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Abstract

A permutation graph is a cubic graph admitting a 1-factor M whose complement
consists of two chordless cycles. Extending results of Ellingham and of Goldwasser
and Zhang, we prove that if e is an edge of M such that every 4-cycle containing an
edge of M contains e, then e is contained in a subdivision of the Petersen graph of
a special type. In particular, if the graph is cyclically 5-edge-connected, then every
edge of M is contained in such a subdivision. Our proof is based on a characteri-
zation of cographs in terms of twin vertices. We infer a linear lower bound on the
number of Petersen subdivisions in a permutation graph with no 4-cycles, and give
a construction showing that this lower bound is tight up to a constant factor.
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1 Introduction

A special case of Tutte’s 4-flow conjecture [7] states that every bridgeless cubic graph
with no minor isomorphic to the Petersen graph is 3-edge-colourable. Before this special
case was shown to be true by Robertson et al. (cf. [6]), one of the classes of cubic
graphs for which the conjecture was known to hold was the class of permutation graphs
— i.e., graphs with a 2-factor consisting of two chordless cycles. Indeed, by a result
of Ellingham [3], every permutation graph is either Hamiltonian — and hence 3-edge-
colourable — or contains a subdivision of the Petersen graph. To state his theorem more
precisely, we introduce some terminology.

Rephrasing the above definition, a cubic graph G is a permutation graph if it contains
a perfect matching M such that G − E(M) is the disjoint union of two cycles, none of
which has a chord in G. A perfect matching M with this property is called a distinguished
matching in G. For brevity, if G is a permutation graph with a distinguished matching
M , then the pair (G,M) is referred to as a marked permutation graph.

We let P10 be the Petersen graph. Given a distinguished matching M in G, an M-copy
of P10 is a subgraph G′ of G isomorphic to a subdivision of P10 and composed of the two
cycles of G− E(M) together with five edges of M . Following Goldwasser and Zhang [4],
an M -copy of P10 is also referred to as an M -P10. Furthermore, an M-copy of the 4-cycle
C4 (or an M-C4) is a 4-cycle in G using two edges of M .

The proof of Ellingham’s result implies that if a marked permutation graph (G,M)
contains no M -P10, then it contains an M -C4 (and is therefore Hamiltonian). Goldwasser
and Zhang [4] obtained a slight strengthening:

Theorem 1. If (G,M) is a marked permutation graph, then G contains either two M-
copies of C4, or an M-copy of P10.

Lai and Zhang [5] studied permutation graphs satisfying a certain minimality condition
and proved that in a sense, they contain ‘many’ subdivisions of the Petersen graph.

The main result of this note is the following generalization of Theorem 1.

Theorem 2. Let (G,M) be a marked permutation graph on at least six vertices and let
e ∈ E(M). If e is contained in every M-C4 of G, then e is contained in an M-copy of
P10.

Theorem 2 is established in Section 2. The proof is based on a relation between
M -copies of P10 in permutation graphs and induced paths in a related class of graphs.

Of particular interest is the corollary for cyclically 5-edge-connected graphs, that is,
graphs containing no edge-cut of size at most 4 whose removal leaves at least two non-tree
components.

Corollary 3. Every edge of a cyclically 5-edge-connected marked permutation graph
(G,M) is contained in an M-P10.
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Figure 1: (a) The standard drawing of the graph G. (b) The corresponding graph Ha.

The class of cyclically 5-edge-connected permutation graphs is richer than one might
expect. Indeed, it had been conjectured [8] that every cyclically 5-edge-connected per-
mutation graph is 3-edge-colourable, but this conjecture has been recently disproved [2,
Observation 4.2].

Theorem 2 readily implies a lower bound on the number of M -copies of the Petersen
graph in a marked permutation graph (G,M) such that G contains no M -C4 and has n
vertices. We improve this lower bound in Section 3. We also show that the bounds (which
are linear in n) are optimal up to a constant factor.

We close this section with some terminology. If G is a graph and X ⊆ V (G), then
G[X] is the induced subgraph of G on X. The set of all neighbours of a vertex v of G is
denoted by NG(v).

2 Proof of Theorem 2

Let (G,M) be a marked permutation graph. If v ∈ V (G), then we write v′ for the
neighbour of v in M (which we call the friend of v). We extend this notation to arbitrary
sets of vertices of G: if X ⊆ V (G), then we set

X ′ = {v′ : v ∈ X} .

Let A be the vertex set of one component of G−E(M). Thus, A′ is the vertex set of the
other component and both G[A] and G[A′] are chordless cycles.

In this section, we prove Theorem 2. Fix an edge e of the matching M . Let a and a′

be its end-vertices. We also choose an orientation for each of the cycles G[A] and G[A′].
All these will be fixed throughout this section.

If X ⊆ A, then G{X} is the spanning subgraph of G obtained by adding to G−E(M)
all the edges vv′, where v ∈ X. In expressions such as G{{a, b}}, we omit one pair of set
brackets, and write just G{a, b}.

The auxiliary graph Ha (with respect to the vertex a) is defined as follows. The vertex
set of Ha is A− {a}. Two vertices x and y of Ha are adjacent in Ha whenever the cyclic
order of a, x and y on G[A] is axy and the cyclic order of their friends on G[A′] is a′y′x′.

Alternatively, consider the following standard procedure, illustrated in Figure 1. Ar-
range the vertices of A on a horizontal line in the plane, starting on the left with a and
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Figure 2: The graph G{a, x, y, z, w} in Case 1 of the proof of Lemma 4.

continuing along the cycle G[A] according to the fixed orientation. Place the vertices of
A′ on another horizontal line, putting a′ leftmost and continuing in accordance with the
orientation of G[A′]. Join each vertex z ∈ A with its friend by a straight line segment.
The segment aa′ is not crossed by any other segment, and for x, y ∈ A−{a}, the segments
xx′ and yy′ cross each other if and only if x and y are adjacent in Ha. Thus, Ha can be
directly read off the resulting figure, which is called the standard drawing of G.

A similar construction, without fixing the vertex a, gives rise to a class of graphs also
called ‘permutation graphs’ (see [1]). In this paper, we only use this term as defined in
Section 1.

The following lemma provides a link between induced paths in Ha and M -copies of
P10 in G.

Lemma 4. Suppose that Ha contains an induced path xyzw on 4 vertices. Then the
subgraph G{a, x, y, z, w} is an M-P10 in G.

Proof. Let P be the path xyzw in Ha. Since xy ∈ E(P ), the edges xx′ and yy′ cross.
By symmetry, we may assume that x ∈ aCy and y′ ∈ a′C ′x′. First, note that z /∈ yCa.
Otherwise, as zz′ crosses yy′, it would follow that zz′ also crosses xx′, which contradicts
the assumption that x and z are not adjacent in G. We now consider two cases, regarding
whether or not z ∈ aCx.

Case 1: z ∈ aCx. Since the edges zz′ and xx′ do not cross, z′ ∈ a′C ′x′; moreover,
since zz′ and yy′ cross, it follows that z′ ∈ y′C ′x′.

We assert that w ∈ zCx. Suppose that this is not the case. If w ∈ aCz, then
ww′ cannot cross zz′ without crossing yy′, contradicting the fact that zw ∈ E(P ) and
yw /∈ E(P ). If w ∈ xCy, then ww′ crosses xx′ or yy′ regardless of the position of w′,
which results in a similar contradiction. Finally, if w ∈ yCa, then ww′ cannot cross zz′

without crossing xx′.
Thus, we have shown that w ∈ zCx, which implies that w′ ∈ a′C ′y′, as ww′ and yy′

do not cross. Summing up, G{a, x, y, z, w} is precisely as in Figure 2 and constitutes an
M -copy of the Petersen graph.

Case 2: z /∈ aCx. Then, z ∈ xCy. Since zz′ and xx′ do not cross, z′ ∈ x′C ′a′. As ww′

crosses zz′ but none of xx′ and yy′, the only possibility is that w ∈ yCa and w′ ∈ x′C ′z′,
which again produces an M -P10.

By Lemma 4, if there is no M -copy of P10 containing aa′ in G, then Ha contains no in-
duced path on 4 vertices. Such graphs are known as cographs or P4-free graphs. There are
various equivalent ways to describe them, summarized in the survey [1, Theorem 11.3.3]
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Figure 3: The triangular prism G with the unique 1-factor M such that (G,M) is a
marked permutation graph.

by Brandstädt, Le and Spinrad. We use the characterisation that involves pairs of twin
vertices. (Two vertices x and y of a graph H are twins if NH(x) = NH(y).)

Theorem 5. A graph G is P4-free if and only if every induced subgraph of G with at least
two vertices contains a pair of twins.

To be able to use Lemma 4 in conjunction with Theorem 5, we need to interpret twin
pairs of Ha in terms of G.

Lemma 6. Let x and y be twins in Ha. Let Q′ be the path in G defined by

Q′ =

{
x′C ′y′ if xy /∈ E(Ha),

y′C ′x′ otherwise.

Then M matches the vertices of the path xCy to those of Q′ and vice versa.

Proof. Suppose, on the contrary, that the statement does not hold. By symmetry, we
may assume that x ∈ aCy, and that M contains an edge ww′ with w ∈ V (xCy) and
w′ /∈ V (Q′). We assert that ww′ crosses exactly one edge from {xx′, yy′}. To prove this,
we consider two cases according to whether or not xx′ and yy′ cross. If they do not cross,
then ww′ crosses only xx′ (if w′ ∈ V (a′C ′x′)) or only yy′ (if w′ ∈ V (y′C ′a′)). Otherwise,
ww′ crosses only xx′ (if w′ ∈ V (a′C ′y′)) or only yy′ (if w′ ∈ V (x′C ′a′)). In each case, we
obtain a contradiction with the assumption that x and y are twins in Ha.

We now prove Theorem 2, proceeding by induction on the number of vertices of G. The
base case is the triangular prism, the unique permutation graph on 6 vertices (Figure 3),
for which the theorem is trivially true since e cannot be contained in every M -C4 of G.
Therefore, we assume that G has at least 8 vertices and that every M -copy of C4 in G
contains the edge aa′.

Suppose first that azz′a′ is such an M -copy of C4. Let G0 be the cubic graph obtained
by removing the edge zz′ and suppressing the resulting degree 2 vertices z and z′. Set
M0 = M \ {zz′}. All M0-copies of C4 created by this operation contain the edge aa′.
Therefore, regardless of whether or not G0 contains an M0-C4, the induction hypothesis
implies that aa′ is contained in an M0-copy of P10. This yields an M -copy of P10 in G
containing aa′, as required.

Consequently, it may be assumed that G does not contain any M -C4. Assume that
Ha contains no pair of twin vertices. Theorem 5 implies that Ha is not P4-free. Let X
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be a subset of V (Ha) of size 4 such that Ha[X] ' P4. By Lemma 4, G{X ∪ {a}} is an
M -copy of P10, and the sought conclusion follows.

Thus, we may assume that Ha contains twin vertices x and y. Without loss of gener-
ality, x belongs to aCy.

Let the path Q′ be defined as in Lemma 6. Thus, since x and y are twins in Ha,
vertices of the path xCy are only adjacent in M to vertices of Q′ and vice versa. We
transform G into another cubic graph G1 by removing all vertices that are not contained
in {a, a′}∪V (xCy∪Q′) and adding the edges ax, ay, a′x′ and a′y′ (if they are not present
yet). Let M1 be the perfect matching of G1 consisting of all the edges of M contained in
G1. Note that although the transformation may create M -copies of C4 not present in G,
the edge aa′ is contained in every M1-copy of C4 in G1. Furthermore, the path yCx in G
must have some internal vertices other than a, since otherwise G would contain an M -C4,
namely yaa′y′. Thus, G1 has fewer vertices than G. The induction hypothesis implies
that aa′ is contained in an M1-copy of P10 in G1, and therefore also in G.

3 Counting the Petersen copies

Turning to the quantitative side of the question studied in Section 2, we now derive from
Theorem 2 a lower bound on the number of M -copies of P10 in a permutation graph with
no M -C4. The bound is linear in the order of the graph. We give a construction showing
that this lower bound is tight up to a constant factor.

Throughout this section, (G,M) is a marked permutation graph with vertex set A∪A′

just like in Section 2.
We will need two lemmas, the second of which we find to be of interest in its own

right. The first lemma is an observation on auxiliary graphs which follows readily from
the definition; its proof is omitted.

Lemma 7. Let a, b ∈ A. Then the following hold for each x, y ∈ A− {a, b}:

(i) ax ∈ Hb if and only if bx ∈ Ha,

(ii) xy ∈ Hb if and only if |{bx, by, xy} ∩Ha| ∈ {1, 3}.

Lemma 8. Let a, b ∈ A. One of the following conditions holds:

• there is some M-P10 in G containing both aa′ and bb′, or

• for any F ⊂ A with |F | = 4 and {a, b} ∩ F = ∅, it holds that G{F ∪ {a}} ' P10 if
and only if G{F ∪ {b}} ' P10.

Proof. Assume that there exists no M -P10 containing both aa′ and bb′. By Lemma 4, it
is sufficient to show that a set {u,w, x, y} ⊆ A \ {a, b} induces a path of length 4 in Ha

if and only if it induces a path of length 4 in Hb.
Let U1 = NHa(b) = NHb

(a) and U2 = A \ (U1 ∪ {a, b}). Lemma 4 implies that in
the auxiliary graph Ha, there is no induced path of length 4 containing the vertex b.
Therefore,
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(i) if x, y ∈ U1, z ∈ U2, and xy /∈ Ha, then xz ∈ Ha if and only if yz ∈ Ha, and

(ii) if x, y ∈ U2, z ∈ U1, and xy ∈ Ha, then xz ∈ Ha if and only if yz ∈ Ha.

Hence, if uwxy is an induced path of length 4 in Ha, then {u,w, x, y} ∩ U1 belongs to
{{u,w, x, y} , {w, x} , ∅}. By Lemma 7, it follows that {u,w, x, y} induces a path of length
4 in Hb as well. More precisely, this path is uwxy if {u,w, x, y} ∩ U1 ∈ {{u,w, x, y} , ∅},
and uxwy if {u,w, x, y} ∩ U1 = {w, x}. The conclusion follows by symmetry of the roles
played by a and b.

We can now prove the aforementioned lower bound.

Proposition 9. If (G,M) is a marked permutation graph with n > 40 vertices and no
M-C4, then (G,M) contains at least n/2− 4 M-copies of the Petersen graph.

Proof. If each edge of M is contained in at least 5 M -copies of P10, the total number of
copies is at least (5n/2)/5 = n/2. Hence, we may assume that there exists x ∈ {1, 2, 3, 4}
and an edge e ∈ E(M) that is contained in only x M -copies of P10. Let C be the set of
these copies.

At least n/2 − 4x − 1 edges of M are not contained in any M -P10 containing e. By
Lemma 8, if we replace e by any such edge in any M -P10 from C, we obtain an M -P10

again. These replacements yield x(n/2− 4x− 1) distinct M -copies of P10. Thus, in total,
(G,M) contains at least x(n/2−4x) distinct M -copies of P10. Minimizing this expression
over x ∈ {1, 2, 3, 4} and using the assumption that n > 40, we deduce that the number of
copies is at least n/2− 4, as asserted.

We now construct a family of marked permutation graphs (Gk,Mk) showing that the
linear estimate in Proposition 9 is tight up to a constant factor. The graph Gk has 6k+14
vertices, contains no Mk-C4, and the number of Mk-copies of the Petersen graph in Gk

is only 6k + 6. (We note that graphs with a somewhat similar structure are constructed
in [4, Section 3].)

For k = 4, the graph (Gk,Mk) is shown in Figure 4. We now give a formal definition
and determine the number of Mk-copies of P10.

Let A = {1, 2, . . . , 3k + 7} and A′ =
{

1, 2, . . . , 3k + 7
}

. The vertex set of Gk is
A ∪ A′. On each of A and A′, we consider the standard linear order (in particular,
1 < 2 < · · · < 3k + 7). As in Section 2, we write i′ for the neighbour in Mk of a vertex
i ∈ A. Thus, i′ = j for a suitable j.

Let

E1 =
{

(2i− 1)i : 1 6 i 6 k
}
∪
{

(2k + i + 3)(k + 2i + 3) : 1 6 i 6 k
}
,

E2 =
{

(2i)(3k + 4− 2i) : 1 6 i 6 k − 1
}
,

E3 = {(2k)(k + 2), (2k + 1)(k + 4), (2k + 2)(k + 1), (2k + 3)(k + 3),

(3k + 4)(3k + 5), (3k + 5)(3k + 7), (3k + 6)(3k + 4), (3k + 7)(3k + 6)}.

Edges in E1, E2 and E3 will be called vertical, skew and special, respectively. Moreover,
the first four and the last four edges in E3 are two groups of special edges.
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1 (k + 1) (k + 5) (3k + 4) (3k + 7)

Figure 4: The marked permutation graph (G4,M4). Labels are given only for the circled
vertices.

Proposition 10. The marked permutation graph (Gk,Mk) contains exactly 6k + 6 M-
copies of the Petersen graph.

Proof. Each of the groups of special edges forms an Mk-P10 with each of the remaining
3k+3 edges of Mk. We prove that besides these 6k+6 copies, there are no other Mk-copies
of P10 in Gk.

For X ⊆Mk, we let GX be the graph obtained from Gk −Mk by adding the edges in
X and suppressing the degree 2 vertices.

Let X be a subset of Mk that contains no group of special edges. Suppose that
Gk{X} is isomorphic to the Petersen graph. To obtain a contradiction, we show that
Gk{X} contains a 4-cycle.

First of all, if X contains a special edge, then it contains no other special edge from
the same group. Indeed, a quick case analysis shows that if Y consists of any two or three
special edges in the same group, then GY contains a Y -C4.

Thus, for the purposes of our argument, special edges behave just like vertical ones.
We assert next that X contains at most one skew edge. Let j1j

′
1 and j2j

′
2 be skew edges

with j1 < j2 and j1 + j2 maximum among the skew edges in X.
Observe that X contains no vertical edge ii′ with i > j2 and i′ < j′2. Indeed, if there

is only one such edge, then it forms an X-C4 in GX together with j2j
′
2, while if there are

at least two such edges, then an X-C4 is obtained from a consecutive pair among them.
By a similar argument, X contains neither any vertical edge ii′ with j1 < i < j2, nor

any vertical edge ii′ with j′2 < i′ < j′1. It follows that j1j
′
1 and j2j

′
2 are contained in an

X-C4 in GX , a contradiction which proves that there is at most one skew edge in X.
Consequently, X contains a set Y of at least four edges that are vertical or special,

as |X| = 5. Further, |Y | 6= 5, so there are exactly four Y -copies of C4 in GY . Only at
most two of these will be affected by the addition of the fifth edge of X. Thus, an X-C4

persists in GX , a contradiction. The proof is complete.
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While the graphs constructed in the proof of Proposition 10 are C4-free, they are not
cyclically 5-edge-connected. A slight modification of the construction ensures this stronger
property, but makes the discussion somewhat more complicated. For this reason, we only
described the simpler version.
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