), both have no permutation representation of degree 5, not

possible. If S = M22, then (p, q) = (7, 11). By [3], M22 has no subgroup with index 154 or
308, that is, S does not satisfy the Condition (∗), not the case. If S = PSL(2, 26), then
(p, q) = (7, 13), and either |Sα| = |S|/2pq = 1440 or |Sα| = |S|/4pq = 720. However, by
Lemma 1.2, it is easy to verify that PSL(2, 26) has no subgroup with order 720 or 1440,
a contradiction. For S = PSL(2, 28), then (p, q) = (17, 257), and either |Sα| = |S|/2pq =
1920 or |Sα| = |S|/4pq = 960. By Lemma 1.2, the only possibility is that Sα 6 Z28 :Z28−1
is soluble, then as Out(S) = Z8, Aα 6 Sα.Z8 is also soluble. However, as |Aα| > 960,
Lemma 1.3 implies that Aα is insoluble, which is a contradiction.

Now, assume that S = PSL(2, q) has five prime divisors. Then q > p > 5 and
S is a {2, 3, 5, p, q}-group. Since |S:Sα| = 2pq or 4pq, we obtain 3 | |Sα|, so |Aα|6 |80.
hence Aα is insoluble by Lemma 1.3. Since Out(PSL(2, q)) = Z2, Aα 6 Sα.Z2, we have
Sα is insoluble, that is, Sα is an insoluble subgroup of PSL(2, q). It then follows from
Lemma 1.2 that Sα = Aα = A5 as Aut(PSL(2, q)) = PGL(2, q) has no subgroup isomorphic
to A5.Z2. Since S has at most two orbits on V Γ , |S| = 60 · 2pq or 60 · 4pq. So |S| has
exactly one 3-divisor, one 5-divisor, and three or four 2-divisors. Moreover, as 8 divides
|S| = |PSL(2, q)| = q(q−1)(q+1)

2
, 16 | (q2 − 1), it implies q ≡ ±1 (mod 8). Now, since

( q−1
2
, q+1

2
) = 1, if p | (q − 1), then q + 1 = 2i3j5k, where 1 6 i 6 4, 0 6 j, k 6 1, we easily

conclude that q ∈ {7, 23, 47, 79, 239} as q ≡ ±1 (mod 8). Similarly, if p | (q + 1), then
q ∈ {7, 17, 31, 41, 241}. Further, as |S| = |PSL(2, q)| has exactly five prime divisors, a
simple computation shows that q 6= 7, 17, 23, 31, 47, 239 or 241, we finally conclude q = 41
or 79.

Now, by [3], the only possibilities are as in the following table.

S PSL(2, 41) PSL(2, 79)
Sα A5 A5

(p, q) (13, 41) (13, 79)

If S = PSL(2, 41), then S has two orbits on V Γ , so A = PGL(2, 41) and Aα = Sα = A5.
Let β ∈ Γ (α). By Lemma 2.2, we may suppose Γ = Cos(A,Aα,AαgAα) for some g ∈
NA(Aαβ). Since val(Γ ) = 5, Aαβ

∼= A4, it follows that NA(Aαβ) = NS(Aαβ) ∼= S4. Hence
〈Aα, g〉 ⊆ S ⊂ A, which contradicts the connectivity of Γ .

Finally, for S = PSL(2, 79), S is transitive on V Γ , and so A = PSL(2, 79) and Aα = A5.
By Example 2.3, Γ ∼= C4108 is a 2-transitive graph. This completes the proof. �
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