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Abstract

We solve Lehmer’s problem for a class of polynomials arising from Hermitian matri-
ces over the Eisenstein and Gaussian integers, that is, we show that all such polynomials
have Mahler measure at least Lehmer’s number τ0 = 1.17628 . . . .

1 Introduction

Let f(z) = (z − α1) . . . (z − αn) be a monic integer polynomial of degree n. The Mahler
measure [7] M(f) of f is defined as the product of the absolute value of the zeros of f that
lie outside the unit circle. In symbols

M(f) =
n∏

j=1

max(1, |αj|),

and it is clear that M(f) > 1. Lehmer’s question [6] asks whether there exists a smallest
Mahler measure greater than 1 and, if so, what is it? Along with his question, Lehmer
exhibited the polynomial

L(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1,

whose larger zero is τ0 = 1.17628 . . . , and moreover M(L) = τ0. The conjecture is that τ0 is
the smallest such Mahler measure, and, although it is not clear that Lehmer himself made
the conjecture, it is nevertheless known as Lehmer’s conjecture. The survey article by Smyth
[10] gives an overview of the history of Lehmer’s conjecture and mentions various results
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that verify Lehmer’s conjecture for restricted classes of polynomials. See also McMullen’s [9]
approach to Lehmer’s conjecture by examining Salem numbers that arise in Coxeter groups.

Let A be a Hermitian matrix over an imaginary quadratic integer ring R. We take
χA(x) = det(xI − A) to be the characteristic polynomial of A. The characteristic poly-
nomial of A is monic and it has integer coefficients. Following McKee and Smyth, given
A we define the associated reciprocal polynomial RA(z) = χA(z + 1/z). McKee and
Smyth [8] proved Lehmer’s conjecture to be true for the polynomials RA(z) where A is an
integer symmetric matrix. The second author [14] has shown the conjecture to be true
for the polynomials RA(z) where A is a Hermitian matrix over imaginary quadratic rings
OQ(

√
−d) for d = 2 and d > 3. In this paper, we extend the work of McKee, Smyth, and

Taylor by treating the remaining imaginary quadratic integer rings, namely, the Eisenstein
and Gaussian integers.

Theorem 1.1. Let A be a Hermitian matrix over the Eisenstein or Gaussian integers. Then
either M(RA) = 1 or M(RA) > τ0.

Smyth [11] showed that the smallest Mahler measure of a non-reciprocal monic integer
polynomial is 1.32471 . . . (the real zero of the polynomial x3 − x − 1). Hence, with regard
to Lehmer’s problem, one is only concerned with reciprocal polynomials. In his thesis [2],
the first author has shown that Lehmer’s conjecture holds for polynomials RA where A is
a Hermitian matrix over a real quadratic integer ring. Hence, it remains to investigate
Lehmer’s conjecture for monic reciprocal integer polynomials that cannot be expressed as
RA for some Hermitian matrix A over a quadratic integer ring.

We thank the referee for their comments.

2 Preliminaries

2.1 Equivalence and indecomposability

Write Mn(R) for the ring of n × n matrices over a ring R ⊆ C. Let Un(R) denote the
unitary group of matrices Q in Mn(R) which satisfy QQ∗ = Q∗Q = I, where Q∗ denotes
the Hermitian transpose of Q. Conjugation of a matrix M ∈ Mn(R) by a matrix in Un(R)
preserves the eigenvalues of M and the base ring R.

We can view a Hermitian matrix A ∈Mn(R) as a graph in the following way. Define an
R-graph to be a weighted directed graph with weight function w : V × V → R where V is
the set of vertices of the graph. Let G be the R-graph corresponding to A whose vertices
are the rows of A and the weight function w is given by w(u, v) = Auv for u, v ∈ V . The
vertices u, v are adjacent if w(u, v) is nonzero, and w(u, v) is called the edge-weight of the
edge uv. A vertex v is called charged with charge w(v, v) if w(v, v) is nonzero, otherwise v
is called uncharged and a graph without charged vertices is called uncharged otherwise it
is called charged. By a subgraph H of G, we mean an induced subgraph and we say that
G contains H and that G is a supergraph of H.
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Now, for R an imaginary integer ring, Un(R) is generated by permutation matrices and
diagonal matrices of the form

diag(1, . . . , 1, µ, 1, . . . , 1),

where µ is a unit in R. Let D be such a diagonal matrix having µ in the j-th position.
Conjugation by D is called a µ-switching at vertex j. This has the effect of multiplying
all the out-neighbour edge-weights of j by µ and all the in-neighbour edge-weights of j by
µ. The effect of conjugation by permutation matrices is just a relabelling of the vertices of
the corresponding graph. Let L be the Galois closure of the field generated by the elements
of R over Q. The case of interest for us is when R is the Eisenstein or Gaussian integers.
We have the nice property that a Hermitian matrix A over an imaginary quadratic integer
ring OQ(

√
d) has an integral characteristic polynomial. This follows from the fact that the

nontrivial Galois automorphism σ of Q(
√
d) over Q is complex conjugation. Applying σ to

the coefficients of χA gives σ(χA(x)) = det(xI − σ(A)) = det(xI − A>) = χA(x). Hence
the coefficients of χA lie in the intersection of Q and OQ(

√
d) which is Z. Let A and B be

two matrices in Mn(R). We say that A is strongly equivalent to B if A = σ(QBQ∗) for
some Q ∈ Un(R) and some σ ∈ Gal(L/Q), where σ is applied componentwise to QBQ∗.
The matrices A and B are merely called equivalent if A is strongly equivalent to ±B. The
notions of equivalence and strong equivalence carry through to graphs and, since all possible
labellings of a graph are strongly equivalent, we do not need to label the vertices.

Fundamental to our approach is the following result of Cauchy [5]; an even shorter proof
is given by Fisk [1].

Theorem 2.1 (Interlacing). Let A be an n × n Hermitian matrix with eigenvalues λ1 6
· · · 6 λn. Let B be an (n − 1) × (n − 1) principal submatrix of A with eigenvalues
µ1 6 · · · 6 µn−1. Then the eigenvalues of A and B interlace. Namely,

λ1 6 µ1 6 λ2 6 µ2 6 · · · 6 µn−1 6 λn.

A matrix that is equivalent to a block diagonal matrix of more than one block is called
decomposable, otherwise it is called indecomposable. The underlying graph of a
Hermitian matrix A is one whose vertices are the rows of A and vertices i and j are adjacent
if and only if Aij is nonzero. A matrix is indecomposable if and only if its underlying graph
is connected and the eigenvalues of a decomposable matrix are found by pooling together
the eigenvalues of its blocks.

Let R be a quadratic integer ring. A Hermitian matrix A ∈Mn(R) is called cyclotomic
if the zeros of its characteristic polynomial χA are contained inside the interval [−2, 2]. An
indecomposable cyclotomic matrix that is not a principal submatrix of any other indecom-
posable cyclotomic matrix is called a maximal indecomposable cyclotomic matrix. The
corresponding graph is called a maximal connected cyclotomic graph. The authors [13, 4, 3]
have shown that for each connected cyclotomic R-graph there exists a maximal connected
cyclotomic R-graph containing it.
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2.2 Graphical interpretation

The language of graphs has already been alluded to in the previous section. We use graphs as
a convenient way of representing an equivalence class of Hermitian matrices and we describe
our drawing conventions below. In this paper we are only concerned with R-graphs where
R = Z[i] and R = Z[ω] where ω = 1/2 +

√
−3/2. Vertices, if uncharged, are drawn as filled

discs , if charged with positive charge c, vertices are drawn as c with a solid circular outline
c , and otherwise, if charged negatively with −c, vertices are drawn as c with a dashed

circular outline c . We use ∗ to represent a vertex having any charge; all vertices are
equivalent to ∗ . Edges are drawn in accordance with Tables 1 and 2 which describe edges
for Z[i]-graphs and Z[ω]-graphs respectively. For edges with a real edge-weight, the direction
of the edge does not matter, and so to reduce clutter, we do not draw arrows for these edges.
For all other edges, the number of arrowheads reflects the norm of the edge-weight. The

Edge-weight Visual representation
1
−1
i

1 + i
−1− i

2 2

Table 1: Edge drawing convention for Z[i]-graphs.

Edge-weight Visual representation
1
−1
ω
−ω

1 + ω
−1− ω

2 2

Table 2: Edge drawing convention for Z[ω]-graphs.

edge labelling ∗ represents an edge having any weight; all edges are equivalent to the
edge ∗ .

To ease language, by a graph we mean an R-graph for some undisclosed imaginary
quadratic integer ring R.
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3 Cyclotomic matrices over the Eisenstein and Gaus-

sian integers

The proof of our main result (Theorem 1.1) in this paper depends on the classification of
cyclotomic matrices over the Eisenstein and Gaussian integers. We describe this classification
below.

Lemma 3.1. [4] Up to equivalence, every indecomposable cyclotomic Z[i]-matrix and every
indecomposable cyclotomic Z[ω]-matrix is the adjacency matrix of a subgraph of one of the
maximal graphs in Figures 1, 2, 3, 4, 5, 6, 7, and 8.

. . .

A

B

A

B

. . .

A

B

A

B

Figure 1: The infinite families T2k and T
(x)
2k (respectively) of 2k-vertex maximal connected

cyclotomic Z[x]-graphs, for k > 3 and x ∈ {i, ω}. (The two copies of vertices A and B
should be identified to give a toral tessellation.)

. . .

Figure 2: The infinite family of 2k-vertex maximal connected cyclotomic Z[i]-graphs C2k for
k > 2.

We record for later use the following consequences which are immediate from the classi-
fication.

Corollary 3.2. Any connected cyclotomic Z[i]-matrix that is equivalent to the adjacency

matrix of a subgraph of T2k, T
(i)
2k , C2k, C2k+1, C++

2k , or C+−
2k is strongly equivalent to the

adjacency matrix of a subgraph of T2k, T
(i)
2k , C2k, ±C2k+1, ±C++

2k , or C+−
2k .

Corollary 3.3. Any connected cyclotomic Z[ω]-matrix that is equivalent to the adjacency

matrix of a subgraph of T2k, T
(ω)
2k , C++

2k , or C+−
2k is strongly equivalent to the adjacency matrix

of a subgraph of T2k, T
(ω)
2k , ±C++

2k , or C+−
2k .
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1

1 1

1

. . .

1

1 1

1

. . .

Figure 3: The infinite families of 2k-vertex maximal connected cyclotomic Z-graphs C++
2k

and C+−
2k for k > 2.

1

1

. . .

Figure 4: The infinite family of (2k + 1)-vertex maximal connected cyclotomic Z[i]-graphs
C2k+1 for k > 1.

There are two types of maximal cyclotomic graphs.

The sporadics: S1, S2, S
†
2, S4, S

†
4, S

‡
4, S5, S6, S

†
6, S7, S8, S

′
8, S

†
8, S

††
8 , S‡8, S10, S12, S14,

and S16; see Figures 5, 6, 7, and 8.

The non-sporadics: T2k(k > 3), T
(i)
2k (k > 3), T

(ω)
2k (k > 3), C2k(k > 2), C++

2k (k > 2),
C+−

2k (k > 2), and C2k+1(k > 1); see Figures 1, 2, 3, and 4.

A graph is called minimal non-cyclotomic if it has at least one eigenvalue lying outside
of the interval [−2, 2] and is minimal in that respect, i.e., all of its subgraphs are cyclotomic.
The two types of maximal cyclotomic graph lead to two types of minimal non-cyclotomic

Figure 5: The sporadic maximal connected cyclotomic Z[ω]-graphs S10, S12, and S14 of orders
10, 12, and 14 respectively. The Z-graph S14 is also a Z[i]-graph.
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Figure 6: The sporadic maximal connected cyclotomic Z-hypercube S16.

2

S1

2

S2

1

1

S†2 S‡4
1 1

S5

1 1

11

1 1

S6

11

S†6

Figure 7: The sporadic maximal connected cyclotomic Z[ω]-graphs of orders 1, 2, 4, 5, and
6. The Z-graphs S1 and S2 are also Z[i]-graphs.

graph. A minimal non-cyclotomic graph is called non-supersporadic if all of its proper
connected subgraphs are equivalent to subgraphs of non-sporadics and supersporadic oth-
erwise.

In what follows let R denote either Z[i] or Z[ω].

Lemma 3.4. Let G be a non-supersporadic R-graph on at least 5 vertices. Then G does not
contain any of the graphs from Figure 9.

Proof. By inspection one can see that the graphs in Figure 9 are not subgraphs of any
non-sporadic cyclotomic graph.

Given a graph G, a path (respectively cycle) P is called chordless if the subgraph of G
induced on the vertices of P is a path (respectively cycle). Define the path rank of G to
be the maximal number of vertices in a chordless path or cycle of G. We say that G has a
profile if its vertices can be partitioned into a sequence of k > 3 subsets C0, . . . , Ck−1 such
that either

• two vertices v and w are adjacent if and only if v ∈ Cj−1 and w ∈ Cj for some
j ∈ {1, . . . , k − 1} or v and w are both charged vertices in the same subset

or

• two vertices v and w are adjacent if and only if v ∈ Cj−1 and w ∈ Cj for some j ∈ Z/kZ
or v and w are both charged vertices in the same subset.

In the latter case, we say that the profile is cycling. Given a graph G with a profile
C = (C0, . . . , Ck−1) we define the profile rank of G to be k, the number of subsets in the
profile C.
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1

1

1

1

S4

1 1

S†4
1

1

1

1

S7

1

1

1

1

1

1

1

1

S8

1

1

1

1

S ′8 S†8 S††8 S‡8

Figure 8: The sporadic maximal connected cyclotomic Z[i]-graphs of orders 4, 7, and 8. The
Z-graphs S7, S8, and S ′8 are also Z[ω]-graphs.

∗

1 ∗

∗

X1

∗

∗

∗

∗

∗ ∗

∗

X2

∗ ∗

1

1

X3

∗

1

1

X4

11

∗

X5

∗

∗

1

1

X6

1

1

X7

1

∗

X8

∗

Figure 9: Some Z[i]-graphs that are not subgraphs of any non-supersporadic graph having
at least 5 vertices.

Later we will also need the following corollaries of Lemma 3.4.

Corollary 3.5. Let G be a connected charged non-supersporadic R-graph. Then the longest
chordless cycle has length 4.

Proof. Suppose G contains a chordless cycle C on at least 5 vertices.

Case 1. C is uncharged. Since G is charged, a charged vertex must be joined to the cycle
via some path. Let v be the intersection of the vertices of this path and the cycle. By deleting
a vertex of the cycle that is not a neighbour of v (and not v), we obtain a non-cyclotomic
subgraph of G, which contradicts the minimality of G.

Case 2. C is charged. Since G is non-supersporadic, each of its edge-weights and charges
has norm at most 2. It is not possible to construct a charged chordless sub-cycle on more
than 4 vertices without X1 of Figure 9 being a subgraph. Hence we are done.

The next corollary follows with a proof similar to that of Corollary 3.5.

Corollary 3.6. Let G be a connected non-supersporadic R-graph that has at least one edge-
weight of norm 2. Then the longest chordless cycle has length 4.
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Corollary 3.7. Let G be a connected charged non-supersporadic R-graph having path rank
r > 5. If G has a profile C then C is not cycling and the charged vertices must be contained
in columns at either end of C.

Proof. By Corollary 3.5, the profile C of G cannot be cycling. The subgraph X1 of Figure 9
which cannot be equivalent to a subgraph of G forces the charges of G to be in the first or
last column of C.

Again, the next corollary has essentially the same proof.

Corollary 3.8. Let G be a connected non-supersporadic R-graph that has at least one edge-
weight of norm 2 and has path rank r > 5. If G has a profile C then C is not cycling and the
edges of norm 2 must be between vertices of the first two or the last two columns of C.

In order to classify all minimal non-cyclotomic graphs we must consider all possible ways
of attaching a single vertex to every cyclotomic graph. As it currently stands we need to
test an infinite number of graphs, but we will reduce the amount of work required so that it
suffices to test all the supersporadic graphs and the non-supersporadic graphs on up to 10
vertices. In other words, we will reduce the proof of Theorem 1.1 to a finite computation.

Now we give some bounds on the entries of a Hermitian matrix over Z[i] or Z[ω] having
small Mahler measure.

Lemma 3.9. Let A be a Hermitian R-matrix having an entry a such that |a| > 2. Then
M(RA) > (

√
5 + 1)/2 > τ0.

Proof. If a is on the diagonal of A then, by interlacing, the spectral radius of A is at least
|a|. Otherwise, suppose that a is on the off-diagonal, i.e., ajk = a for some j 6= k. Then the
jth diagonal entry of A2 is at least |a|2 and hence, by interlacing, the largest eigenvalue of
A2 is at least |a|2. Therefore, in either case, the spectral radius of A is at least |a|.

Let ρ be the spectral radius of A. At least one zero of RA is given by α(ρ) := (ρ +√
ρ2 − 4)/2. Since the smallest modulus of an element of R that is greater than 2 is at least√
5, it is clear that α(ρ) > (

√
5 + 1)/2 > τ0.

By the above lemma, in order to settle Lehmer’s conjecture for polynomials RA, we need
only consider matrices such that each entry a satisfies |a| 6 2.

Lemma 3.10. Let A be a non-cyclotomic R-matrix having at least one entry of modulus 2.
Then M(RA) > (

√
5 + 1)/2 > τ0.

Proof. Since the Mahler measure of RA is preserved under equivalence, we may assume that
A has an entry ajk = 2.
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Case 1. Suppose j = k. Since the 1× 1 matrix (2) is cyclotomic, A has at least two rows
and hence contains as a principal submatrix the matrix(

2 a
a b

)
.

Since A is indecomposable, a must be nonzero. Therefore, the jth diagonal entry of A2 is at
least 4+ |a|2, and hence the spectral radius ρ of A is at least

√
4 + |a|2. Now, for all nonzero

a ∈ R, we have |a|2 > 1 and so we have the following inequality

ρ >
√

4 + |a|2 >
√

5.

Hence, the associated reciprocal polynomial RA has a zero with absolute value at least
(
√

5 + 1)/2. Therefore M(RA) > (
√

5 + 1)/2 > τ0.

Case 2. Suppose j 6= k. Then A contains as a principal submatrix the matrix(
a 2
2 b

)
.

If either a or b are nonzero then by the same argument as before M(RA) > (
√

5 + 1)/2 > τ0.
Otherwise, if both a and b are zero, since (

0 2
2 0

)
is cyclotomic, A contains as a principal submatrix the matrix0 2 c

2 0 d

c d e

 .

Since A is indecomposable, we can choose this submatrix so that at least one of c and d is
nonzero. By applying the same argument as before we obtain the inequality

M(RA) > (
√

5 + 1)/2 > τ0.

3.1 Reduction to a finite search

In this section we reduce the search for minimal non-cyclotomic matrices to a finite one.
Proposition 3.13 below, enables us to restrict our search for minimal non-cyclotomic graphs to
a search of all non-supersporadic graphs on up to 10 vertices and all minimal non-cyclotomic
supersporadic graphs (of which there are only finitely many).
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Lemma 3.11. Let G be equivalent to a connected subgraph of a non-sporadic graph. If G has
path rank at least 5 then this equals its profile rank, and its columns are uniquely determined.
Moreover, their order is determined up to reversal or cycling.

Proof. Follows from the proof of [8, Lemma 6].

Lemma 3.12. Let G be an n-vertex proper connected subgraph of a non-sporadic graph where
n > 8. Then its path rank equals its profile rank and its columns are uniquely determined.
Moreover, their order is determined up to reversal or cycling.

Proof. If G has path rank at least 5 then we can apply Lemma 3.11. Since having at least
9 vertices forces G to have path rank at least 5, we can assume that n = 8 and that G has
path rank 4. Let P be a chordless path or cycle with maximal number of vertices r. If the
maximal cycle length is equal to the maximal path length, then take P to be a path. Now,
every proper connected 8-vertex subgraph of a non-sporadic graph contains a chordless path
on 4 vertices. Therefore, P must be a path. The columns of the profile of P inherited from
that of G are singletons. Because the profile is not cycling, the column to which a new vertex
can be added is completely determined by the vertices it is adjacent to in G.

∗

Y1

∗ ∗

∗ + +

Y2 Y3 Y4 Y5 Y6

Y7 Y8

+

∗ ∗

∗

∗

Y9

∗

∗ ∗

∗

∗

Y10

Figure 10: Some Z[i]-graphs that are not subgraphs of any non-supersporadic graph on at
least 10 vertices.

The graphs in Figure 10 are not subgraphs of any non-supersporadic graph on at least
10 vertices. In the following proposition we shall treat only the ring Z[i] since the arguments
are the same, if not slightly simpler, for Z[ω].

Proposition 3.13. Let G be a connected non-supersporadic Z[i]-graph with n > 10 vertices.
Then G is equivalent to a subgraph of a non-sporadic Z[i]-graph.

Proof. Let G satisfy the assumption of the proposition. Take a chordless path or cycle
P of G with maximal number of vertices. Let x and y be the endvertices of P if P is a
path, otherwise if P is a cycle, let x and y be any two adjacent vertices of P . If there
simultaneously exist chordless paths and chordless cycles in G both containing the maximal
number of vertices then we take P to be one of the paths.
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Claim 1. The subgraphs G\ {x}, G\ {y}, and G\ {x, y} are connected.

If a vertex x′ of G is adjacent to x, then it must also be adjacent to another vertex of P
otherwise, if P is a path, there exists a longer chordless path or, if P is a cycle, there exists
a chordless path with the same number of vertices of P . It follows that G\ {x} is connected.
This is similar for G\ {y}.

Now suppose P is a chordless cycle and there exists some vertex z not on P that is
adjacent to both x and y and to no other vertex of P . Since the graph Y1 cannot be
equivalent to any subgraph of G, the triangle xyz must have at least two charges, and hence
at least one of x or y is charged. Therefore P is a charged chordless cycle of length at least
5. But, by Corollary 3.5, the longest charged chordless cycle of G has length 4, which gives
a contradiction. Therefore, G\ {x, y} is connected and we have proved Claim 1.

Next we show that G has a profile.

Claim 2. G has a profile.

Since G is non-sporadic, the connected subgraphs G\ {x} and G\ {y} are cyclotomic.
Moreover, since they have at least 9 vertices, they must have path rank at least 5, and
hence, by Lemma 3.11, they have uniquely determined profiles. The connected subgraph
G\ {x, y} has at least 8 vertices and is a proper subgraph of the cyclotomic graph G\ {x}.
Thus, by Lemma 3.12, G\ {x, y} has a uniquely determined profile.

By Corollary 3.2, we can switch G\ {x} to obtain a subgraph Gx of one of T2k, T
(i)
2k , C2k,

±C2k+1, ±C++
2k , and C+−

2k for some k. We can simultaneously switch G\ {y} to obtain a
subgraph Gy so that Gx\ {y} and Gy\ {x} are the same subgraph which we will call Gxy.

Let C ′ be the profile of Gxy. Since it is uniquely determined, the profile of Gx (respectively
Gy) can be obtained by the addition of x (respectively y) to the profile C ′ ofGxy. In particular,
to obtain the profile of Gx (respectively Gy), either the vertex x (respectively y) is given its
own column at one end of C ′ or it is added to the first or last column of C ′. Now merge the
profiles of Gx and Gy to give a sequence of columns C. We will show that C is a profile for
G.

Let q > 5 be the number of columns of C and denote by Cj the jth column of C, where
Cq−1 is the column containing x and C0 is the column containing y. Suppose that no vertex
of column C0 is adjacent to any vertex of column Cq−1. Since no subgraph of G can be
equivalent to X1, X2, X3, X4, X5, Y2, Y3, Y9, or Y10, we have that G is equivalent to a
subgraph of a non-sporadic graph, and moreover C is a profile for G.

Otherwise, suppose that some vertex u of Cq−1 is adjacent to some vertex v of C0 with
w(u, v) = s for some s ∈ Z[i]. By Corollary 3.5, since G has a chordless cycle of length at
least 5 it must be uncharged and moreover, by Corollary 3.6 each edge-weight of G must
be in the group of units of Z[i]. Furthermore, any other vertex in Cq−1 must be adjacent to
some vertex in C0 otherwise it would contain a subgraph equivalent to Y6, Y7, or Y8, which
is impossible. Hence C is a profile for G as required for Claim 2.

It remains to demonstrate that, when C is cycling, G is equivalent to a non-sporadic
graph. In particular, we will show that G is equivalent to a subgraph of T2k, T

(i)
2k , or C2k.

By above, we have that G is uncharged and, since no subgraph of G can be equivalent to Y1,
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we have that G is triangle-free. And for j ∈ {1, . . . , q − 1} we have, for any vertex a in Cj
and vertices b and b′ in Cj+1, the equality w(a, b) = w(a, b′), and for any vertex b in Cj+1 and
vertices a and a′ in Cj, the equality w(a, b) = −w(a′, b). Each of these edge-weights is ±1.

Suppose there exists another vertex u′ in Cq−1 that is adjacent to v. Let z be a vertex in
the column Cq−2, which has w(z, u) = w(z, u′). Thus, in order for G to avoid containing a
subgraph equivalent to either Y4 or Y5, we must have that w(u′, v) = −s. Similarly, if there
exists another vertex v′ in C0 which is adjacent to u, then w(u, v′) = s. And hence, if there
exist vertices u′ and v′ different from u and v with u′ in Cq−1 and v′ in C0, then w(u′, v) = −s
and w(u, v′) = s. Since z in the column Cq−2 has w(z, u) = w(z, u′), in order for G to
avoid containing a subgraph equivalent to either Y4 or Y5, we must have that w(u′, v′) = −s.
Therefore, G is equivalent to a subgraph of T2k, T

(i)
2k , or C2k for some k.

4 Computations and finite search

In this section we give details of the finite search. As in the previous section, let R denote
either the Gaussian integers or the Eisenstein integers. For k ∈ N, define the sets

Lk = {x ∈ R : xx = k}.

Let G be an R-graph. Define the degree dv of a vertex v as

dv =
∑

u∈V (G)

|w(u, v)|2.

Monic integer polynomials having Mahler measure less than 1.3 are of interest, a list of
such polynomials is currently maintained on Michael Mossinghoff’s website. If an R-graph
G has Mahler measure M(RG) < 1.3 then we may refer to G as having a small Mahler
measure. By Lemma 3.9, Lemma 3.10, and Section 6.2 of the second author’s thesis [12], a
minimal non-cyclotomic R-matrix A with Mahler measure less than 1.3 has diagonal entries
of absolute value at most 1 and off-diagonal entries of norm at most 2. Thus A can be
represented by an R-graph with edges of weight at most 2 and vertices of charge 0, 1, or −1
only and, from now on, we consider only R-graphs that satisfy these conditions.

4.1 Growing Algorithms

Given a maximal connected cyclotomic graph G and an induced subgraph G′, we may re-
cover G from G′ by reintroducing the ‘missing’ vertices one at a time, giving a sequence of
cyclotomic supergraphs of G′ contained in G. We may thus recover all cyclotomic super-
graphs of G′ by considering all possible additions of a new vertex to G′. If an addition yields
a connected cyclotomic graph we describe it as a cyclotomic addition, otherwise as a non-
cyclotomic addition: maximal connected cyclotomic graphs are therefore those connected
cyclotomic graphs that admit no cyclotomic addition.

the electronic journal of combinatorics 20(1) (2013), #P42 13



For an n × n matrix representative A of G, the addition of an extra vertex is specified
by a nonzero column vector c ∈ Rn and a charge x from charge set X = {0, 1,−1}, giving a
supermatrix 

A11 · · · A1n c1
...

. . .
...

...
An1 · · · Ann cn
c1 · · · cn x


Define Cn(R) to be the collection of nonzero vectors from Rn. We define an equivalence

relation on column vectors whereby c ∼ c′ if cj = µc′j for all j, where µ ∈ R is a unit. For c ∼
c′, the supermatrix formed from the matrix A, the column vector c, and charge x is equivalent
to the one formed from A, c′, and x by µ-switching at the extra vertex. We therefore restrict
our attention to reduced column sets Cn(R) = Cn(R)/ ∼. Further, we may sometimes
restrict our attention to bounded column sets Cb

n(R) = {c ∈ Cn(R) |
∑n

1 Norm(ci) 6 b}.
Starting with the set Σ2 of 2-vertex cyclotomic graphs we may therefore iteratively recover

supersets Σj and Tj of cyclotomic and minimal non-cyclotomic supergraphs by rounds of
growing followed by reduction modulo equivalence of the Σj. In practice such reduction
becomes computationally infeasible very rapidly, so to combat the combinatorial explosion we
seek to fix features (such as specific subgraphs), grow representatives of all graphs exhibiting
those features, then exclude those features in subsequent growings to prevent duplication.

4.2 Minimal non-cyclotomic graphs on at most ten vertices

4.2.1 Z[i]-graphs with a weight-2 edge and at most ten vertices

We begin by establishing results that allow us to restrict our consideration to graphs having
only edges of weight 1.

Proposition 4.1. Let G be a minimal non-cyclotomic Z[i]-graph with a weight-2 edge inci-
dent at a charged vertex. Then G has Mahler measure greater than 1.401.

Proof. Up to equivalence, G induces as subgraph one of the graphs

H1 := 1 1 H2 := 1 1 H3 := 1

The graph H1 is non-cyclotomic (with Mahler measure 1.883 . . .). Growing the seed
graphs H2, H3 with column sets Cn(L1 ∪ L2 ∪ {0}), charge set X = {0, 1,−1} terminates at
n = 4 since they have neither cyclotomic nor minimally non-cyclotomic 5-vertex supergraphs.
The 3- and 4-vertex minimal non-cyclotomic supergraphs recovered during this process have
Mahler measure greater than 1.401 and 1.847 respectively.

By Proposition 4.1, if uv is an edge of weight-2 in a minimal non-cyclotomic graph G,
we may assume that vertices u and v are uncharged. If G is assumed to have an edge of
weight-2, then (up to equivalence) it can be grown from the seed graph H4 below.
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H4 :=

Further, in each growing round we may restrict to charges x and columns c such that
x = 0 and c ∈ Cn(L1 ∪ L2 ∪ {0}) or x = ±1 and c ∈ Cn(L1 ∪ {0}).

From Σ2 = {H4} we generate the sets Σ3,Σ4,Σ5,Σ6 and T3, T4, T5, T6 in this way, reducing
by Un(Z[i]) for n = 3, 4 and partially reducing by Un(Z) for n = 5, 6.

For subsequent rounds, we note the following:

Proposition 4.2. Let G be a minimal non-cyclotomic R-graph with all edges of weight at
most 2 and at least 7 vertices. Then each vertex of G has degree at most 4.

Proof. Let v be a vertex of G with degree greater than 4. Then we require at most 5
neighbours of v such that the induced subgraph G′ on v and those neighbours also contains
a vertex of degree greater than 4. As G has at least 7 vertices, G′ is a proper subgraph of
a minimally non-cyclotomic graph and thus is cyclotomic. By Lemma 3.1 this is impossible
since every vertex of a cyclotomic graph has degree at most 4.

For n > 6 we may therefore restrict to charges x and columns c such that x = 0 and
c ∈ C4

n(L1 ∪ L2 ∪ {0}) or x = ±1 and c ∈ C3
n(L1 ∪ {0}) to ensure the vertex being added

has degree at most 4. Further, for each graph to be grown we may discard from the column
set any c which would induce a vertex of degree greater than 4 in the supergraph. In this
way, we generate the sets Σ7,Σ8,Σ9,Σ10 and T7, T8, T9, T10. Brute-force reduction of the Σj

is not possible, but the resulting sets Tj are small enough to be reduced by hand.
This search takes 25 cpudays to complete up to ten vertices; Table 3 summarises the

results.

j |Tj| min
A∈Tj

M(A)

3 5 1.582 . . .
4 50 1.401 . . .
5 6 23 1.351 . . .
6 6 39 1.401 . . .
7 1 1.506 . . .
8 1 1.457 . . .
9 1 1.425 . . .
10 1 1.401 . . .

Table 3: Least Mahler measures of small Z[i]-graphs with at least one weight-2 edge.

Corollary 4.3. Let G be a minimal non-cyclotomic Z[i]-graph on at most ten vertices with
a weight-2 edge. Then G has Mahler measure greater than τ0.

Proof. If G has a weight-2 edge incident at a charged vertex, then it has Mahler measure
greater than 1.401 by Proposition 4.1. Otherwise G can be grown from a graph equivalent
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to H4, so there is a representative of G in one of the Tj computed above. But then G has
Mahler measure greater than 1.351.

We may henceforth restrict to graphs with all edges of weight 1.

4.2.2 Minimal non-cyclotomic graphs containing triangles

Next we establish results that allow us to restrict our computation to triangle-free graphs.

Proposition 4.4. Let G be a minimal non-cyclotomic graph inducing as subgraph a triangle
with all vertices charged. Then G has Mahler measure greater than τ0.

Proof. Let H be such a triangle. Then H is either non-cyclotomic (with Mahler measure
greater than 1.556), or equivalent one of the following cyclotomic Z-graphs

1

1 1

1

1 1

For both rings, since there are no 5-vertex cyclotomic graphs inducing as a subgraph a
triangle with three charged vertices, growing terminates after two rounds. Classes of 4- and
5-vertex minimal non-cyclotomic graphs are obtained; these have Mahler measure greater
than 1.58 and 2.618 respectively.

Proposition 4.5. Let G be a minimal non-cyclotomic graph inducing as subgraph a triangle
with a single charged vertex. Then G has Mahler measure greater than τ0.

Proof. Such a triangle is either: minimal non-cyclotomic with Mahler measure at least
1.506 . . .; equivalent to the Z-graph H1 given below; or (Z[ω] only) equivalent to the graph
H2 given below.

1

H1

1

H2

Growing (subject to Proposition 4.2 in later rounds), we recover classes of 4-vertex mini-
mal non-cyclotomic graphs with Mahler measure greater than 1.401; 5-vertex minimal non-
cyclotomic graphs such that the only examples with small Mahler measure are Z-graphs; and
for each ring a single 6-vertex minimal non-cyclotomic graph with Mahler measure 1.425 . . ..
No 7- or 8-vertex minimal non-cyclotomic graphs are found, and since (by Lemma 3.1) there
are no 8-vertex cyclotomic graphs with a single-charged triangle as subgraph, this completes
the search.

Proposition 4.6. Let G be a minimal non-cyclotomic graph inducing as a subgraph an
uncharged triangle. Then G has Mahler measure greater than τ0.
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Proof. The uncharged triangles are all cyclotomic (by Corollary 4.3 all edges have weight
1); for either ring, there are two distinct equivalence classes. The growing process (subject
to Proposition 4.2 in later rounds) terminates at 7 vertices for Z[ω] and 8 vertices for Z[i],
since in the latter case there is a class of 8-vertex cyclotomic graphs inducing an uncharged
triangle. For Z[ω], the only minimal non-cyclotomic classes have either 4 or 5 vertices, with
Mahler measure greater than 1.2806 or 1.635 respectively; one of the 4-vertex graphs is a
new example of a graph with small Mahler measure, although there exist Z-graphs with
the same associated polynomial and hence Mahler measure. For Z[i], there are classes of
minimal non-cyclotomic graphs with 4, 5, and 6 vertices; none have small Mahler measure,
with lower bounds of 1.401, 1.351, and 1.401 respectively.

The remaining case is graphs such that any triangular subgraph contains precisely two
charges, with at least one such subgraph. Due to the existence of the family C++

2k of cyclo-
tomic graphs, there are potentially infinitely many minimal non-cyclotomic graphs satisfying
these conditions. We therefore restrict our attention to graphs with at most ten vertices.

Let H be a charged triangular subgraph of a minimal non-cyclotomic graph G. Then
(up to equivalence) H is either non-cyclotomic with Mahler measure greater than 1.401;
equivalent to the Z-graph H1 below; or (Z[i] only) equivalent to the graph H2 below.

1 1

H1

1 1

H2

We grow the sets Σj and Tj for 4 6 j 6 10, filtering the column sets for each matrix to
eliminate supergraphs containing single-, triple- or uncharged triangles (which are covered
by the earlier propositions) and, for sufficiently large graphs, vertices of degree greater than
4 (by Proposition 4.2).

The only nonempty Tj are T5 and (Z[i] only) T4, with all minimal non-cyclotomic classes
having Mahler measure greater than 1.458. Thus we conclude:

Corollary 4.7. Let G be a minimal non-cyclotomic graph on at most ten vertices inducing
a triangle as a subgraph. Then G has Mahler measure at least τ0.

4.2.3 Uncharged triangle-free graphs

Let G be an uncharged triangle-free graph with four vertices. Then, up to equivalence, G is
one of the six graphs:

which are all cyclotomic (for Z[i], the latter two are equivalent by complex conjugation). Any
triangle-free uncharged minimal non-cyclotomic graph is therefore equivalent to an element
of a Tj grown from this seed set; we may more efficiently recover representatives by: taking
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X = {0}; filtering candidate columns for each matrix to discard those that would induce a
triangle; and (for sufficiently large graphs) bounding the degree of vertices by Proposition
4.2. Nonetheless, this remains a substantial computation, taking 3 cpudays for Z[i] and 18
for Z[ω]; Table 4 summarises the results.

j |Tj| min
A∈Tj

M(A)

Z[i] Z[ω] Z[i] Z[ω]
5 3 6 66 2.081 . . . 1.722 . . .
6 6 38 6 37 1.401 . . . 1.31 . . .
7 6 5 6 38 1.506 . . . 1.50 . . .
8 6 51 6 574 1.35 . . . 1.2806 . . .
9 6 124 6 441 1.2806 . . . 1.2806 . . .

Table 4: Least Mahler measures of small uncharged triangle-free graphs.

For j = 10 the only minimal non-cyclotomic graphs recovered were Z-graphs, and thus
M(A) > τ0 for A ∈ T10. We also note that for Z[ω] the lower bound on the Mahler measure
for T8 is attained by a class of graphs that does not have a Z-graph representative; nor does
any Z-graph have the same associated polynomial. However, there exist Z-graphs with the
same Mahler measure.

From the search, we have:

Corollary 4.8. Let G be an uncharged triangle-free minimal non-cyclotomic graph on at
most ten vertices. Then G has Mahler measure at least τ0.

4.2.4 Charged triangle-free graphs

Let G be a charged triangle-free graph. Then, up to equivalence, G induces as subgraph one
of

1 1 1 1 1

which are all cyclotomic. Any triangle-free uncharged minimal non-cyclotomic graph is
therefore equivalent to an element of a Tj grown from this seed set; we may more efficiently
recover representatives by filtering candidate columns for each matrix to discard those that
would induce a triangle; and (for sufficiently large graphs) bounding the degree of vertices
by Proposition 4.2. Again, this requires a significant level of computation (2/4.5 cpudays for
Z[i]/Z[ω] respectively); Table 5 summarises the results.
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i |Tj| min
A∈Tj

M(A)

Z[i] Z[ω] Z[i] Z[ω]
3 6 6 1.506 . . . 1.506 . . .
4 22 26 1.2806 . . . 1.2806 . . .
5 27 6 124 τ0 τ0
6 6 15 17 1.240 . . . 1.240 . . .
7 1 2 1.216 . . . 1.216 . . .
8 1 2 1.200 . . . 1.200 . . .
9 1 1 1.188 . . . 1.188 . . .
10 1 1 1.254 . . . 1.254 . . .

Table 5: Least Mahler measures of charged triangle-free graphs.

We note that for Z[ω] there exist classes of graphs with small Mahler measure that do
not have a Z-graph representative. However, as was the case before, there exist Z-graphs
with the same Mahler measure.

From the search, we have:

Corollary 4.9. Let G be an uncharged triangle-free minimal non-cyclotomic graph on at
most ten vertices. Then G has Mahler measure at least τ0.

Combining the results of this section so far, we therefore conclude:

Theorem 4.10. Let G be a minimal non-cyclotomic graph on at most ten vertices. Then G
has Mahler measure at least τ0.

4.3 The non-existence of supersporadic graphs on eleven or more
vertices

Finally, we show that there do not exist any supersporadic minimal non-cyclotomic graphs
with eleven or more vertices, thereby completing the proof of Theorem 1.1.

4.3.1 Excluded subgraphs

We describe a graph G (and its equivalents) as being of type-I if it is non-cyclotomic; clearly,
no larger non-cyclotomic graph can induce G as a subgraph and still be minimal. Type-I
graphs containing weight-2 edges are given in Figure 11; we note that the graph X4 given in
Figure 12 is also type-I.

Further, there exist graphs which, whilst cyclotomic, are contained in only finitely many
connected cyclotomic supergraphs; we call these type-II. If the largest connected cyclotomic
supergraph of a type-II graph G has n vertices, then any minimal non-cyclotomic graph
containing G has at most n+ 1 vertices; thus in seeking minimal non-cyclotomics of at least
eleven vertices, we may exclude any subgraph that only occurs in cyclotomic graphs of nine
or fewer vertices.
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1

Figure 12: The type-I subgraph X4.

Proposition 4.11. Triangles with weight-1 edges and no, one, or three charged vertices are
type-II, and cannot be subgraphs of any minimal non-cyclotomic graph on eleven or more
vertices.

Proposition 4.12. The graphs with weight-2 edges given in Figure 13 are type-II, and cannot
be subgraphs of any minimal non-cyclotomic graph on eleven or more vertices.

Finally, by Proposition 4.2 any vertex in a minimal non-cyclotomic graph on eleven or
more vertices must have degree at most four, so we may use bounded vectors and discard
any vector/charge pair that would induce a higher degree vertex.

1 1 1

Figure 11: Type-I subgraphs with weight-2 edges.

1 1 1

Figure 13: Type-II subgraphs with weight-2 edges.

4.3.2 Included subgraphs

Let G be a minimal non-cyclotomic R-graph. By Proposition 3.13, if G has eleven or more
vertices then it must be supersporadic. The only subgraphs of the sporadics on more than
9 vertices are subgraphs of one of S10, S12, S14, or S16. Each of these sporadics induce
a subgraph equivalent to Y A1, Y A2 or Y A3 (see Figure 14). Growing from these seeds
(Y A1, Y A2 or Y A3) gives a smaller set of ten-vertex candidates than considering all possible
subgraphs of S10, S12, S14, or S16. Due to duplication of classes and the cost of equivalence
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testing, it is not worth growing beyond this point, whilst testing for a Y Aj subgraph is also
prohibitively expensive.

Figure 14: The subgraphs Y A1, Y A2, and Y A3.

4.3.3 Supergraphs of S10 or S12 subgraphs

Due to the bound on the degree of each vertex, we need only test the eleven- and ten-
vertex subgraphs of S12. Testing by C4

n(L) and C3
n(L) for uncharged and charged extensions

respectively could be optimised by excluded subgraph arguments, but the search space is
small enough for this to not matter in practice; the test can be completed in 16.5 cpuhours.

4.3.4 Charged supergraphs of S14 or S16 subgraphs

Let H be an induced subgraph of S14 or S16, and G the supergraph formed by adding a
charged vertex x with addition vector c. For any chance of G to be minimally non-cyclotomic,
we may force c ∈ C2

n(L1 ∪ {0}) with at least one complex edge, as follows:

• as x is charged, we force c ∈ C3
n(L);

• to exclude 1 1 , 1 1 and 1 , we restrict to C3
n(L1 ∪ {0});

• if x has degree 4, then it either induces X4 or a triangle with a single charge. So we
restrict to C2

n(L1 ∪ {0}).

Then, on a per-graph basis, we discard any columns which would exceed the degree bound
at any vertex, or induce a triangle with x as its only charged vertex. Total compute time is
then 28 cpuhours for Z[i], 48 cpuhours for Z[ω].

4.3.5 Supergraphs with weight-2 edges

Let H be an induced subgraph of S14 or S16, and G the supergraph formed by adding a
vertex x with addition vector c, where at least one entry of c has weight-2. We note that x
must be uncharged.

If H is connected, then if c had both weight-1 and weight-2 entries, G would induce a
subgraph with an isolated weight-2 edge, which is either type I or II. So for such H, we need
only consider C4

n(L2 ∪ {0}); for the few disconnected examples, we consider all c ∈ C4
n(L)

with a weight-2 edge, subject to local weight bounds, and check G for connectedness. This
requires 8.5 cpuhours in total.
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4.3.6 Remaining cases

This leaves only uncharged supergraphs with all edges of weight 1; by the weight bound,
c ∈ C4

n(L1 ∪ {0}). We may assume c has at least one complex entry, else we have a Z-graph
which is necessarily not minimally non-cyclotomic. Further, for each H we check weight
bounds at each vertex, and discard any vector which would induce an uncharged triangle.
This represents the bulk of the finite search, requiring 19 cpudays for Z[i] and 47 cpudays
for Z[ω].

This completes the proof of Theorem 1.1.
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