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Abstract

For each pointed abelian group (A,c), there is an associated Galkin quandle
G(A, ¢) which is an algebraic structure defined on Zz x A that can be used to con-
struct knot invariants. It is known that two finite Galkin quandles are isomorphic if
and only if their associated pointed abelian groups are isomorphic. In this paper we
classify all finite pointed abelian groups. We show that the number of nonisomor-
phic pointed abelian groups of order ¢" (¢ prime) is » 4., P(m)p(n —m), where
p(m) is the number of partitions of integer m.

Keywords: Galkin quandle; knot; Frobenius symbol; partition number; pointed
abelian group

1 Introduction

The purpose of this paper is to demonstrate some nice connections between the three ob-
jects in the title: Galkin quandle, pointed abelian group, and sequence A000712 (number
of partitions of n into parts of 2 kinds). First, let us describe the three objects briefly.

Galkin quandles

A quandle is a set X equipped with an operation * satisfying the following conditions.
(i) Foreach z € X, zxx = x.
(ii) For each y € X, the mapping = — z * y is a permutation of X.

(iii) For all z,y,z € X, (zxy)x 2z = (v * 2) x (y * 2).
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A coloring of an oriented knot diagram by a quandle (X, *) is a labeling of the arcs of
the diagram by the elements of X such that at each crossing the rule depicted in Figure 1
is observed. The number of colorings of a knot K by a quandle X, denoted by Nx(K),
is an effective knot invariant that can be used to distinguish many nonequivalent knots
2, 3, 6].

Figure 1: Colors at a crossing

Define p, 7 : Zs — Z by

2 ifx=0, 1 ifz=2
plx) = . T(r) = .
-1 ifz#0, 0 ifxz+#2.

Let A be an abelian group and ¢ € A. For (z,a), (y,b) € Z3 x A, define

(z,a) % (y,0) = (—x —y, —a+ p(x —y)b+71(x —y)c).

The Galkin quandle, denoted by G(A,c), is the structure (Zs x A, ). This construction
was first given by Galkin in [4] for A = Z, and was recently generalized to any abelian
group A in [3]. For more properties of Galkin quandles, see [3].

Pointed abelian groups

A pointed abelian group is a pair (A,c) where A is an abelian group and ¢ € A. A
morphism from a pointed abelian group (A, ¢) to another pointed abelian group (A’, ) is
a homomorphism f : A — A’ such that f(c) = ¢’. The category of pointed abelian groups
is denoted by Aby.

Sequence A000712

In the On-Line Encyclopedia of Integer Sequences [8], A000712 is the sequence {a(n)}>2,,
where a(n) is number of partitions of n into parts of 2 kinds. One has

- n T 1
Za(n)x = WH —<1 — )2

n=0 1

and
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where p(m) is the number of partitions of m. For many other interpretations of a(n), see
8].

Let Q denote the category of quandles, where the morphisms are quandle homomor-
phisms. For each pointed abelian group (A, c), define F(A,c) = G(A,c), and for each
morphism f : (A4, ¢) — (A4’, ) of pointed abelian groups, let Ff : G(A,c) - G(A', ) be
the quandle homomorphism defined by

(FN)(x,a) = (2, f(a)),  (z,a) € Zg x A.

Then F is a functor from Aby to Q [3]. In particular, if (A, c) and (A4’,¢) are isomor-
phic pointed abelian groups, then G(A,c) and G(A’,¢') are isomorphic quandles. For
finite Galkin quandles, the converse is also true: If G(A,c) and G(A’, ) are isomorphic
quandles, then (A, c) and (A’, ') are isomorphic pointed abelian groups [3]. Therefore,
classification of finite Galkin quandles is the same as classification of finite pointed abelian
groups.

Let (A,c) be a finite pointed abelian group. We use ¢ to denote a prime to avoid
confusion with the partition number p(n). For each prime ¢, denote the g-part of A by
Ay (Ag={a € A:q"a=0 for some n > 0}.) Then A =P, A, Write c = 3_ ¢,
cq € Ay Then

(4,¢) = P Ay, o),

q

where the meaning of the direct sum of pointed abelian groups is self explaining. If
(A’,) is a another finite pointed abelian group, then (A,c¢) = (A',¢) if and only if
(Ay,cq) = (Af, ) for all primes g. Therefore, to classify all finite pointed abelian groups,
it suffices to classify all finite pointed abelian g-groups.

Let A be a finite abelian g-group and let Aut(A) act on A naturally. For ¢, € A,
the pointed abelian groups (A, ¢) and (A, ¢’) are isomorphic if and only if ¢ and ¢ are in
the same Aut(A)-orbit of A. The automorphism group Aut(A) is well known [5, 7]. In
section 2, we describe the orbit representatives of A under the action of Aut(A). Thus
a classification of finite pointed abelian g-groups is obtained. This classification allows
us to compute the number N(n) of nonisomorphic pointed abelian groups of order ¢".
(N(n) is independent of g.) The initial formula for N(n) resulting from the classification
is rather complicated and does not suggest any connection to any well known sequence.
However, a search through the On-Line Encyclopedia of Integer Sequences (OEIS) shows
that the numerical values of N(n) that we have computed match the sequence A000712.
In section 3, we confirm that N(n) is indeed the sequence A000712. The proof is rather
tricky; the key step is a formula for the partition number p(n) based on a slight variation
of the Frobenius symbol of a partition.

2 Classification of Finite Pointed Abelian ¢-Groups

Let g be a prime and
A=A @ DAy, (1)
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where A; —ZZQ,l\el<---<ekandni>0,1<z'<k:. Let m; : A — A, be the

projection and ¢; : A; — A be the inclusion. Then
Endz(A) = @ [,jHOmz(Ai, Aj)ﬂ'i.
,J

The mapping ¢;( )m; : Homy(A;, A;) — t;Homy(A;, Aj)m; is an isomorphism. We will
identify Homy(A;, A;) with ¢;Homy(A;, A;)m; through this isomorphism. Thus we can
write
Endy(A) = @5 Homgz(A;, 4;).
i.j
For o =}, ;0i; € Endz(A), where 0;; € Homg(4;, 4;), it is well known that o € Aut(A)
if and only 1f o € Aut(A4;) for all 1 <i <k [5, 7).

Theorem 1. Let A be a finite abelian q-group written in the form (1). For each 1 < i < k,
choose €; € A; \ qA;. Let I(eq,...,ex) be the set whose elements are sequence of integer

pairs (iy, f1), ..., (i, fi) satisfying
(1) 1 >0, (the sequence is empty when | =0,)
(1)) 1<ip < -+ < <Kk,

(i) 0 < fe<e, —1, 1<s<,

() 0 < fop1— fs<e€ipy,, —€,, 1<s<I—1.

Then as (i1, f1),- .-, (i1, f;) runs through Z(ey, ..., ex),

l
Z q"e, (2)
s=1

gives a complete list of orbit representatives of A under the action of Aut(A).

Proof. 1° We first show that for each « € A, there exists 0 € Aut(A) such that o(z) is of
the form (2).

Clearly, the Aut(A;)-orbits of A; are represented by 0 and ¢'e;, 0 <t < e; — 1. Thus
there exists o € Aut(A) such that

T) = Z ¢ e,

1<s<

where 1 <4 <--- <y <kand 0< fs <e, —1, 1< s <. We further assume that o is
so chosen that l is mintmum. We claim that

0< foq1— fs < e — €, 1<s<l—1. (3)
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If, to the contrary of (3), fri1 — fin < 0 for some 1 < m < [ — 1, then there exists

o € Homgy(4;,,,,4;,) such that a(¢/™+'€;, .,) = ¢/me;,,. Let f = ids — a € Aut(A).
Then
fo(x) = ﬁ(Z qu%> = > ¢Fa,,
1<s<l lisgl

which is a contradiction to the minimality of [.
If, to the contrary of (3), fr41 — fm = €i,,., — €, for some 1 < m <1 —1, then there
exists o € Homg(4,,,A such that o/(¢'€;,,) = ¢/™+€,,,. Let / =idy — o/ €

Aut(A). Then
B/O'((L’) = Z qfseisa

1<s<d
s#Em+1

im?

i'm+1)

which is again a contradiction.

So (3) is proved. Now o(x) is of the form (2) and the sequence (i1, f1), ..., (i, fi)
satisfies conditions (i) — (iv).

2° Assume that (i1, f1),..., (i, fi) and (J1,91), - - -, (Jm, gm) are two different sequences
in Z(ey, ..., ex). We show that -, q’*¢;, and > 1<s<m 4% €5, do not belong to the same
Aut(A)-orbit.

Without loss of generality, we may assume that there exists 1 < u < [ such that either
iw & {J1,- - Jm} or iy, = j, for some 1 < v < mbut f, < g,. For each 0 € Aut(A) written
in the form o = Zw oij, where 0;; € Homy(A;, A;), 0, € Aut(A4;), the A; -component of

o(P1cs< ¢ei,) is
Z Z O-Z‘aiu(qfseis>‘

1<i<k 1<s<d

Because of condition (iv), we have
Fei) € {qqui“ VAL s =i =,

wu(q is qfu+1 A, otherwise.

So the A;,-component of (3, _,, ¢%*€;,) belongs to ¢/* 4;, \ ¢/**' A;,. On the other hand,
the A;,-component of Y7, . ¢%e;, belongs to ¢/**'A;,. Thus

U(Z qfse,-8> #* Z q% €, .

1<s<l 1<s<m

[]

3 Number of Nonisomorphic Finite Pointed Abelian
g-Groups

It follows from Theorem 1 that the number of nonisomorphic pointed abelian groups with
the underlying group Zy,, @ --- @ Z#, (1 < e < --- < eg, n; > 0) is |[T(er, ..., ex)l.
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Consequently, the number of nonisomorphic pointed abelian groups of order ¢", denoted
by N(n), is given by

Nn)y= > |Z(er,...,e0)l. (4)

1<e1 < <eg
n1,...,nE>0
niei+--+ngeg=n

The values of N(0), N(1),... are
1, 2, 5, 10, 36, 65, 110, 185, 300, 481, ...

which point to the sequence A000712 as a possible match. However, in the form (4), it is
not clear that N(n) is the sequence A000712.

Theorem 2. N(n) is the sequence A000712. Namely,
N(n) = Z p(m)p(n —m), n = 0. (5)
os<m<n

The key step in the proof of Theorem 2 is the following lemma.

Lemma 3. For integers k,l > 0 define

Ak, 1) = {(21,...,23) €ZF 1 1

< <xk7 $1+"'+xk‘:l}7
B(k,1) = {(x1,...,21) €ZF : 0 <

T <
Ty < -0 < T, $1+"‘+$k:l}.
Then

pn)= > [AKRDIB(kn—Dl= ) |B(k1—Fk)[B(kn—1). (6)

0<k<I<n 0<k<I<n

Proof. Since |A(k,l)| = |B(k,l — k)|, we only have to prove the first equal sign in (6).
In fact, there is a bijection between the set of partitions of n and

U A1) x B(k,n—1).

0<k<I<n

Given (z1,...,xx) € A(k,l) and (yi,...,yx) € B(k,n—1), we can build a Ferrers diagram
herringbone style that corresponds to the a partition of n: We create vertical blocks of

sizes xp X 1, xp_1 x1,..., x1 X1 and horizontal blocks of sizes 1 X yx, 1 Xyp_1, ..., 1 Xy,
and we pave these blocks into a Ferrers diagram as shown in Figure 2.
Conversely, given a Ferrers diagram, we can retrieve two sequences (zy,...,x;) €

A(k,l) and (y1,...,yx) € B(k,n—1) in the order of zx, yg, Tx—1, Y_1, - - - , 1, Y1 as depicted
in Figure 2. (Note that it is necessary that y; be allowed to be 0.) Therefore we have the
desired bijection. O]
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Yk

Yk—1

Y1

Tk fr—1 1

Figure 2: The Ferrers diagram corresponding to (x1,...,2x), (Y1, -, Yx)

Remark. The herringbone construction in Figure 2 is a slight variation of the Frobenius
symbol of a partition. The array

Yk Yk—1 T 1
rp—1 zp1—1 -+ x1—1
is the Frobenius symbol of the partition in Figure 2 [1]. Thus Lemma 3 is essentially

counting of Frobenius symbols of partitions. For a comprehensive treatise of Frobenius
symbols and generalized Frobenius partitions, see [1].

Proof of Theorem 2. Each isomorphic class of pointed abelian groups of order ¢" is uniquely
determined by the following data:

1<e <= <eg, ny,...,ng >0 such that nje; + -+ + ngep = n;
(frrin), o (fuit) € T(ers . ex).

Each set of such data can be obtained exactly once through the following steps;

Step 1. Choose (z1,...,7;) € A(l,u), (y1,...,y) € B(l,m —u), where 0 <l < u <
m < n.

Step 2. Choose a partition A of n — m. The union of A and 1 + y1,..., 2+ y; is a
partition p of n. Write

= (€1, €1yeny iy, L),
——— —_——
ni Nk
where 1 <e; < ---<eg, ng,...,n, > 0.

Step 3. Let f, = x,, 1 < s <[ and let is be defined by =, + y, = ¢;
To observe how these steps are actually carried out, see Example 4.
For each 0 < m < n, the number of choices in step 1 is

s*

> |AQLw)||B(l,m —u)| = p(m)  (by Theorem 3).

o<i<usm
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The number of choices in step 2 is p(n — m) and the number of choices in step 3 is 1.
Thus we have

Ny = 3 plm)p(n —m).

os<m<n

[]

Example 4. Assume n = 20.

Ezxample of step 1. Choose (1,3,5) € A(3,9) and (1,2,4) € B(3,7). Note that m = 16.
Ezample of step 2. n —m = 4. Choose A = (1,1,2) F 4. Then

po=(1,1,2,2,5,9),
(61’62763764) = (1727579)7
(n1,n2,n3,n4) = (2,2,1,1).

Step 3. We have (f1, fa, f3) = (1,3,5). Since z1 + y; = 2 = e, we have i; = 2. In the

same way, (i17i27i3) = (27 37 4)
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