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Abstract

We study the relationship between unit-distance representations and the Lovász
theta number of graphs, originally established by Lovász. We derive and prove
min-max theorems. This framework allows us to derive a weighted version of the
hypersphere number of a graph and a related min-max theorem. Then, we connect to
sandwich theorems via graph homomorphisms. We present and study a generalization
of the hypersphere number of a graph and the related optimization problems. The
generalized problem involves finding the smallest ellipsoid of a given shape which
contains a unit-distance representation of the graph. Arbitrary positive semidefinite
forms describing the ellipsoids yield NP-hard problems.

1 Introduction

Geometric representation of graphs is a beautiful area where combinatorial optimization,
graph theory and semidefinite optimization meet and connect with many other research
areas. In this paper, we start by studying geometric representations of graphs where each
node is mapped to a point on a hypersphere so that each edge has unit length and the
radius of the hypersphere is minimum. Lovász [15] proved that this graph invariant is
related to the Lovász theta number of the complement of the graph via a simple but
nonlinear equation. We show that this tight relationship leads to min-max theorems and
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to a “dictionary” to translate existing results about the theta function and its variants to
the hypersphere representation setting and vice versa.

Based on our approach, we derive a weighted version of the hypersphere number of
a graph and deduce related min-max theorems. Our viewpoint allows us to make new
connections, strengthen some facts and correct some inaccuracies in the literature.

After observing that the hypersphere number of a graph is equal to the radius of
the smallest Euclidean ball containing a unit-distance representation of the graph, we
propose generalizations of the underlying optimization problems. Given a graph, the
generalized optimization problem seeks the smallest ellipsoid of given shape which contains
a unit-distance representation of the graph. We finally show that at this end of the new
spectrum of unit-distance representations, arbitrary positive semidefinite forms describing
the shapes of the ellipsoids yield NP-hard geometric representation problems.

2 Preliminaries

We denote the set of symmetric n× n matrices by Sn, the set of symmetric n× n positive
semidefinite matrices by Sn+, and the set of symmetric n × n positive definite matrices
by Sn++. For a finite set V , the set of symmetric V × V matrices is denoted by SV , and
the symbols SV+ and SV++ are defined analogously. Similarly, the set of orthogonal n× n
matrices is denoted by On, and for a finite set V , the set of orthogonal V × V matrices
is denoted by OV . The unique positive semidefinite square root of X ∈ SV+ is denoted
by X1/2. For A,B ∈ Sn, we write A � B meaning (A−B) ∈ Sn+. Define an inner product
on Sn by 〈A,B〉 := Tr(AB), where Tr(X) :=

∑n
i=1 Xii is the trace of X ∈ Rn×n. The linear

map diag : Sn → Rn extracts the diagonal of a matrix; its adjoint is denoted by Diag.
For A ∈ Sn, we denote by λ↓(A) ∈ Rn (resp., λ↑(A) ∈ Rn) the vector of eigenvalues

of A, with multiplicities, arranged in a nonincreasing (resp., nondecreasing) order, and we
set λmax(A) := λ↓1(A) and λmin(A) := λ↑1(A).

The vector of all ones is denoted by ē. We abbreviate [n] := {1, . . . , n}. The notation
‖ · ‖ for a norm is the Euclidean norm unless otherwise specified. The convex hull of
S ⊆ Rn, denoted by conv(S), is the intersection of all convex subsets of Rn containing S.
The set of nonnegative reals is denoted by R+. The set of positive reals is denoted by R++.
Define the notations Z+ and Z++ analogously for integer numbers.

If X and Y are vector spaces, the direct sum of X and Y is the vector space X ⊕ Y :
= { (x, y) : x ∈ X, y ∈ Y } with operations defined componentwise. An element (x, y) of
X ⊕ Y is also denoted by x⊕ y. If A : X → X and B : Y → Y are linear operators, then
A⊕B is the linear operator x⊕ y ∈ X⊕Y 7→ Ax⊕By. The nullspace of a linear operator
A : X → X is denoted by Null(A).

Let G be a graph. Its node set is V (G) and its edge set is E(G); when the graph G
is clear from the context, we just write V for V (G) and E for E(G). For S ⊆ V , the
subgraph of G induced by S, denoted by G[S], is the subgraph of G on S whose edges
are the edges of G that have both ends in S. For i ∈ V , the neighbourhood of i, denoted
by N(i), is the set of nodes of G adjacent to i. A cut-node of G is a node i ∈ V such
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that G[V \ {i}] has more connected components than H. A block of G is an inclusionwise
maximal induced subgraph of G with no cut-nodes.

For any function f on graphs, we denote by f the function defined by f(G) := f(G) for
every graph G, where G denotes the complement of G. In particular, E denotes the edge
set of G when G is clear from the context. For a graph G, we denote the clique number
of G by ω(G) and the chromatic number of G by χ(G). The complete graph on [n] is
denoted by Kn.

For a graph G, the Laplacian of G is the linear extension LG : RE → SV of the map
e{i,j} 7→ (ei − ej)(ei − ej)

T for every {i, j} ∈ E, where ei denotes the ith unit vector.
Laplacians arise naturally in spectral graph theory and spectral geometry; see [3].

3 Hypersphere representations and the Lovász theta

function

Let G be a graph. A unit-distance representation of G is a function u : V → Rd for some
d > 1 such that ‖u(i) − u(j)‖ = 1 whenever {i, j} ∈ E. A hypersphere representation
of G is a unit-distance representation of G that is contained in a hypersphere centered
at the origin, and the hypersphere number of G, denoted by t(G), is the square of the
smallest radius of a hypersphere that contains a unit-distance representation of G. The
theta number of G is defined by

ϑ(G) := max
{
ēTXē : Tr(X) = 1, Xij = 0∀{i, j} ∈ E, X ∈ SV+

}
. (3.1)

This parameter was introduced by Lovász in the seminal paper [14]; see also [8, 12] for
further properties and alternative definitions.

Lovász [15, p. 23] noted the following formula relating t and ϑ:

Theorem 3.1 ([15]). For every graph G, we have

2t(G) + 1/ϑ(G) = 1. (3.2)

We will show how the relation (3.2) can be used to better understand some of the
properties of the theta number and the hypersphere number. This will allow us to obtain
simpler proofs of some facts about the theta number and new results about hypersphere
representations.

3.1 Proof of Theorem 3.1

We include a proof of Theorem 3.1 for the sake of completeness. We may formulate t(G)
as the SDP

t(G) = min
{
t : diag(X) = tē, L∗G(X) = ē, X ∈ SV+, t ∈ R

}
. (3.3)

Here, L∗G is the adjoint of the Laplacian LG of G. The dual of (3.3) is

max
{
ēT z : Diag(y) � LGz, ēTy = 1, y ∈ RV , z ∈ RE

}
. (3.4)
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Both (3.3) and (3.4) have Slater points, so SDP strong duality holds for this dual pair
of SDPs, i.e., their optimal values coincide and both optima are attained. In particular,
t(G) is equal to (3.4). If we write an optimal solution X∗ of (3.3) as X∗ = UUT , then
i 7→ UT ei is a hypersphere representation of G with squared radius t(G).

Proof of Theorem 3.1. We can rewrite the dual (3.4) as

t(G) = max
{

1
2
〈ēēT − I, Y 〉 : ēTY ē = 1, Yij = 0 ∀{i, j} ∈ E(G), Y ∈ SV+

}
by taking Y := Diag(y)− LG(z). Note that the objective value of a feasible solution Y is
1
2
〈ēēT − I, Y 〉 = 1

2
(1− Tr(Y )). Thus, t(G) = 1

2
(1− t̂(G)), where

t̂(G) := min
{

Tr(Y ) : ēTY ē = 1, Yij = 0 ∀{i, j} ∈ E(G), Y ∈ SV+
}
.

It is easy to check that t̂(G)ϑ(G) = 1.

3.2 Hypersphere and orthonormal representations of graphs

Let G be a graph. An orthonormal representation of G is a function from V to the unit
hypersphere in Rd for some d > 1 that maps non-adjacent nodes to orthogonal vectors. It
is known [15, sec. 4] that, if u : V → Rd is a hypersphere representation of G with squared
radius t 6 1/2, then the map

q : i 7→
√

2
[√

1/2− t⊕ u(i)
]
∈ R⊕ Rd (3.5)

is an orthonormal representation of G. Define TH(G) as the set of all x ∈ RV
+ such that∑

i∈V (cTp(i))2xi 6 1 for every orthonormal representation p : V → Rd of G and unit vector
c ∈ Rd. Then ϑ(G) = max{ ēTx : x ∈ TH(G)}.

The transformation (3.5) allows us to interpret Theorem 3.1 as strong duality for a
nonlinear min-max relation:

Proposition 3.2. Let G be a graph. For every hypersphere representation of G with
squared radius t and every nonzero x ∈ TH(G), we have

2t+ 1/(ēTx) > 1,

with equality if and only if t = t(G) and ēTx = ϑ(G).

Proof. Let u : V → Rd be a hypersphere representation of G with squared radius t. We
may assume that t < 1/2. Let x ∈ TH(G). Define an orthonormal representation q of G
from p as in (3.5). Set c := 1⊕ 0 ∈ R⊕ Rd. Then (1− 2t)ēTx =

∑
i∈V (cT q(i))2xi 6 1.

The equality case now follows from Theorem 3.1.

Proposition 3.2 shows that ϑ(G) and elements from TH(G) are natural dual objects
for t(G) and hypersphere representations of G. In fact, using a well-known description
of the elements of TH(G), we recover from Proposition 3.2 the following SDP-free purely
geometric min-max relation:

the electronic journal of combinatorics 20(1) (2013), #P43 4



Corollary 3.3. Let G be a graph. For every hypersphere representation of G with squared
radius t, every orthonormal representation p : V → Rd of G, and every unit vector c ∈ Rd

such that c 6∈ p(V )⊥, we have

2t+
[∑

i∈V (cTp(i))2
]−1

> 1,

with equality if and only if t = t(G) and
∑

i∈V (cTp(i))2 = ϑ(G).

3.3 A Gallai-type identity

The transformation (3.5) may be reversed as follows. Suppose that q : V → Rd is an
orthonormal representation of G such that, for some positive µ ∈ R and some u : V → Rd−1,
we have

q(i) =
√

2
[
(2µ)−1/2 ⊕ u(i)

]
∀i ∈ V. (3.6)

Then u is a hypersphere representation of G with squared radius 1
2
(1 − 1/µ). We can

use (3.5) and (3.6) to obtain an identity involving these objects.

Proposition 3.4. Let G be a graph. Then

2t(G) + max
p,c

min
i∈V

(
cTp(i)

)2
= 1, (3.7)

where p ranges over all orthonormal representations of G and c over unit vectors of the
appropriate dimension.

Proof. We first prove “6” in (3.7). Let p : V → Rd be an orthonormal representation of G
and let c ∈ Rd be a unit vector. We will show that

t(G) 6 1
2

(
1−mini∈V

(
cTp(i)

)2)
. (3.8)

It is well-known that there exists an orthonormal representation q of G and a unit vector d
such that (dT q(j))2 = β := mini∈V (cTp(i))2 for all j ∈ V . If β = 0, then i 7→ 2−1/2ei ∈ RV

shows that t(G) 6 1/2, so assume that β > 0. We may assume that d = e1 and dT q(i) > 0
for every i ∈ V . Now use (3.6) with µ = 1/β to get a hypersphere representation u of G
from q with squared radius 1

2
(1− β). This proves (3.8).

Next we prove “>” in (3.7). Let u : V → Rd be a hypersphere representation of G
with squared radius t(G). Build an orthonormal representation q of G as in (3.5) and pick
c := 1⊕ 0 ∈ R⊕ Rd. Then (cT q(i))2 = 1− 2t(G) for every i ∈ V .

(The reciprocal of the second term of the sum on the LHS of (3.7) was used as the original
definition of ϑ(G) by Lovász [14].)

Note that (3.7) does not provide a good characterization of either t(G) or the maxi-
mization problem on the LHS of (3.7). In this sense, Proposition 3.4 is akin to Gallai’s
identities for graphs [16, Lemmas 1.0.1 and 1.0.2].
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3.4 Unit-distance representations in hyperspheres and balls

For a graph G, let tb(G) be the square of the smallest radius of an Euclidean ball
that contains a unit-distance representation of G. This parameter is also mentioned by
Lovász [15, Proposition 4.1].

To formulate tb(G) as an SDP, replace the constraint diag(X) = tē in (3.3) by
diag(X) 6 tē. The resulting SDP and its dual have Slater points, so SDP strong duality
holds, i.e., both optima are attained and the optimal values coincide.

Evidently, tb(G) 6 t(G) for every graph G. In fact, equality holds:

Theorem 3.5. For every graph G, we have tb(G) = t(G).

If we mimic the proof of Theorem 3.1 for tb(G), we find that

2tb(G) + 1/ϑb(G) = 1, (3.9)

where ϑb(G) is defined by adding the constraint Xē > 0 to the SDP (3.1). Thus, by (3.2)
and (3.9), Theorem 3.5 is equivalent to the fact that ϑb(G) = ϑ(G) for every graph G.
This follows from next result [6, Proposition 9] (this was pointed out to the first author by
Fernando Mário de Oliveira Filho):

Proposition 3.6 ([6]). Let K ⊆ Sn be such that Diag(h)X Diag(h) ∈ K whenever X ∈ K
and h ∈ Rn

+. If X̂ is an optimal solution for max
{
ēTXē : Tr(X) = 1, X ∈ K ∩ Sn+

}
, then

diag(X̂) = µX̂ē for some positive µ ∈ R.

Proof of Theorem 3.5. Since ϑ(G) is a relaxation of ϑb(G), we have ϑb(G) 6 ϑ(G). To
prove the reverse inequality, let X̂ be an optimal solution for (3.1). By Proposition 3.6,
we have X̂ē = µ−1 diag(X̂) > 0 for some µ > 0. Hence X̂ is feasible for the SDP that
defines ϑb(G), whence ϑb(G) > ϑ(G).

3.5 Hypersphere proofs of ϑ facts

The formula (3.2) relating t(G) and ϑ(G) allows us to infer some basic facts about the
theta number from a geometrically simpler viewpoint.

Theorem 3.7 (The Sandwich Theorem [14]). For any graph G, we have

ω(G) 6 ϑ(G) 6 χ(G).

By Theorem 3.1 and the fact that ϑ(Kn) = n for every n > 1, the Sandwich Theorem
is equivalent to the inequalities t(Kω(G)) 6 t(G) 6 t(Kχ(G)) for every graph G. The first
inequality is obvious: if H is a subgraph of G, then t(H) 6 t(G). The second one is also
obvious: if u : [`]→ Rd is a hypersphere representation of K` and c : V → [`] is a colouring
of G, then u ◦ c is a hypersphere representation of G. This hints at a strong connection
with graph homomorphisms, which we will look at more closely in Section 4.

Lovász [15, p. 34] mentions that a graph G is bipartite if and only if ϑ(G) 6 2. The
less obvious of the implications may be easily proved by showing that ϑ(Cn) > 2 for every
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odd cycle Cn. However, we find that the following proof using hypersphere representations
gives a more enlightening geometric interpretation. By Theorem 3.1, we must show that
t(G) 6 1/4 if and only if G is bipartite. If G is bipartite, then G has a hypersphere
representation with radius 1/2 even in R1. Suppose G has a hypersphere representation
with radius 6 1/2. The only pairs of points at distance 1 in a hypersphere of radius 1/2
are the pairs of antipodal points, so G is bipartite.

Given graphs G and H with V (G) ∩ V (H) = ∅, the direct sum of G and H is the
graph G + H with node set V (G) ∪ V (H) and edge set E(G) ∪ E(H). It is proved
in [12] that ϑ(G + H) = max{ϑ(G), ϑ(H)}. By Theorem 3.1, this is equivalent to the
geometrically obvious equation t(G + H) = max{t(G), t(H)}. In particular, t(G) =
max{ t(C) : C a component of G}. More generally, t(G) = max{ t(B) : B a block of G}.
This follows from the next result, where G∪H denotes the graph with node set V (G)∪V (H)
and edge set E(G)∪E(H) and G∩H denotes the graph with node set V (G)∩ V (H) and
edge set E(G) ∩ E(H).

Proposition 3.8. Let G be a graph, and suppose G = G1 ∪ G2 for graphs G1 and G2,
with G1 ∩G2 a complete graph. Then

t(G) = max{t(G1), t(G2)} and ϑ(G) = max{ϑ(G1), ϑ(G2)}.

Proof. By Theorem 3.1, it suffices to prove that t(G) = max{t(G1), t(G2)}. Clearly ‘>’
holds in the desired equation. Assume t(G1) > t(G2). Since the feasible region of (3.3) is
convex and contains (X̄, t̄ ) := 1

2
(I, 1), there are hypersphere representations u and v of G1

and G2, respectively, both with squared radius t(G1). We may assume that the images
of u and v live in the same Euclidean space. Since G1 ∩G2 is a complete graph, there is
an orthogonal matrix Q such that Qv(i) = u(i) for every i ∈ V (G1 ∩G2). If we glue the
hypersphere representation i 7→ Qv(i) of G2 with u, we get a hypersphere representation
of G with squared radius t(G1).

This behavior of t and ϑ with respect to clique sums is shared by many other graph
parameters, e.g., ω, χ, the Hadwiger number (the size of the largest clique minor), and
the graph invariant λ introduced in [9].

Proposition 3.8 and Theorem 3.5 imply the following purely geometric result:

Corollary 3.9. Let G be a graph, and suppose G = G1 ∪G2 for graphs G1 and G2, with
G1 ∩ G2 a complete graph. For i ∈ {1, 2}, let ui be a unit-distance representation of Gi

contained in an Euclidean ball of radius ri. Then there is a unit-distance representation
of G contained in an Euclidean ball of radius max{r1, r2}.

The proof contains an algorithm to build the desired unit-distance representation of G.
However, whereas one would expect such an algorithm to provide a geometric construction
from u1 and u2, the one presented essentially needs to solve an SDP, and it may ignore u1

and u2 altogether.
Using basic properties of Laplacians, we can prove the following behaviour of t and ϑ

with respect to edge contraction:
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Proposition 3.10. Let G be a graph and let e = {i, j} ∈ E. If (ȳ, z̄) is an optimal
solution for (3.4), then z̄e > t(G)− t(G/e). If X̄ is an optimal solution for (3.1) applied
to ϑ(G), then ϑ(G) 6 (2X̄ij + 1)ϑ(G/e).

Proof. See Appendix A.

Finally, using basic properties about the intersection of two hyperspheres, we can
prove a property of ϑ that is shared by the parameters ω, χ, and the fractional chromatic
number χ∗. The proof is based on [11, Lemma 4.3].

Proposition 3.11. Let G be a graph and i ∈ V with N(i) 6= ∅. Then

t(G[N(i)]) 6 1− 1/[4t(G)] and ϑ(G) > ϑ(G[N(i)]) + 1.

Proof. See Appendix A.

3.6 A weighted version

For w ∈ RV
+, define ϑ(G,w) by replacing the objective function in (3.1) by

√
w
T
X
√
w,

where (
√
w)i :=

√
wi for every i ∈ V . It is natural to define a weighted hypersphere

number t(G,w) so that it satisfies a natural generalization of equation (3.2), namely,
2t(G,w) + 1/ϑ(G,w) = 1 whenever w 6= 0. By using the proof of Theorem 3.1 as a guide,
we arrive at the definition:

t(G,w) := min t
diag(X) = 1

2
ē+ (t− 1

2
)w,

L∗G(X) = ē+ (t− 1
2
)L∗G(

√
w
√
w
T

),
X ∈ SV+, t ∈ R.

(3.10)

This SDP and its dual have Slater points, so SDP strong duality holds.
Even though we cannot offer a nice direct interpretation for this definition of t(G,w),

by construction, we can generalize Proposition 3.2:

Theorem 3.12. Let G be a graph and w ∈ RV
+ \ {0}. Then, for every feasible solution

(X, t) of (3.10) and every nonzero x ∈ TH(G), we have

2t+ 1/(wTx) > 1,

with equality if and only if (X, t) is optimal for (3.10) and wTx = ϑ(G,w).

Proof. We may assume that t < 1/2. Write X = P TP for some [d] × V matrix P , and
define p : V → Rd by p : i 7→ Pei. The map q : i 7→

√
2
[√

wi(1/2− t)⊕ p(i)
]
∈ R ⊕ Rd

is an orthonormal representation of G. Put c := 1 ⊕ 0 ∈ R ⊕ Rd. Then (1 − 2t)wTx =∑
i∈V (cT q(i))2xi 6 1.
The equality case now follows by construction.
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If w ∈ ZV+, it can be shown that t(G,w) = t(Gw), where Gw is obtained from G by
replacing each node i by a clique Gi on wi nodes; if {i, j} ∈ E, then every node in Gi is
adjacent in Gw to every node in Gj.

In fact, every feasible solution (X̄, t̄) of (3.10) encodes a hypersphere representation
of Gw with squared radius t̄. Indeed, write X̄ = P TP for some [d] × V matrix P , and
define p : i 7→ Pei. For i ∈ V , let qi : V (Gi)→ Rdi be a hypersphere representation of Gi

with squared radius t(Gi) = 1
2
(1− 1/wi). Define u : V (Gw)→ Rd ⊕

(⊕
i∈V Rdi

)
as follows.

For k ∈ V (Gi), set u(k) to be the vector whose block in Rd is w
−1/2
i p(i) and whose block

in Rdi is qi(k); all other blocks of u(k) are zero. Then u is a hypersphere representation
of Gw with squared radius t̄.

4 Graph homomorphisms and sandwich theorems

Let G and H be graphs. A homomorphism from G to H is a function f : V (G)→ V (H)
such that {f(i), f(j)} ∈ E(H) whenever {i, j} ∈ E(G). If there is a homomorphism from
G to H, we write G→ H.

Note that t(G) 6 t(H) whenever G → H. Indeed, if f is a homomorphism from G
to H and v is a hypersphere representation of H, then v ◦f is a hypersphere representation
of G. This combines with the graph-theoretic observation that Kω(G) → G → Kχ(G) to
yield t(Kω(G)) 6 t(G) 6 t(Kχ(G)), which by Theorem 3.1 is equivalent to the Sandwich
Theorem 3.7.

Motivated by this, we call a real-valued graph invariant f hom-monotone if f(G) 6 f(H)
whenever G → H and the following “nondegeneracy” condition holds: there is a non-
decreasing function g : Im(f)→ R such that g(f(Kn)) = n for every integer n > 1. Using
these properties for an arbitrary graph G and the fact that Kω(G) → G→ Kχ(G), we get
f(Kω(G)) 6 f(G) 6 f(Kχ(G)), and thus

ω(G) 6 g(f(G)) 6 χ(G). (4.1)

(See [2] for a similar use of these ideas.) We point out that hom-monotonicity cannot
recover strong Sandwich Theorems which state that ω(G) 6 ϑ(G) 6 χ∗(G) since this
inequality fails to hold for the hom-monotone invariant χ.

The function g(x) := 1/(1 − 2x) is non-decreasing on [0, 1/2) ⊇ Im(t), so t is hom-
monotone, and we recover from (4.1) the Sandwich Theorem 3.7.

The reason why t satisfies the first condition of hom-monotonicity roughly comes from
the fact that the constraints for the SDP (3.3) of t are “uniform” for the edges, i.e., all
edges are treated in the same way. We are thus led to define other SDPs of the same type.
One such example is the parameter tb. However, as we have seen in Theorem 3.5, this
parameter is equal to t. Now define

t′(G) := min
{
t : diag(X) = tē, L∗G(X) > ē, X ∈ SV+, t ∈ R

}
. (4.2)

Clearly, t′(G) 6 t(G) for every graph G, and it is easy to see that equality holds if
G is node-transitive. In particular, t′(Kn) = t(Kn) for every n. Thus, the function
g(x) := 1/(1− 2x) proves that t′ is hom-monotone.
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Using (4.1) and t′(G) 6 t(G), we obtain ω(G) 6 g(t′(G)) 6 g(t(G)) 6 χ(G) for every
graph G. If we mimic the proof of Theorem 3.1 for t′(G), we find that 2t′(G)+1/ϑ′(G) = 1,
where ϑ′(G) is defined by adding the constraint X > 0 to (3.1), i.e., g(t′(G)) = ϑ′(G) is
the graph parameter introduced in [17] and [20].

Let dim(G) be the minimum d > 0 such that there is a unit-distance representation
of G in Rd; consider R0 := {0}. As before, G → H implies dim(G) 6 dim(H). Since
dim(Kn) = n − 1, the function g(x) := x + 1 shows that dim is hom-monotone, so
ω(G) 6 dim(G)+1 6 χ(G). However, we will see later that computing dim(G) is NP-hard.
(A similar parameter was introduced in [4].)

Define dimh(G) similarly as dim(G) but for hypersphere representations of G with
squared radius 6 1/2 and dimo(G) for orthonormal representations of G. Such parameters
are also hom-monotone. Clearly dim(G) 6 dimh(G) for every graph G, but strict inequality
occurs for the Mosers spindle (see Figure 1 and the proof of Theorem 5.4). Since (3.5)
shows that dimo(G) 6 dimh(G)+1 and [14] shows that ϑ(G) 6 dimo(G), these parameters
are related by ω(G) 6 ϑ′(G) 6 ϑ(G) 6 dimo(G) 6 dimh(G) + 1 6 χ(G). In particular,
by (3.2), we find that dimh(G) > 2t(G)/(1− 2t(G)). Also dimh(G) 6 χ(G)− 1 6 ∆(G),
where ∆(G) is the maximum degree of G. In fact, by Brooks’ Theorem, dimh(G) 6 ∆(G)−1
when G is connected but not complete nor an odd cycle.

4.1 Hypersphere representations and vector colourings

The following relaxation of graph colouring was introduced in [11]. Let G be a graph. For a
real number k > 1, a vector k-colouring of G is a function p from V to the unit hypersphere
in Rd for some d > 1 such that 〈p(i), p(j)〉 6 −1/(k− 1) whenever {i, j} ∈ E; we consider
the fraction to be −∞ if k = 1, so the only graphs that have a vector 1-colouring are the
graphs with no edges.

A vector k-colouring p of G is strict if 〈p(i), p(j)〉 = −1/(k − 1) for every {i, j} ∈ E,
and a strict vector k-colouring p of G is strong if 〈p(i), p(j)〉 > −1/(k − 1) whenever
{i, j} ∈ E(G).

The vector chromatic number of G is the smallest k > 1 for which there exists a vector
k-colouring of G, and the strict vector chromatic number and strong vector chromatic
number are defined analogously.

It is easy to show (see, e.g., [13]) that the vector chromatic number of G is ϑ′(G), the
strict vector chromatic number of G is ϑ(G), and the strong vector chromatic number
of G is ϑ+(G), known as Szegedy’s number [22], where ϑ+(G) is defined by replacing the
constraints Xij = 0 for every {i, j} ∈ E in (3.1) by Xij 6 0 for every {i, j} ∈ E.

Here, we note that a scaling map yields a correspondence between these variations
of vector colourings and unit-distance representations, provided that the graph G has at
least one edge.

Let p be a strict vector k-colouring of G. Then the map i 7→ tp(i), where t2 = 1
2
(1−1/k),

is a hypersphere representation of G with squared radius t. Conversely, if q is a hypersphere
representation of G with squared radius t < 1/2, then the map i 7→ t−1/2q(i), is a
strict vector k-colouring of G, where k = 1/(1 − 2t). This correspondence shows that
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t(G) = 1
2
(1− 1/χv(G)), where χv(G) denotes the strict vector chromatic number of G.

The same scaling maps as above yield correspondences between vector k-colourings
and the geometric representations arising from the graph invariant t′, and also between
strong vector k-colourings and geometric representations arising from the graph invariant

t+(G) := min t
diag(X) = tē,
Xii − 2Xij +Xjj = 1, ∀{i, j} ∈ E,
Xii − 2Xij +Xjj 6 1, ∀{i, j} ∈ E,
X ∈ SV+, t ∈ R.

(4.3)

Note however, that the parameter t+ does not fit into the framework of hom-monotone
graph invariants since the SDP (4.3) has non-edge constraints.

We point out here that, while these equivalences between variants of vector chromatic
number and variants of theta number are easy to prove, they are not as widely known as
they should be. For instance, in [1] it is shown that the vector chromatic number χ′v(G)
of G satisfies

χ′v(G) > max

{
1− λmax(B)

λmin(B)
: B ∈ AG, B > 0

}
, (4.4)

where AG denotes the set of all weighted adjacency matrices of G, i.e., all symmetric
V × V matrices A such that Aij 6= 0 =⇒ {i, j} ∈ E. However, since χ′v(G) = ϑ′(G), it is
possible to adapt the proof of the Hoffman bounds for ϑ(G) (see, e.g., [12, Corollary 33])
to show that (4.4) actually holds with equality.

Also, in [18, Remark 3.1] it is reported that a certain graph G has vector chromatic
number strictly smaller than its strict vector chromatic number, and that it was unknown
whether some such graph existed. However, this statement about the vector chromatic
numbers is equivalent to ϑ′(G) < ϑ(G), and the existence of graphs satisfying this strict
inequality was already known as far back as 1979 (see [20]).

We also mention that one of the characterizations of ϑ′(G) in [7] and [5] is inaccurate.
Define an obtuse representation of a graph G to be a map p : V → Rd for some d > 1 such
that

(i) ‖p(i)‖ = 1 for every i ∈ V , and

(ii) 〈p(i), p(j)〉 6 0 for every {i, j} ∈ E.

In [7, Theorem 1] and [5, p. 133] it is claimed that

ϑ′(G) = min
p,c

max
i∈V

1(
cTp(i)

)2 , (4.5)

where p ranges over obtuse representations of G and c ranges over unit vectors of appropriate
dimension. Let G be a 2n-partite graph with color classes C1, . . . , C2n such that ω(G) = 2n.
Thus, ϑ′(G) > ω(G) = 2n. Let p(j) := ei ∈ Rn for every j ∈ Ci and i ∈ [n], and
p(j) := −ei ∈ Rn for every j ∈ Cn+i and i ∈ [n]. Set c := n−1/2ē ∈ Rn. By (4.5), we get
ϑ′(G) 6 n, a contradiction.
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Now we show how to fix the formula (4.5). Given an obtuse representation p : V → Rd

of a graph G, we say that a vector c ∈ Rd is consistent with p if cTp(i) > 0 for every
i ∈ V . The next result is a Gallai-type identity involving t′(G), parallel to Proposition 3.4
for t(G).

Proposition 4.1. Let G be a graph. Then

2t′(G) + max
p,c

min
i∈V

(
cTp(i)

)2
= 1, (4.6)

where p ranges over all obtuse representations of G and c over unit vectors consistent
with p.

The proof of Proposition 4.1 is analogous to the proof of Proposition 3.4, with the
following slight adjustments. In the notation of the proof of (3.8), the vector d may be
chosen to be consistent with the obtuse representation q, so we do not need to replace any
of the q(i)’s by their opposites.

Corollary 4.2. Let G be a graph. Then ϑ′(G) is given by (4.5), where p ranges over
obtuse representations of G and c ranges over unit vectors consistent with p.

Proof. This follows from Proposition 4.1 and the formula 2t′(G) + 1/ϑ′(G) = 1.

5 Unit-distance representations in ellipsoids

The graph parameter tb encodes the problem of finding the smallest Euclidean ball that
contains a unit-distance representation of a given graph. In this section, we study graph
parameters that encode the problem of finding the smallest ellipsoid of a given shape that
contains a unit-distance representation of a given graph.

Let G be a graph. In Section 3.4, we defined tb(G) as the minimum infinity-norm of
the vector (uTi ui)i∈V over all unit-distance representations u of G, where we are using the
notation ui := u(i). It is natural to replace the vector (uTi ui)i∈V in the objective function
of the previous optimization problem with the vector (uTi Aui)i∈V for some fixed A ∈ Sd++.
The resulting optimization problem corresponds to finding the minimum squared radius t
such that the ellipsoid {x ∈ Rd : xTAx 6 t} contains a unit-distance representation of G.

We are thus led to define, for every graph G, every A ∈ Sd+ for some d > 1, and every
p ∈ [1,∞], the number Ep(G;A) as the infimum of ‖(uTi Aui)i∈V ‖p as u ranges over all
unit-distance representations of G in Rd, or equivalently,

Ep(G;A) := inf
{
‖ diag(UAUT )‖p : L∗G(UUT ) = ē, U ∈ RV×[d]

}
. (5.1)

Note that we allow A to be singular.
Since the feasible region in (5.1) is invariant under right-multiplication by matrices

in Od, we have Ep(G;A) = Ep(G;QAQT ) for every Q ∈ Od. In particular, Ep(G; ·) is a
spectral function.
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Let us derive some basic properties of the optimal solutions of Ep(G;A). First, we
prove that if Ep(G;A) is finite then the corresponding optimal geometric representation
exists. The first observation towards this goal is that, if G is connected, then the maximum
distance between any pair of points in every unit-distance representation is at most
(|V | − 1).

Theorem 5.1. Let G be a graph. Let A ∈ Sd+ for some d > 1 and let p ∈ [1,∞]. If
Ep(G;A) < +∞, then there exists a matrix U ∈ RV×[d] such that L∗G(UUT ) = ē and
‖ diag(UAUT )‖p = Ep(G;A).

Proof. We may assume that G is connected. (If not, it suffices to focus on the component
H of G with Ep(H;A) = Ep(G;A).) We may further assume A = Diag(a), where a =
λ↓(A) 6= 0. So, there exists a largest k ∈ [d] so that ak 6= 0. Let A′ := Diag(a1, . . . , ak).
Throughout this proof, let P : Rd → Rk denote the projection onto the first k components,
i.e., P (x1, . . . , xd)

T = (x1, . . . , xk)
T , and let Q : Rd → Rd−k denote the projection onto the

last d− k components. Note that A = P TA′P and A′ � akI.
Let M ∈ R such that Ep(G;A) 6M . Fix j ∈ V arbitrarily. We claim that the following

constraints may be added to the RHS of (5.1) without changing its optimal value:

‖PUT ei‖2
2 6 B := (M + 1)/ak for every i ∈ V, (5.2)

QUT ej = 0. (5.3)

Let us see why this proves the theorem. Let U ∈ RV×[d] be feasible for (5.1) and
satisfy (5.2) and (5.3). Let i ∈ V be arbitrary. Since the columns of UT form a unit-
distance representation of G, the distance in G between i and j is an upper bound for
‖UT ei−UT ej‖2. Hence, ‖UT ei‖2 6 ‖UT ej‖2 + |V | = ‖PUT ej‖2 + |V | 6 B1/2 + |V |. Thus,
the new feasible region is compact and we will be done.

First, we prove that the constraints (5.2) may be added to (5.1) without chang-
ing the optimal value. Suppose U ∈ RV×[d] violates (5.2) for some i ∈ V . Then we
find that ‖ diag(UAUT )‖p > eTi UAU

T ei = eTi UP
TA′PUT ei > eTi UP

T (akI)PUT ei =
ak‖PUT ei‖2

2 > M + 1 > Ep(G;A) + 1, so U may be discarded from the feasible set of (5.2).
Next, we add the constraint (5.3). Let U ∈ RV×[d] be feasible for (5.1) and satisfy (5.2).

Define X ∈ RV×[d] by setting PXT ei := PUT ei for every i ∈ V and QXT ei := QUT ei −
QUT ej for every i ∈ V . Hence, X is feasible for (5.1) and satisfies (5.2) and (5.3).
Moreover, diag(XAXT ) = diag(UAUT ). This completes the proof.

A geometrically pleasing, intuitive conjecture is that a suitably defined notion of a
“centre” of an optimal representation of every graph must coincide with the centre of the
ellipsoid. The next result takes a step along this direction by refining the previous theorem.

Theorem 5.2. Let G be a graph. Let A ∈ Sd+ for some d > 1 and let p ∈ [1,∞]. If
Ep(G;A) < +∞, then there is a unit-distance representation u : V → Rd of G such that
‖(uTi Aui)i∈V ‖p = Ep(G;A) and 0 ∈ conv(u(V )).
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Proof. We use the same assumptions and notation defined in the first paragraph of the
proof of Theorem 5.1. Let u : V → Rd be a feasible solution for Ep(G;A). Let U be the set
of all unit-distance representations of G of the form i ∈ V 7→ ui + r for some vector r ∈ Rd

such that Pr = 0. Note that if k = d, then U is a singleton. Clearly, every element of U
has the same objective value as u. We will show that if there does not exist some element
v ∈ U such that 0 ∈ conv(v(V )), then Ep(G;A) < ‖(uTi Aui)i∈V ‖p. Then this theorem will
follow from Theorem 5.1.

So, assume that 0 6∈ M :=
⋃
v∈U conv(v(V )). Since M = conv(u(V )) + Null(P ) is a

polyhedron and 0 6∈ M , there exists h ∈ Rd and α > 0 such that hTvi > α for every
v ∈ U and i ∈ V . Note that Qh = 0 since for each j ∈ {k + 1, . . . , d} the linear function
hTui + thj = hT (ui + tej) of t is bounded below by α. Thus,

hTui > α > 0, ∀i ∈ V and h ∈ Im(A). (5.4)

Let x ∈ Rd such that Ax = h and let s := εx, where ε > 0 will be chosen later.
Define v : V → Rd by vi := ui − s. Let i ∈ V . Then vTi Avi = uTi Aui − 2εhTui + ε2xTAx.
Hence vTi Avi < uTi Aui if and only if 2εhTui > ε2xTAx. Thus, we will be done if we
can find ε > 0 such that 2hTui > εxTAx. Since hTui > α > 0, such ε exists. This
shows that, for some choice of ε > 0, we have vTi Avi < uTi Aui for every i ∈ V , whence
Ep(G;A) 6 ‖(vTi Avi)i∈V ‖p < ‖(uTi Aui)i∈V ‖p.

The next result shows that it is not very interesting to use arbitrarily large prescribed
embedding dimension d:

Theorem 5.3. Let G be a graph. Let A ∈ Sd+ for some d > 1 and let p ∈ [1,∞]. If k ∈ [d]
is such that Ep(G;A) has an optimal solution u : V → Rd with dim(span(u(V ))) 6 k, then

Ep(G;A) = Ep(G;Bk) (5.5)

where Bk := Diag(λ↑1(A), . . . , λ↑k(A)). In particular, Ep(G;A) = Ep(G;Bn−1) if d > n− 1.

Proof. We may assume that A = Diag(a) where a = λ↑(A). Note that B := Bk =
Diag(a1, . . . , ak). The proof of ‘6’ in (5.5) is immediate by appending extra zero coordinates
to an optimal solution of Ep(G;B).

To prove ‘>,’ let u : V → Rd be an optimal solution for Ep(G;A) such that span(u(V ))
has dimension k. Then, there exists Q ∈ Od such that, for each i ∈ V , the final d − k
coordinates of Qui are zero. Let vi ∈ Rk be obtained from Qui by dropping the final d− k
(zero) coordinates. If C ∈ Sk+ is the principal submatrix of QAQT indexed by [k], then
(vTi Cvi)i∈V = (uTi Aui)i∈V . Hence, Ep(G;A) = ‖(uTi Aui)i∈V ‖p = ‖(vTi Cvi)i∈V ‖p > Ep(G;C).
By interlacing of eigenvalues, λ↑(C) > λ↑(B). Hence, Ep(G;A) > Ep(G;C) > Ep(G;B).

It follows from Theorem 5.2 that Ep(G;A) = Ep(G;Bn−1) if d > n− 1.

It is clear that Ep(G;A) = 0 if and only if dim(G) 6 dim(Null(A)). So deciding whether
dim(G) 6 k for any fixed k reduces to computing Ep(G;A) for any p ∈ [1,∞] where A is a
matrix of nullity k. It is easy to see that the former decision problem is NP-hard (see [10,
Theorem 4]). We give below a shorter proof.
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Figure 1: The Mosers spindle; see [21].

i j

Figure 2: The gadget graph H.

Theorem 5.4 ([10]). The problem of deciding whether dim(G) 6 2 for a given input
graph G is NP-hard.

Proof. Let k be a fixed positive integer. Saxe [19] showed that the following problem is
NP-hard: given an input graph G and ` : E → R+, decide whether there exists u : V → Rk

such that ‖u(i)−u(j)‖ = `{i,j} for every {i, j} ∈ E. Saxe showed that the problem remains
NP-hard even if we require `(E) ⊆ {1, 2}.

We will show a polynomial-time reduction from the above problem with k = 2 and
`(E) ⊆ {1, 2} to the problem of deciding whether dim(G) 6 2. It suffices to show how we
can replace any edge of the input graph G which is required to be embedded as a line
segment of length 2 by some gadget graph H so that every unit-distance representation
of H in R2 maps two specified nodes of H to points at distance 2.

Consider the graph M known as the Mosers spindle shown in Figure 1. The subgraph
of M induced by {a, b, c, d} has exactly two unit-distance representations in R2 modulo
rigid motions: one of them as displayed in Figure 1, and the other one maps nodes a and b
to the same point. We claim that, in any unit-distance representation u of M in R2, the
nodes a and b are not mapped to the same point. Suppose otherwise. Since the points
u(e), u(f), u(g) are at distance 1 from u(a) = u(b) and from each other, u shows that
dim(K4) 6 2, whereas clearly dim(K4) > 3.

Let H be the gadget shown in Figure 2, which consists of two copies of M sharing
a triangle (some edges of M are drawn in dots for the sake of ease of visualization).
Then, every unit-distance representation of H in R2 maps the nodes i and j to points at
distance 2. Thus, if we replace the corresponding edges {i, j} of the input graph G by H,
we obtain a graph G′ such that dim(G′) 6 2 if and only if G can be embedded in R2 with
the prescribed edge lengths.
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It follows from Theorem 5.4 that, for any fixed p ∈ [1,∞], the problem of computing
Ep(G;A) for an input graph G and A ∈ SV+ is NP-hard. Hence the graph parameter tb = t
is in a sense on the borderline of tractability.

5.1 The extreme cases p ∈ {1,∞}
For every matrix U ∈ RV×V , if we set X := UUT , then there exists an orthogonal V × V
matrix Q such that UT = QX1/2. Hence, if A ∈ SV+, then

Ep(G;A) = inf ‖ diag(X1/2QTAQX1/2)‖p
L∗G(X) = ē
X ∈ SV+, Q ∈ OV .

(5.6)

When p = 1, the objective function in (5.6) is Tr(QTAQX) = 〈QTAQ,X〉 so we can write

E1(G;A) = inf
Q∈OV

tQTAQ(G) (5.7)

where tW (G) is defined for any W ∈ SV as the SDP

tW (G) := inf
{
〈W,X〉 : L∗G(X) = ē, X ∈ SV+

}
. (5.8)

Proposition 5.5. Let G be a connected graph and let W ∈ SV . Then tW (G) is finite if
and only if ēTWē > 0 or Wē = 0. Moreover, whenever tW (G) is finite, both (5.8) and its
dual SDP have optimal solutions and their optimal values coincide.

The parameter tW (G) thus underlies the parameters E1(G;A) as well as the hypersphere
number t(G), since (3.4) shows that

t(G) = min{ tDiag(y)(G) : ēTy = 1, y ∈ RV }.

If X is feasible in (5.8) for G = Kn, then X is completely determined by its diagonal
entries. Using this fact, it is easy to prove that the feasible region of (5.8) for G = Kn is

{X ∈ Sn+ : L∗Kn
(X) = ē} = { (yēT + ēyT + 2I)/4 : ‖ē‖‖y‖ 6 ēTy + 2, y ∈ Rn}. (5.9)

Using a second-order cone programming formulation, we can show that

2tW (Kn) =


Tr(W )− ‖Wē‖2

ēTWē
if ēTWē > 0

Tr(W ) if Wē = 0

−∞ otherwise.

(5.10)

Let us use (5.7) and (5.10) to compute E1(G;A). Let A ∈ Sn+ be nonzero. Since
Qē 6∈ Null(A) for some Q ∈ On, it follows from (5.7) and (5.10) that

2E1(Kn;A) = Tr(A)− sup
{ ‖QTAQē‖2

ēTQTAQē
: Qē 6∈ Null(A), Q ∈ On

}
.
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The supremum may be replaced by sup{ (hTA2h)/(hTAh) : h ∈ Null(A)⊥}, which is easily
seen to be λmax(A). This implies with Theorem 5.3 that

E1(Kn;A) =

{
1
2

∑n−1
i=1 λ

↑
i (A) if A ∈ Sd+ with d > n− 1

+∞ otherwise.
(5.11)

For the other extreme p = ∞, the first property of hom-monotonicity holds. More
precisely, let (an)n∈Z++ be a nondecreasing sequence of positive reals. Define An :=
Diag(a1, . . . , an) for every n ∈ Z++. Then,

G→ H =⇒ E∞(G;An) 6 E∞(H;An). (5.12)

We do not know whether the graph invariant E∞ satisfies the second property of hom-
monotonicity. In fact, we do not know an analytical formula to compute E∞(Kn;A) in
terms of A. However, we have such a formula for an infinite family of complete graphs,
as we now describe. Let H be an n × n Hadamard matrix, i.e., H is {±1}-valued and
HTH = nI. We may assume that H has the form HT =

[
ē LT

]
. Then LTL = nI − ēēT ,

so 1
2n
L∗Kn

(LTL) = ē, i.e., the map i 7→ (2n)−1/2Lei is a unit-distance representation of Kn.
This map is called a Hadamard representation of Kn.

Theorem 5.6. Let n ∈ Z++ such that there exists an n × n Hadamard matrix. Then,
for any p ∈ [1,∞] and diagonal A ∈ Sn−1

+ , every Hadamard representation of Kn is an
optimal solution for Ep(Kn;A).

Proof. The objective value of the Hadamard representation L̄ of Kn in the optimization
problem Ep(Kn;A) is

[Tr(A)
2n

]
‖ē‖p. Thus, L̄ is optimal for p = 1 by (5.11). From the

inequality ‖x‖1 6 n‖x‖∞ we get E∞(Kn;A) > 1
n
E1(Kn;A), which shows that L̄ is optimal

for p =∞. Therefore, L̄ is optimal for every p ∈ [1,∞].

It is natural to lift a Hadamard representation h of Kn to obtain a frugal feasible
solution for E(Kn+1;A). The image of h is an (n − 1)-dimensional simplex ∆. If v is a
vertex of an n-dimensional simplex whose opposite facet is ∆, then the line segment L
joining v to the barycenter of ∆ is the shortest line segment joining v to ∆. It makes sense
to align L with the most expensive axis, i.e., the one corresponding to λmax(A). Suppose
A = Diag(a) and ‖a‖∞ = an. We thus obtain a unit-distance representation u of Kn+1

in Rn of the form

u(i) :=

{
h(i)⊕ α, if i ∈ [n]

0⊕
[
α +

(
n+1
2n

)1/2]
, if i = n+ 1.

By optimizing the shift parameter α, we obtain the following upper bound:

Proposition 5.7. Let n ∈ Z++ such that there exists an n × n Hadamard matrix. If
A ∈ Sn+, then

E∞(Kn+1;A) 6
Tr(A)

2(n+ 1)
+

(
Tr(A)− nλmax(A)

)2

8n(n+ 1)λmax(A)
. (5.13)

Equality holds for n = 2 if A � 0.

The proof of equality for n = 2 involves the obvious parametrization of O2 and basic
trigonometry.
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A Some Omitted Proofs

Proof of Proposition 3.10. Let (ȳ, z̄) be an optimal solution for (3.4). We will construct a
feasible solution for (3.4) applied to G/e with objective value t(G)− z̄e. Assume e = {a, b}
and V ′ := V (G/e) = V \ {b}, so we are denoting the contracted node of G/e by a. Let
P be the V ′ × V matrix defined by P := eae

T
b +

∑
i∈V ′ eie

T
i . Then PLG(z̄)P T = LG/e(ẑ),

where ẑ ∈ RE(G/e) is obtained from z̄ as follows. In taking the contraction G/e from G,
immediately after we identify the ends of e, but before we remove resulting parallel edges,
there are at most two edges between each pair of nodes of G/e, as we assume that G is
simple. If there is exactly one edge between nodes i and j, we just set ẑ{i,j} := z̄{i,j}. If
there are two edges joining nodes i and j, say f and f ′, we put ẑ{i,j} := z̄f + z̄f ′ .

Similarly, if we define ŷ : V ′ → R by putting ŷi := ȳi for i ∈ V ′ \ {a} and ŷa := ȳa + ȳb,
then P Diag(ȳ)P T = Diag(ŷ). Since P SV+ P T ⊆ SV ′

+ , we see that (ŷ, ẑ) is a feasible solution
for (3.4) applied to G/e, and its objective value is ẑ(E(G/e)) = z̄(E)− z̄e.

To prove the inequality involving ϑ(G), use (3.2) together with its proof to see that X̄
corresponds to an optimal solution (ȳ, z̄) for (3.4) with X̄/ϑ(G) = Diag(ȳ) − LG(z̄), so
ȳe = X̄ij/ϑ(G).

Proof of Proposition 3.11. By Theorem 3.1, it suffices to show t(G[N(i)]) 6 1− 1/[4t(G)].
Let p : V → Rd be a hypersphere representation of G with squared radius t := t(G).
We may assume that p(i) = t1/2e1. For every j ∈ N(i), we have 1 = ‖p(i) − p(j)‖2 =
‖p(i)‖2 + ‖p(j)‖2 − 2〈p(i), p(j)〉 = 2t− 2t1/2[p(j)]1. Hence, [p(j)]1 = (2t− 1)/(2t1/2) =: β
for every j ∈ N(i). Define the following hypersphere representation of G[N(i)]: for each
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j ∈ N(i), let q(j) be obtained from p(j) by dropping the first coordinate. The squared
radius of the resulting hypersphere representation is t− β2 = 1− 1/(4t).

Proof of (5.9). Let X ∈ SV . Then L∗Kn
(X) = ē if and only if 4X = yēT + ēyT + 2I for

some y ∈ RV ; for the ‘only if’ part, use y := 2 diag(X)− ē.
Let y ∈ RV . The smallest eigenvalue of yēT + ēyT is ēTy − ‖ē‖‖y‖. Thus, we have

yēT + ēyT + 2I � 0 if and only if ‖ē‖‖y‖ 6 ēTy + 2.

Proof of (5.10). Assume first that W = Diag(w) for some w ∈ Rn. By Proposition 5.5,
finiteness of tW (Kn) implies ēTw > 0 or w = 0. Assume the former. By (5.9),

2tW (Kn) = ēTw + min{wTy : ‖ē‖y0 − ēTy = 2, y0 ⊕ y ∈ SOCn}, (A.1)

where SOCn := { y0 ⊕ y ∈ R⊕ Rn : ‖y‖ 6 y0}. The second-order cone program on the
RHS of (A.1) has ȳ0 ⊕ ȳ := (2 + ‖ē‖2)/‖ē‖ ⊕ ē as a Slater point, and its dual is
max{ 2µ : −µ‖ē‖ ⊕ (w + µē) ∈ SOCn, µ ∈ R}. Since µ∗ := −‖w‖2/(2ēTw) is optimal
for the dual, it follows that

2tDiag(w)(Kn) =


ēTw − ‖w‖2/(ēTw) if ēTw > 0

0 if w = 0

−∞ otherwise.

(A.2)

Now we drop the diagonal assumption, so let W ∈ Sn such that ēTWē > 0 or Wē = 0.
For y ∈ Rn, we can write 〈W, yēT + ēyT 〉 = 〈Wē, 2y〉 = 〈Diag(Wē), yēT + ēyT 〉, so
〈W, yēT + ēyT + 2I〉 = 〈Diag(Wē), yēT + ēyT + 2I〉 − 2ēTWē+ 2 Tr(W ), i.e.,

4tW (Kn) = 4tDiag(Wē)(Kn)− 2ēTWē+ 2 Tr(W )

by (5.9). Hence, (5.10) follows from (A.2).
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