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Abstract

In this paper we consider the question how the set of inversions of a permutation
π ∈ Sn can be partitioned into two subsets, which are themselves inversion sets of
permutations in Sn. Our method is to study the modular decomposition of the
inversion graph of π. A correspondence to the substitution decomposition of π is
also given. Moreover, we consider the special case of multiplicative decompositions.
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1 Introduction

For a permutation π ∈ Sn denote its inversion set by

T (π) :=
{
{ i, j } ∈ N2 1 6 i < j 6 n, π(i) > π(j)

}
.

In this paper, we address the following problem:

Problem 1.1. For a given permutation π ∈ Sn, give a description of all τ1, τ2 ∈ Sn such
that

T (τ1) ∪ T (τ2) = T (π)

T (τ1) ∩ T (τ2) = ∅
τ1, τ2 6= idn .

(1)
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In other words, we want to find all ways to distribute the inversions of π into two
disjoint sets, such that each is itself the inversion set of a permutation. The motivation
behind this problem is as follows. In [12], toric statistical ranking models are considered.
One of these models is the inversion model, which is also known as Babington-Smith
Model in the statistics literature, see [9]. The toric ideal IBS associated to this model is
the kernel of the map

k[Xπ π ∈ Sn]→ k[Xij 1 6 i < j 6 n]

Xπ 7→
∏

{ i,j }∈T (π)

Xij

It follows from general theory that IBS is generated by differences of monomials [11,
Lemma 4.1]. By construction, a difference of monomials

∏
iXπi −

∏
iXτi is contained

in IBS if and only if
⋃
i T (πi) =

⋃
i T (τi) as multisets. Thus the generators of the ideal

IBS encode the relations among the inversion sets of permutations. Therefore, a set of
generators for this ideal not only provides algebraic information for the Babington-Smith
Model but also encodes fundamental information about the combinatorics of permuta-
tions. However, IBS turns out to be a rather large and complex object, for example
the authors of [12] found computationally that for n = 6 there are as many as 130377
quadratic generators and there are also generators of higher degree. Therefore, as a first
step in understanding this object, we study its quadratic generators for all n. The ideal
IBS is invariant under the right action of the Sn, so if m := Xπ1Xπ2 −Xτ1Xτ2 ∈ IBS, then
also mπ−11 = XidnXπ2π

−1
1
− Xτ1π

−1
1
Xτ2π

−1
1
∈ IBS. Therefore we can restrict our attention

to binomials of the form
XidnXπ −Xτ1Xτ2 .

From our discussion, the following observation is immediate:

Proposition 1.2. A binomial XidnXπ − Xτ1Xτ2 lies in IBS if and only if π, τ1 and τ2
satisfy (1).

Thus Problem 1.1 is equivalent to the problem of describing the quadratic generators
of IBS. In the recent preprint [6], the following closely related question is considered: Let
ω0,n ∈ Sn denote the permutation of maximal length (i.e. the one mapping i 7→ n+1− i).

Problem 1.3. Give a description of all sets { τ1, . . . , τl } ⊂ Sn such that T (ω0,n) =⋃
i T (τi) and T (τi) ∩ T (τj) = ∅ for i 6= j.

The motivation and the methods employed by the authors of [6] are different from
ours, but some intermediate results of this paper were also found independently there.
In particular, Proposition 4.1 and part of Theorem 3.9 resemble Proposition 2.2 and
Proposition 3.14 in [6].

Another perspective on a toric model is via its model polytope. The model polytope
associated to the inversion model is the linear ordering polytope[12], which is a well-studied
object in combinatorial optimization, see [10, Chapter 6]. In [14] the following question
is addressed:
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Problem 1.4. Which permutations π ∈ Sn are neighbours of the identity permutation
in the graph of the linear ordering polytope?1

In [14], a characterization of these permutations is obtained, but as we show after
Theorem 3.9 there is a gap in the proof. Nevertheless, the result from [14] is correct and we
extend the result and provide a proof in Theorem 3.9. It turns out that a permutation has
a decomposition as in (1) if and only if it is not a neighbour of the identity permutation in
the graph of the linear ordering polytope. However, in the present paper we are interested
in a description of all possible decompositions of type (1).

This paper is divided into four sections and an appendix. In Section 2 we review the
concept of modular decomposition for graphs, the characterisation of inversion sets of
permutations and we discuss blocks of permutations. In Section 3, we prove our main
results. In Theorem 3.3, we give an answer to Problem 1.1 in terms of the modular
decomposition of the inversion graph of π. Moreover, we consider a modification of
(1), where we impose the further restriction that π = τ1τ2. We show in Theorem 3.6
that if π admits a solution of (1), then it also admits a solution satisfying π = τ1τ2.
Since Problem 1.1 is formulated without referring to graphs, in Theorem 3.13 we give a
reformulation of Theorem 3.3 which avoids notions from graph theory. In Section 4, we
show that the problem of decomposing an inversion set into three or more inversion sets
can be reduced to (1). Moreover, we show that permutations of sufficiently high length
always admit a solution of (1). In the appendix we prove a result connecting the blocks
of a permutation with the modules of its inversion graph. The result from the appendix
seems rather natural to us, but since we were not able to find it in the literature, we
include a proof.

2 Preliminaries

2.1 Notation

Let us first fix some notation. We denote a graph G on a vertex set V with edge set
E ⊂ V × V by G = (V,E). All our graphs are undirected and simple. For two vertices
v, w, let vw denote the (undirected) edge between v and w. We say v and w are connected
in G if vw ∈ E and we write vw ∈ G by abuse of notation.

For a natural number n ∈ N, we write [n] for the set { 1, . . . , n }. For a finite set S,
we write

(
S
2

)
for the set of subsets of S containing exactly 2 elements. For two sets A and

B, we denote by A ∪̇B the disjoint union of A and B. For π ∈ Sn we denote by T (π) the
inversion set {

{ i, j } ∈
(

[n]

2

)
i < j, π(i) > π(j)

}
.

This set can be considered as the edge set of an undirected graph G(π) = ([n], T (π)), the
inversion graph of π. We consider this graph without the natural order on its vertices,
therefore in general G(π) does not uniquely determine π. The graphs arising this way

1The linear ordering polytope is called the “permutation polytope” in [14].
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are called permutation graphs, see [4]. By another abuse of notation, we write ij ∈ T (π)
(resp. ij ∈ G(π)) if { i, j } is an inversion of π. For two subsets A,B ⊂ [n], we write
A < B if a < b for every a ∈ A, b ∈ B.

2.2 Modular decomposition of graphs

In this subsection we review the modular composition for graphs, see [4, Chapter 1.5] for
a reference. Let G = (V,E) be a graph.

Definition 2.1 ([4]). 1. A set M ⊂ V is called a module of G if for m1,m2 ∈ M and
v ∈ V \M it holds that vm1 ∈ G if and only if vm2 ∈ G.

2. A module M is called strong if for every other module N either M ∩N = ∅, M ⊂ N
or N ⊂M holds.

In [4, p. 14] it is shown that for every module there is a unique minimal strong module
containing it. A graph is called prime if V and its vertices are its only modules. We denote
by G the complementary graph G = (V,

(
V
2

)
\ E) of G. For a subset U ⊂ V , we denote

by GU the induced subgraph of G on U .

Theorem 2.2 (Theorem 1.5.1, [4]). Let G = (V,E) be a graph with at least two vertices.
Then the maximal strong submodules ( m.s.s.) of G form a partition of V and exactly one
of the following conditions hold:

Parallel case G is not connected. Then its m.s.s. are its connected components.

Serial case G is not connected. Then the m.s.s. of G are the connected components of
G.

Prime case Both G and G are connected. Then there is a subset U ⊂ V such that

1. #U > 3,

2. GU is a maximal prime subgraph of G,

3. and every m.s.s. M of G has #M ∩ U = 1.

We call a module M of G parallel, serial or prime corresponding to which condition
of the above theorem is satisfied by GM . As a convention, we consider single vertices as
parallel modules. By the following lemma, we do not need to distinguish between modules
of G contained in a module M and modules of GM .

Lemma 2.3. Let G be a graph, M a module of G and U ⊂ M a subset. Then U is a
module of G if and only if it is a module of GM . Moreover, U is a strong module of G if
and only if it is strong as a module of GM .
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Proof. The first statement is immediate from the definitions. For the second statement,
first assume that U is not strong as a module in GM . We say that a module N overlaps U
if N ∩U 6= ∅, N * U and U * N holds. So by our assumption, there is a module N ⊂M
of GM overlapping U . But N is also a module of G, hence U is not strong as a module of
G. On the other hand, if U is not strong as a module of G, then there is a module N of
G overlapping U . Now, M \N is a module of G ([4, Prop 1.5.1 (ii)]), and thus a module
of GM . But M \N overlaps U , so U is not strong as a module of GM .

If M and N are two disjoint modules of G, then one of the following holds:

1. Either every vertex of M is connected to every vertex of N . Then we call M and
N connected in G and we write MN for the set of edges between vertices of M and
N .

2. Otherwise no vertex of M is connected to any vertex of N .

The edges connecting the m.s.s. of a module M are called external edges of M . So M is
parallel if and only if it has no external edges. Note that every edge of G is an external
edge for exactly one strong module. We close this section by giving a description of the
non-strong modules of G:

Lemma 2.4. Let G be a graph and let M be a module which is not strong. Then M is
the union of some m.s.s. of a parallel or serial strong module. On the other hand, any
union of m.s.s. of a parallel or serial strong module is a module.

Proof. Let N be the smallest strong module containing M . The m.s.s. of N partition it,
so M is a union of some of them. If N is prime, then consider the set U in Theorem 2.2.
Since M is not strong, it is a union of at least two but not of all m.s.s. of N . So M ∩ U
is a nontrivial submodule of GU , contradicting Theorem 2.2. Hence N is either serial of
parallel.

For the converse, let M be a union of m.s.s. of a serial or parallel strong module N . By
Lemma 2.3, it suffices to prove that M is a module of GN . Let x, y ∈M and m ∈ N \M .
The edges xm, ym are both external in N . But if N is serial, it has all possible external
edges and if it is parallel, it has none at all. In both cases, the claim is immediate.

2.3 Inversion sets and blocks

We recall the characterization of those sets that can arise as inversion sets of a permuta-
tion.

Proposition 2.5 (Proposition 2.2 in [13], see also [3]). Let T ⊂
(
[n]
2

)
be a subset. The

following conditions are equivalent:

1. There exists a permutation π ∈ Sn with T = T (π).

2. For every 1 6 i < j < k 6 n it holds that:
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• If ij, jk ∈ T , then ik ∈ T .

• If ik ∈ T , then at least one of ij and jk lies in T .

If a subset T ⊂
(
[n]
2

)
satisfies the conditions of above proposition, say T = T (π), then so

does its complement by
(
[n]
2

)
\ T = T (ω0,nπ). We now take a closer look at the modules

of the inversion graph of a permutation π ∈ Sn. Let us call a set I ⊂ [n] of consecutive
integers an interval.

Definition 2.6 ([5]). 1. A π-block is an interval I ⊂ [n] such that its image π(I) is
again an interval.

2. A π-block is called strong if for every other π-block J either I ∩ J = ∅, I ⊂ J or
J ⊂ I holds.

The importance of π-blocks for our purpose stems from the following theorem:

Theorem 2.7. Let I ⊂ [n] and π ∈ Sn. The following implications hold:

1. I is a π-block =⇒ I is a module of G(π)

2. I is a strong π-block ⇐⇒ I is a strong module of G(π)

In particular, every strong module of G(π) is an interval.

The first part of this theorem is relatively easy to prove and is mentioned in [14].
Its converse fails for trivial reasons: By Lemma 2.4, the non-strong modules of G(π) are
exactly the unions of m.s.s. of parallel or serial strong modules of G(π). But such a
union is not necessarily an interval. A complete proof of Theorem 2.7 is included in the
appendix. We call a π-block parallel, serial or prime if it is a module of this type.

3 Main results

In this section we prove our main results. Fix a permutation π ∈ Sn. For τ1, τ2 ∈ Sn, we
will write π = τ1 t τ2 to indicate that the three permutations satisfy (1). We call τ1 t τ2 an
inv-decomposition of π. If an inv-decomposition of π exists, we call π inv-decomposable.

3.1 Inversion decomposition

In this subsection, we describe all possible inv-decompositions of π. We start with an
elementary observation:

Lemma 3.1. Let i, j, k ∈ [n] such that ij, ik ∈ G(π) and jk /∈ G(π). Assume that
π = τ1 t τ2 for τ1, τ2 ∈ Sn. Then ij, ik are both either in G(τ1) or in G(τ2).

Proof. We consider the different relative orders of i, j and k separately, but we may assume
j < k.
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i < j < k The edge ik is contained either in T (τ1) or in T (τ2), say in T (τ1). By assumption
jk /∈ T (τ1), therefore by Proposition 2.5 we have ij ∈ T (τ1).

j < i < k This case is excluded by Proposition 2.5.

j < k < i Analogous to the first case.

Note that there is no assumption on the relative order of i, j and k, so this is really a
statement about the inversion graph of π. Lemma 3.1 gives rise to a partition of the edges
of G(π): Two edges ij, ik ∈ G(π) with a common endpoint are in the same edge class if
jk /∈ G(π), and our partition is the transitive closure of this relation. Thus by Lemma 3.1
two edges in the same class always stay together when we distribute the inversions of π
on τ1 and τ2. In [7] edge classes are considered for a different motivation. In that paper
the following description is given2.

Proposition 3.2 ([7]). Let G = (V,E) be a graph with at least two vertices. Then there
are two kinds of edge classes:

1. For two m.s.s. M1,M2 ⊂M of a serial module M , the set M1M2 is an edge class.

2. The set of external edges of a prime module forms an edge class.

Every edge class is of one of the above types.

Edge classes are also considered in [8, Chapter 5] under the name “colour classes”
and in [14] as the connected components of a certain graph Γπ. Theorem 1 in the latter
reference gives a different characterization of edge classes. Now we can state our main
result. We give a description of all ways of partitioning T (π) into two sets satisfying (1).

Theorem 3.3. Consider a partition T (π) = T1 ∪̇T2 of the inversion set of π into non-
empty subsets T1, T2 ⊂ T (π). For such a partition, the following conditions are equivalent:

1. There exist permutations τ1, τ2 ∈ Sn such that Ti = T (τi) for i = 1, 2. In particular,
π = τ1 t τ2.

2. For every strong prime module of G(π), all its external edges are either in T1 or in
T2. For every strong serial module of G(π) with p maximal strong submodules M1 <
. . . < Mp there exists a permutation σ ∈ Sp, such that for each pair 1 6 i < j 6 p
it holds that MiMj ⊂ T1 if and only if ij ∈ T (σ).

Proof. (1) ⇒ (2): Every edge of G(π) is an external edge of a module M that is either
prime or serial. If M is a prime module, then its external edges form an edge class, hence
they all are in T1 or T2. If M is a serial module with m.s.s. M1, . . . ,Mp, then the sets
MiMj are edge classes. For every Mi, choose a representative ai ∈ Mi. We construct a

2Note that what we call module is called “geschlossene Menge” (closed set) in [7].
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permutation σ ∈ Sp as follows: Order the images τ1(ai), i = 1, . . . , p in the natural order.
Then σ(i) is the position of τ1(ai) in this order. Thus, for i < j we have

MiMj ⊂ T (τ1)⇐⇒ τ1(ai) > τ1(aj)

⇐⇒ σ(i) > σ(j)

⇐⇒ ij ∈ T (σ)

(2) ⇒ (1): By symmetry, we only need to show the existence of τ1. For this, we verify
conditions of Proposition 2.5. This is a condition for every three numbers 1 6 i < j <
k 6 n, so let us fix them. Note that our hypothesis on T1 and T2 implies that every edge
class of T (π) is contained either in T1 or T2.

Let M be the smallest strong module containing these three numbers. It holds that
i and k are in different m.s.s. of M , because every strong module containing both would
also contain j, since it is an interval by Theorem 2.7. Now we distinguish two cases:
Either, i and j are in the same m.s.s. of M , or all three numbers are in different m.s.s..

In the first case, let i, j ∈ Ma and k ∈ Mb. Then ik, jk ∈ MaMb belong to the same
edge class, so either both or neither of them are in T1. This is sufficient to prove that the
criterion is satisfied.

In the second case, the edges ij, jk, ik are all external to M . Hence, if M is prime,
either none of them is in T1 or all that are also in T (π). Since T (π) is the inversion
set of a permutation, the criterion of Proposition 2.5 is clearly satisfied in this case. If
M is serial, then the edges correspond to inversions of σ: Let i ∈ Ma, j ∈ Mb, k ∈ Mc,
then MaMb ⊂ T1 if and only if ab ∈ T (σ) and similarly for the other edges. Since σ is a
permutation, the criterion is again satisfied.

As a corollary, we can count the number of inv-decompositions of π:

Corollary 3.4. Let m be the number of strong prime modules and let ki be the number
of strong serial modules with i maximal strong submodules, 2 6 i 6 n. The number of
inv-decompositions of π is

1

2
2m

n∏
i=2

(i!)ki − 1

In particular, the number of inv-decompositions depends only on the inversion graph G(π).

We exclude the trivial inv-decomposition π = π t idn, therefore the “−1” in above
formula. The factor 1

2
is there because we identify τ1 t τ2 = τ2 t τ1.

3.2 Multiplicative decompositions

A notable special case of an inv-decomposition is the following:

Definition 3.5. We call an inv-decomposition π = τ1 t τ2 multiplicative if π = τ1τ2 or
π = τ2τ1 (multiplication as permutations).
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This kind of inv-decomposition is surprisingly common. In this subsection, we prove
the following

Theorem 3.6. Every inv-decomposable permutation has a multiplicative inv-decomposi-
tion. Moreover, if a permutation π has a non-multiplicative inv-decomposition and G(π)
is connected, then π has a decreasing subsequence of size 4.

The assumption that G(π) is connected is needed to avoid a rather trivial case. G(π)
is disconnected if and only if π maps a lower interval [k] ( [n] to itself. So in this case, π is
the product of a permutation π1 on [k] and a permutation π2 on { k + 1, . . . , n }. If we have
multiplicative inv-decompositions π1 = τ11τ12 and π2 = τ21τ22, then π = τ11τ22 t τ12τ21 is
in general not multiplicative. Before we prove Theorem 3.6, we prepare two lemmata.

Lemma 3.7. If C ⊂ [n] is the set of vertices of a connected component of G(π), then
π(C) = C.

Proof. Consider i ∈ [n] \C and c ∈ C. If i < c, then π(i) < π(c) and the same is true for
“>”, thus the claim follows from bijectivity.

Lemma 3.8. Assume π = τ1 t τ2. If every connected component of G(τ2) is an induced
subgraph of G(π), then π = τ1τ2.

Proof. We will prove that T (τ1τ2) = T (π). Let M1, . . . ,Ms be the vertex sets of the
connected components of G(τ2). Note that [n] =

⋃
Mk. By [2, Ex 1.12] it holds that

T (τ1τ2) is the symmetric difference of T (τ2) and τ−12 T (τ1)τ2. However, we observe that in
our situation the two sets are disjoint, thus the symmetric difference is actually a disjoint
union. To see this, note that every edge of G(τ2) has both endpoints in the same Mk for a
1 6 k 6 s, and every edge of G(τ1) has its endpoints in different sets.Since by Lemma 3.7
it holds that τ2(Mk) = Mk for every k, this property is preserved under the conjugation
with τ2. Hence, the sets are disjoint.

Next, we prove that every Mk is a G(π)-module. So fix a k. If Mk has only one element,
then it is trivially a G(π)-module, so assume that Mk has more than one element. Let
M ′ be the smallest strong module of G(π) containing Mk and let Gk be the subgraph
of G(π) induced by Mk. Because π = τ1 t τ2 is a valid decomposition, Gk is a union of
edge classes. Thus, if M ′ is prime, we conclude that Mk = M ′ and we are done. If M ′

is parallel, then Gk cannot be connected, thus we only need to consider the case that M ′

is serial. But in this case, Mk is a union of m.s.s. of M ′ because of the form of the edge
classes, given by Proposition 3.2. By Lemma 2.4, we conclude that Mk is indeed a module
of G(π). Moreover, it follows that Mk is also a module of G(τ1), because G(π) and G(τ1)
differ only inside the Mk. Finally, consider the set

τ−12 T (τ1)τ2 =
⋃
k,l

{ { τ2(i), τ2(j) } { i, j } ∈ T (τ1), i ∈Mk, j ∈Ml } .

Because τ2(Mk) = Mk and Mk is a module of G(τ1) for all k, it holds that

{ { τ2(i), τ2(j) } { i, j } ∈ T (τ1), i ∈Mk, j ∈Ml } = { { i, j } ∈ T (τ1) i ∈Mk, j ∈Ml }

for all k and l. Hence τ−12 T (τ1)τ2 = T (τ1) and the claim follows.
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Proof of Theorem 3.6. For the first statement, assume that π is inv-decomposable. Then
by Corollary 3.4 there are either at least two non-parallel strong π-blocks I1, I2 ⊂ [n], or
at least one serial strong π-block I3 with at least three m.s.s..

In the first case, we may assume I1 * I2. We set T2 to be the set of edges in the
induced subgraph of G(π) on I2. In the second case, we set T2 to be the set of edges in
the induced subgraph of G on the union of the two first m.s.s. of I. In both cases, we set
T1 = T (π) \ T2. By Theorem 3.3, this is a valid inv-decomposition, and by Lemma 3.8 it
is multiplicative.

For the second statement, we will prove that G(π) contains a complete subgraph on 4
vertices. Let π = τ1 t τ2 be a non-multiplicative inv-decomposition. Consider a minimal
path from 1 to n in G(π). If i and j are two vertices in this path that are not adjacent in
this path, then they are not adjacent in G(π), because otherwise we had a shortcut. Thus
by Lemma 3.1 we conclude that every edge in this path lies in the same edge class. Hence
either G(τ1) or G(τ2) contains a path connecting 1 with n, say G(τ1). By Lemma 3.1 this
implies that G(τ1) has no isolated vertices.

By our hypothesis and by Lemma 3.8, there exists a connected component ofG(τ2) that
is not an induced subgraph of G(π). Then there exist 1 6 i, j 6 n such that ij ∈ G(τ1)
and there is a minimal path i, i′, . . . , j connecting i and j in G(τ2). By Lemma 3.1 we
have i′j ∈ G(π). We also want to make sure that i′j ∈ G(τ2). If this is not the case,
then replace i by i′. Then the corresponding statements still hold, but the minimal path
is shorter. Thus, by induction we may assume i′j ∈ G(τ2). Since G(τ1) has no isolated
vertices, there is a vertex k such that i′k ∈ G(τ1). Again by Lemma 3.1 we conclude that
ik, jk ∈ G(π). Thus G(π) contains the complete subgraph on i, i′, j and k.

3.3 Characterization of inv-decomposability

We use the results we have proven so far to derive a characterization of inv-decomposabi-
lity. Let us recall the definition of the Linear Ordering Polytope. To every permutation
π we associate a vector vπ ∈ Rn2

by setting

(vπ)ij =

{
1 if π(i) < π(j),

0 otherwise.

The Linear Ordering Polytope is defined to be the convex hull of these vectors. The
inv-decomposability of a permutation π can now be characterized as follows.

Theorem 3.9. For π ∈ Sn the following statements are equivalent:

1. There exist τ1, τ2 ∈ Sn \ { idn } such that T (π) = T (τ1) ∪̇T (τ2) and π = τ1τ2, i.e. π
has a multiplicative inv-decomposition.

2. There exist τ1, τ2 ∈ Sn \ { idn } such that T (π) = T (τ1) ∪̇T (τ2), i.e. π is inv-
decomposable.

3. vπ is not a neighbour of the identity in the graph of the linear ordering polytope.
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4. There are at least two edge classes of G(π).

5. There are at least two (not necessarily strong) non-trivial non-parallel π-blocks. (By
a non-trivial π-block, we mean a π-block that is neither a singleton nor [n])

In [14], the implications (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (2) are proven, although the
condition (2) is not explicitly mentioned. As indicated in Section 1, there a gap in the
proof. Indeed on page 4 of [14], in the proof of the implication (3) ⇒ (4) the following
argument is used. If vπ is not a neighbour of vidn , then there is a point on the line
between the points that can be written as a convex combination of other vertices, e.g.
λvidn+(1−λ)vπ =

∑
λivτi for λ, λi ∈ [0, 1] and the λi sum up to 1. Considering the support

set of the vectors on the left and right-hand side of this equation we obtain an expression
T (π) =

⋃
T (τi). Note, that in general this union is not disjoint. In [14], the existence of

this expression, together with the assumption that G(π) has only one edge class leads to
a contradiction, proving (3)⇒ (4). But T (2413) = { 13, 23, 24 } = T (2314)∪T (1423) and
G(2413) has only one edge class, providing a counterexample to above argument. Since
the notation of [14] is different from ours, we provide a full proof of the implications for
the convenience of the reader.

Proof. 1⇔ 2 : Theorem 3.6.

2⇒ 3 : If T (π) = T (τ1) ∪̇T (τ2), then the midpoint of the line connecting vidn and vπ is
also the midpoint of the line connecting vτ1 and vτ2 , thus it cannot be an edge.

3⇒ 4 : If vπ is not a neighbour of vidn , then we can write λvidn + (1 − λ)vπ =
∑
λivτi

for λ, λi ∈ [0, 1] and τi 6= π for every i. We clear denominators to make the
coefficients integral. The important observation is that every non-zero component
of the right-hand side has the same value.

Consider a, b, c ∈ [n] such that ab, bc ∈ T (π) and ac /∈ T (π). Then b cannot lie
between a and c because of Proposition 2.5. There remain four possible relative
orders of a, b and c. We assume b < a < c, the other cases follow analogously.
Every τi with bc ∈ T (τi) has also ba ∈ T (τi), again by Proposition 2.5. But
the number of τi having the inversion bc equals the number of those having ba.
Hence, every τi has either both or none of the inversions. It follows that if T (τi)
contains an inversion, then it already contains the whole edge class of it. Thus
if G(π) has only one edge class, then for every i either τi = π or τi = idn, which
is absurd.

4⇒ 5 : This follows from the description of the edge classes, Proposition 3.2.

5⇒ 2 : Under our hypothesis, the formula in Corollary 3.4 cannot evaluate to zero.
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3.4 Substitution decomposition

We give a reformulation of Theorem 3.3 avoiding notions from graph theory. For this, we
employ the concept of substitution decomposition, which was introduced in [1], see [5] for
a survey. We start by giving an explicit description of the three types of π-blocks.

Proposition 3.10. Let I ⊂ [n] be a π-block with at least two elements and let I1 < . . . < Il
be its maximal strong submodules.

1. I is parallel if and only if π(I1) < π(I2) < · · · < π(Il).

2. I is serial if and only if π(I1) > π(I2) > · · · > π(Il).

3. Otherwise I is prime.

Proof. This is a consequence of Theorem 2.7. I is parallel if and only if it has no external
edges. This translates to the statement that the relative order of the Ii is preserved.
Similarly, I is serial if and only if it has all possible external edges. Again, this translates
to the statement that the relative order of the Ii is reversed.

In the remainder of this section, we consider permutations as words π = π1π2 · · · πn.
The size of a permutation is the number of letters in its word3. The special word idn :=
12 · · · (n − 1)n is called an identity. If π = π1π2 · · · πn is a permutation, we call π̌ :=
πnπn−1 · · · π1 the reversal of π. The word ω0,n := ˇidn = n(n − 1) · · · 21 is called reverse
identity. Two finite sequences a1, . . . , aq and b1, . . . , bq of natural numbers are called order
isomorphic whenever ai < aj if and only if bi < bj. Given a permutation π ∈ Sm and m
further permutations σ1, . . . , σm of not necessarily the same size, we define the inflation
π[σ1, . . . , σm] by replacing the value π(i) by an interval order isomorphic to σi. For a more
detailed treatment of the inflation operation see [6]. A permutation π is called simple if
there are no other π-blocks than [n] and the singletons. Note that by Theorem 2.7 a
permutation π is simple if and only if its inversion graph G(π) is prime.

Proposition 3.11. Every permutation π can be uniquely expressed as an iterated infla-
tion, such that every permutation appearing in this expression is either an identity, a
reverse identity or a simple permutation, and no identity or reverse identity is inflated by
a permutation of the same kind.

We call this the substitution decomposition of π. It is slightly different from the
decomposition in [5]. The existence of our decomposition follows from the existence of the
decomposition given in that paper, but we consider it to be instructive for our discussion
to give a proof nevertheless.

Proof. Let I1 < I2 < . . . < Il be the maximal strong π-subblocks of [n]. Define a permu-
tation α ∈ Sl by requiring α(i) < α(j) ⇔ π(Ii) < π(Ij) for 1 6 i, j 6 l. Moreover, let σi
be the permutation order isomorphic to π(Ii) for 1 6 i 6 l. Then π = α[σ1, . . . , σl]. By

3This is called “length” in [5] but we reserve that notion for the number of inversions.
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Theorem 2.2 the π-block [n] is either parallel, serial or prime. Hence by Proposition 3.10
we conclude that α is either an identity, a reverse identity or simple. By applying this
procedure recursively to the σi, we get the claimed decomposition.

The last claim follows also from Theorem 2.2, because it implies that no serial module
has a maximal strong submodule which is again serial, and the same for parallel modules.
This is just the statement that connected components of a graph are connected.

The proof gives a correspondence between the strong π-blocks and the permutations
appearing in the substitution decomposition. The strong parallel, serial and prime π-
blocks correspond to the identities, reverse identities and simple permutations, respec-
tively. Now we can reformulate Theorem 3.3 in terms of inflations:

Construction 3.12. Let π be a permutation. Define two new permutations τ1, τ2 in the
following way: Write down two copies of the substitution decomposition of π. For every
simple permutation α in it, replace α in one of the copies by an identity. For every reverse
identity, replace it in one copy by an arbitrary permutation σ of the same size and in the
other by the reverse σ̌. Then let τ1 and τ2 be the permutations defined by these iterated
inflations.

Theorem 3.13. Let π, τ1, τ2 be permutations as above and assume that τ1, τ2 6= idn. Then
π = τ1 t τ2 and every pair (τ1, τ2) satisfying this condition can be found this way.

Proof. This is immediate from Theorem 3.3 using the correspondence described above.

4 Further results

In this section, we give some further results. First, we consider the generalisation of (1)
to more than two components. It turns out that this case can easily be reduced to the
case of two components, as the next proposition shows.

Proposition 4.1. Let π, τ1, . . . , τl ∈ Sn be permutations such that T (π) =
⋃
T (τi) and

T (τi) ∩ T (τj) = ∅ for i 6= j. Then for every 1 6 i, j 6 l there exists a τij ∈ Sn such that
T (τij) = T (τi) ∪̇T (τj).

Proof. We show that T := T (τi) ∪ T (τ2) satisfies the condition of Proposition 2.5. Fix
1 6 a1 < a2 < a3 6 n. Note that

(
[n]
2

)
\ T =

(
[n]
2

)
\ T (τi) ∩

(
[n]
2

)
\ T (τj), so if a1a2 /∈ T

and a2a3 /∈ T , then a1a3 /∈ T . On the other hand, if a1a2, a2a3 ∈ T , then a1a3 ∈ T (π)
and thus a1a3 ∈ T (τk) for some k. But then T (τk) contains also a1a2 or a2a3, therefore k
equals i or j. It follows that a1a3 ∈ T .

From Theorem 3.9 we can derive a simple sufficient (but by no means necessary)
condition for a permutation to be inv-decomposable.

Proposition 4.2. Every permutation π ∈ Sn with at least
(
n
2

)
− n + 2 inversions is

inv-decomposable
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Proof. Let τ := ω0,nπ. Then T (τ) is the complement of T (π) and the τ has at most n− 2
inversions. So the graph G(τ) is disconnected, because it has n vertices, but only n − 2
edges. This means that [n] is a serial module of G(π). If π is not inv-decomposable, then
[n] can have only two maximal strong submodules, both parallel. But then G(τ) would
be the disjoint union of two complete graphs. This is not possible with the restriction on
the number of edges, as a direct calculation shows.

5 Appendix: Blocks and modules

In this appendix, we prove the following theorem:

Theorem 5.1. Let I ⊂ [n] and π ∈ Sn. The following implications hold:

1. I is a π-block =⇒ I is a module of G(π)

2. I is a strong π-block ⇐⇒ I is a strong module of G(π)

For the rest of this section, let π ∈ Sn denote a fixed permutation. For brevity, we
write block for π-block and modules are to be understood as modules of G(π). Recall
that a block is an interval whose image under π is again an interval. The first statement
of Theorem 5.1 is a direct consequence of the following lemma.

Proposition 5.2. Let I ⊂ [n] be an interval. Then I is a module if and only if it is a
block.

Proof.

I module ⇔ ∀i ∈ [n] \ I : [∃j ∈ I : ij ∈ G(π)⇒ ∀j ∈ I : ij ∈ G(π)]

⇔ ∀i ∈ [n] \ I : [∃j ∈ I : π(i) < π(j)⇒ ∀j ∈ I : π(i) < π(j)]

⇔ ∀i ∈ [n] \ I : π(i) < π(I) or π(i) > π(I)

⇔ I block

We split the proof of the second part of Theorem 5.1 into three lemmata. For a set
S ⊂ [n] we define S< := {x ∈ [n] x < S } and similarly S>. We also define S>< :=
[n] \ (S< ∪ S ∪ S>) = {x ∈ [n] ∃a, b ∈ S : a < x < b, x /∈ S }.

Lemma 5.3. Let M be a module. Then π(M< ∪M>) = π(M)< ∪ π(M)> and π(M><) =
π(M)><.

Proof. Let i be in M<. If ij ∈ G(π) for all j ∈ M , then π(i) ∈ π(M)>. Otherwise
ij /∈ G(π) for all j ∈ M and π(i) ∈ π(M)<. A similar argument for i ∈ M> proves that
π(M< ∪M>) ⊂ π(M)< ∪ π(M)>. For i ∈ M>< there exist j, k ∈ M with j < i < k.
If ij ∈ G(π), then also ik ∈ G(π) and therefore π(j) > π(i) > π(k). Otherwise π(j) <
π(i) < π(k). Hence π(M><) ⊂ π(M)><. Equality follows for both inclusions because π
is bijective.
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Lemma 5.4. Every strong module is a strong block.

Proof. Let M be a strong module but not an interval. We write M∪M>< = M1∪M2∪. . .∪
Ml where the Mi are the interval components of M and M>< and M1 < M2 < . . . < Ml.
We proceed by proving the following list of claims:

1. M ∪M>< is a module.

2. M>< is a module.

3. Either π(M1) < π(M2) < . . . < π(Ml) or π(M1) > π(M2) > . . . > π(Ml).

4. M1 ∪M2 is a module.

The last claim is a contradiction to the assumption that M is strong, because M1 ⊂ M
and M2 ∩M = ∅. Hence M must be an interval. By Proposition 5.2 we conclude that
it is a block. Every other block is also a module, hence the strongness as a block follows
from the strongness as a module. We prove the claims one after the other:

1. From Lemma 5.3 we know π(M><) = π(M)>< and hence π(M ∪M><) = π(M) ∪
π(M)><. Thus this set is a block and the claim follows from Proposition 5.2.

2. Because M ∪M>< is a module, by Lemma 2.3 it suffices to prove that M>< is a
module of M ∪M><. Let i, j ∈ M><, k ∈ M and ik ∈ G(π). We need to prove
jk ∈ G(π). Choose k1, k2 ∈ M such that k1 < i, j < k2. Because ik ∈ G(π) and M
is a module we know that k1i, ik2 ∈ G(π). Now we use Proposition 2.5 to conclude:

k1i, ik2 ∈ G(π)⇒ k1k2 ∈ G(π)

⇒ k1j, jk2 ∈ G(π)

⇒ jk ∈ G(π)

3. It suffices to prove for every 1 < i < l: Either π(Mi−1) < π(Mi) < π(Mi+1) holds or
the corresponding statement with “>” holds. If this is wrong, there are xk ∈Mk, k ∈
{ i− 1, i, i+ 1 } with π(xi−1) > π(xi) < π(xi+1) or π(xi−1) < π(xi) > π(xi+1), say,
the first. But then xi−1xi ∈ G(π) and xixi+1 /∈ G(π). But both edges are in MM><,
so this is a contradiction to the previous claim.

4. Since M1∪M2 is an interval, by Proposition 5.2 it suffices to prove that π(M1∪M2)
is also an interval. For x ∈ [n] \ (M1 ∪M2), it holds that either x ∈ M< ∪M>

or x ∈ M3 ∪ . . . ∪ Ml. In the first case we know by Lemma 5.3 that π(x) ∈
π(M)< ∪ π(M)> ⊂ π(M1 ∪M2)< ∪ π(M1 ∪M2)>. For x ∈ M3 ∪ . . . ∪Ml it follows
from the previous claim that π(x) ∈ π(M1 ∪ M2)< ∪ π(M1 ∪ M2)>. Therefore,
π([n] \ (M1 ∪M2)) ⊂ π(M1 ∪M2)< ∪ π(M1 ∪M2)>. Because M1 ∪M2 is an interval
we can conclude from this that π(M1 ∪M2)>< = ∅, thus the claim follows.
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Lemma 5.5. Every strong block is a strong module.

Proof. Suppose I ⊂ [n] is a strong block. By Proposition 5.2 I is a module. Thus it
remains to prove that it is strong, so assume the contrary. By Lemma 2.4 it is the union
of m.s.s. of a strong module M ′. Write M ′ = M1 ∪ . . . ∪Ml, where the Mi are the m.s.s.
We have already proven in Lemma 5.4 that they are intervals. Choose two consecutive
ones Mi,Mi+1 such that Mi ⊂ I and Mi+1 ∩ I = ∅. Then Mi ∪Mi+1 is an interval by
construction and a module by Lemma 2.4. Therefore it is a block by Proposition 5.2. But
this is a contradiction to the hypothesis that I is strong.
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