
Enumeration of unlabeled directed hypergraphs

Jianguo Qian∗

School of Mathematical Sciences, Xiamen University
Xiamen 361005, Fujian, P.R. China

jgqian@xmu.edu.cn

Submitted: Oct 4, 2012; Accepted: Feb 21, 2013; Published: Mar 1, 2013

Mathematics Subject Classifications: 05C30, 05C65, 05C20

Abstract

We consider the enumeration of unlabeled directed hypergraphs by using Pólya’s
counting theory and Burnside’s counting lemma. Instead of characterizing the cycle
index of the permutation group acting on the hyperarc set A, we treat each cycle in
the disjoint cycle decomposition of a permutation ρ acting on A as an equivalence
class (or orbit) of A under the operation of the group generated by ρ. Compared
to the cycle index method, our approach is more effective in dealing with the enu-
meration of directed hypergraphs. We deduce the explicit counting formulae for
the unlabeled q-uniform and unlabeled general directed hypergraphs. The former
generalizes the well known result for 2-uniform directed hypergraphs, i.e., for the
ordinary directed graphs introduced by Harary and Palmer.

Keywords: unlabeled directed hypergraph; uniform; enumeration

1 Introduction

In 1937, Pólya [16] developed a powerful theory for treating the symmetries of graphs or
more in general, certain types of discrete configurations under a given permutation group,
which nowadays is known as Pólya’s theorem or Redfield-Pólya theorem and represents one
of the cornerstones of modern combinatorics. Theoretically, this theory provides us with a
universal technique to count the unlabeled graphs or in particular, the graphs which meet
some specific requirements. Following Pólya, the enumeration problem for various types
of graphs were studied in the literature. For examples, some results on ordinary graphs
and hypergraphs can be found in [3, 5, 7, 8, 9, 10, 11, 14, 17] and [4, 12, 15, 18, 19, 21],
respectively. In particular, the pre-1973 work on this problem was nicely included in the
text book [9] written by Harary and Palmer.
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In this paper, we consider the enumeration of unlabeled directed hypergraphs, i.e.,
non-isomorphic directed hypergraphs. A directed hypergraph D is a pair 〈V,A〉, where
V is the vertex set and A is its hyperarc set. As a generalization of directed graph, a
hyperarc a or simply, an arc a, in a directed hypergraph is a nonempty vertex subset with
a specified vertex called its source or root. That is, a is an ordered pair 〈v,W 〉 with v ∈ V
and W ⊆ V \{v}. The set W is also called the sink set of the arc [1, 6, 13, 20]. A directed
hypergraph D = 〈V,A〉 is called q-uniform (1 6 q 6 |V |) if each arc 〈v,W 〉 consists of
exactly q vertices (including its root), i.e., |W | = q− 1. Generally, a directed hypergraph
in which the sink set W can consist of any number of vertices is called a general directed
hypergraph. In addition, all the hypergraphs considered here are simple, i.e., the multiple
arcs are not allowed.

We apply Pólya’s counting theory and Burnside’s counting lemma to our enumeration
problem. In general, the key point of Pólya’s theory to treat the number of cycles in
the disjoint cycle decomposition of the permutations is to characterize the cycle index of
the involved permutation group, which has been widely used in graphical enumeration.
However, to characterize the cycle index may become particularly complex for some cases,
e.g., for undirected hypergraph [12, 18, 21], the standard and frequently used method for
which is to use the generating function.

We will, however, not try to characterize the cycle index. Instead, we consider the
number of cycles from a different point of view which arises from a simple observation,
i.e.: a cycle in a permutation π acting on a set X could be regarded as an equivalence
class (or orbit) of X under the operation of the group generated by π.

Compared to the cycle index method based on generating function, our approach
is more effective in dealing with the enumeration of directed hypergraphs. We deduce
the explicit counting formulae for the unlabeled q-uniform directed hypergraphs with
1 6 q 6 |V | and unlabeled general directed hypergraphs. The former generalizes the well
known result for the ordinary directed graphs introduced by Harary and Palmer [9]. Some
numerical results are also listed, as examples.

2 Main results

Let ρ be a permutation acting on a set X and let Ω(ρ) be the number of cycles in the
disjoint cycle decomposition of ρ. As mentioned in the previous section, Ω(ρ) could be
regarded as the number of equivalence classes (or orbits) of X under the operation of the
group generated by ρ: i.e., 〈ρ〉 = {ρ, ρ2, · · · , ρ|ρ|}, where |ρ| is the order of ρ. Thus, by
Burnside’s lemma [2] we get the following observation.

Observation 1. The number of cycles in the disjoint cycle decomposition of a permuta-
tion ρ is

Ω(ρ) =
1

|ρ|

|ρ|∑
i=1

Ψ(ρi),

where Ψ(ρi) is the number of elements of X left fixed by ρi, i.e., invariant under ρi. �

the electronic journal of combinatorics 20(1) (2013), #P46 2



We now turn to the enumeration problem of the directed hypergraphs. In the following,
the vertex set of a directed hypergraph D of order n is always set to be [n] = {1, 2, · · · , n}.
In terms of the Pólya’s counting theory, we model a directed hypergraph D (general or
uniform) as an arc coloring of the complete directed hypergraph Kn (general or uniform)
of order n using two colors. Thus, the problem is equivalent to determining the number
of equivalence coloring classes of Kn under the operation of the group induced by the
automorphism group Sn of Kn, i.e., the symmetry group on [n].

For a partition P of n, we will write it either as the form P : p1 + p2 + · · · + pk or as
P : 1α1 + 2α2 + · · ·+ nαn, for the convenience of our discussion, where αi is the number
of the integers i in the partition. Given natural numbers a1, a2, · · · , am, we denote by
(a1, a2, · · · , am) and [a1, a2, · · · , am] the greatest common divisor and the least common
multiple of a1, a2, · · · , am, respectively.

A permutation π ∈ Sn with the disjoint cycle decomposition π = σ1σ2 · · ·σk induces a
partition of n, i.e., P : p1 +p2 + · · ·+pk, where pi is the length of the cycle σi. Conversely,
it is well known [9] that a partition P : 1α1 + 2α2 + · · ·+ nαn of n induces

n!

1α12α2 · · ·nαnα1!α2! · · ·αn!

permutations in Sn, each with disjoint cycle decomposition of the form 1α12α2 · · ·nαn ,
where iαi represents the product of αi cycles of length i, i = 1, 2, · · · , n. For a permutation
π ∈ Sn, we denote by ρ(π) the permutation acting on the arc set induced by π. For
simplicity, we also use ρ(P ) to denote ρ(π(P )), where π(P ) is an arbitrary permutation
in Sn induced by P .

Let P(n) be the class of all the partitions of n. Then by Burnside’s lemma [2], the
number of unlabeled directed hypergraphs of order n is given by

d(n) =
1

n!

∑
π∈Sn

Φ(ρ(π)) =
1

n!

∑
P∈P(n)

n!

1α12α2 · · ·nαnα1!α2! · · ·αn!
Φ(ρ(P )), (1)

where Φ(ρ(P )) (resp., Φ(ρ(π))) is the number of colorings left fixed by ρ(P ) (resp., by
ρ(π)). In terms of the cycle index, Φ(ρ(P )) can be represented as 2Ω(ρ(P )), where Ω(ρ(P ))
is the number of cycles in ρ(P ). We notice that the order of the permutation ρ(P ) is
[p1, p2, · · · , pk]. Thus, by Observation 1,

d(n) =
∑

P∈P(n)

1

1α12α2 · · ·nαnα1!α2! · · ·αn!
2Ω(ρ(P )), (2)

where

Ω(ρ(P )) =
1

[p1, p2, · · · , pk]

[p1,p2,··· ,pk]∑
t=1

Ψ(ρt(P )), (3)

and Ψ(ρt(P )) is the number of arcs left fixed by ρt(P ).
Let π be induced by a partition P : p1 + p2 + · · · + pk having the disjoint cycle

decomposition

π = (n11n12 · · ·n1p1)(n21n22 · · ·n2p2) · · · (nk1nk2 · · ·nkpk).
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Let 〈urs, Q〉 be an arc of a directed hypergraph, where

Q = Q1 ∪Q2 ∪ · · · ∪Qk, Qi ⊆ {ni1, ni2, · · · , nipi}, i = 1, 2, · · · , k,

and urs ∈ {nr1, nr2, · · · , nrpr}\Qr. We call r the root subscript of 〈urs, Q〉. It is clear that
the arc 〈urs, Q〉 restricted on {nr1, nr2, · · · , nrpr} is 〈urs, Qr〉.

By the definition of the directed hypergraphs, the arc 〈urs, Q〉 is left fixed by ρ(πt)
if and only if urs is left fixed by πt and Q is left fixed by ρ(πt), i.e., πt(urs) = urs and
ρ(πt)(Q) = Q. Similarly, 〈urs, Qr〉 is left fixed by ρ(πt) if and only if πt(urs) = urs and
ρ(πt)(Qr) = Qr.

For a subset Qi, we write it as a (0,1)-sequence: Qi = ai1ai2 · · · aipi , where aij = 1 if
nij ∈ Qi and aij = 0 for otherwise. One can see that Qi is left fixed by ρ(π) if and only
if aij = ai,j+1(modpi) for any j ∈ {1, 2, · · · , pi}. In general, we have the following result.

Lemma 2. Let i ∈ {1, 2, · · · , k} and t be a positive integer.
1). If i 6= r then Qi is left fixed by ρ(πt) if and only if

aij = ai,j+η(modpi)

for any j ∈ {1, 2, · · · , pi}, where η = (t, pi);
2). 〈urs, Qr〉 is left fixed by ρ(πt) if and only if t is a multiple of pr.

Proof. 1). Notice that πt(nij) = ni,j+t(modpi) = ni,j+ηh(modpi), where h = t/η. Therefore,
the condition aij = ai,j+η(modpi) implies that nij ∈ Qi if and only if πt(nij) ∈ Qi, i.e., Qi is
left fixed by ρ(πt). The sufficiency now follows.

Conversely, assume that Qi is left fixed by ρ(πt), i.e., ρ(πt)(Qi) = Qi. Then πt

restricted on Qi is a permutation, i.e., nij ∈ Qi if and only if πt(nij) ∈ Qi. On the
other hand, again notice that πt(nij) = ni,j+t(modpi). Hence, nij ∈ Qi if and only if
ni,j+t(modpi) ∈ Qi and therefore, ni,j+mt(modpi) ∈ Qi for any integer m. Now since pi/η and
t/η are relatively prime, the equation

pi
η

+ 1 ≡ m
t

η
(modpi)

has an integer solution m with 1 6 m < (pi/η)(t/η). Thus, we have lpi + η = mt,
i.e., η ≡ mt (modpi), where l is an integer. This implies that j + mt = j + η (modpi).
Equivalently, nij ∈ Qi if and only if ni,j+η(modpi) ∈ Qi, i.e., aij = ai,j+η(mod)pi for each
j ∈ {1, 2, · · · pi}.
2). We notice that if t is a multiple of pr, then Qr is left fixed by ρ(πt). Therefore,
2) follows directly since urs is left fixed by πt if and only if t is a multiple of pr. This
completes our proof. �

2.1 General directed hypergraphs

By the definition of the directed hypergraphs, we note that any arc consists of at least
one vertex, i.e., the root vertex.
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Table 1: Numerical results for d∗(n) with n = 1, 2, · · · , 12.
n d∗(n)
1 2
2 10
3 752
4 179228736
5 10074382205972351614976
6 87181968547037232901944803346094×1023

7 14421403259833470050581821585079×10100

8 44585643225751882632175227946156×10272

9 10312096701091637545105819481752×10657

10 51738611172921010385604860571960×101503

11 15875062400125167572370589504655×103352

12 27091713481721153886294658285718×107358

By Lemma 2, if Qi (i 6= r) is left fixed by ρ(πt) then the sequence Qi = ai1ai2 · · · aipi
is determined uniquely by its subsequence ai1ai2 · · · aiη since η divides pi. The number of
such subsequences, i.e., the (0,1)-sequences of length η, is clearly 2η. Again by Lemma 2,
〈urs, Qr〉 is left fixed by ρ(πt) if and only if t is a multiple of pr, i.e., t = mpr for some
integer m. The number of such pairs 〈urs, Qr〉 is clearly 2pr−1pr.

On the other hand, an arc 〈urs, Q〉 is left fixed by ρ(πt) if and only if 〈urs, Qr〉 and Qi

are left fixed by ρ(πt) for each i ∈ {1, 2, · · · , k} \ {r}. In this case we must have t = mpr.
Therefore, the number of such arcs, i.e., Ψ∗(ρt(P )), is exactly

2pr−1pr
∏
i 6=r

2(mpr,pi).

Thus, combining with (2) and (3) we reach the following result immediately.

Theorem 3. Let d∗(n) denote the number of unlabeled general directed hypergraphs of
order n and let

Ω∗(P ) =
1

[p1, p2, · · · , pk]

k∑
r=1

2pr−1pr

[p1,p2,··· ,pk]/pr∑
m=1

∏
i 6=r

2(mpr,pi).

Then

d∗(n) =
∑

P∈P(n)

1

1α12α2 · · ·nαnα1!α2! · · ·αn!
2Ω∗(P ). �

By Theorem 3, the numerical results for the number of unlabeled general directed
hypergraphs with the number of vertices from 1 up to 12 are listed in Table 1, as an
example.
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Example 4. The 10 non-isomorphic directed hypergraphs of order 2 are listed as follows
(for simplicity, we only list their arc sets):

{〈1, ∅〉, 〈2, ∅〉}, {〈1, {2}〉, 〈2, {1}〉}, {〈1, {2}〉, 〈1, ∅〉, 〈2, {1}〉, 〈2, ∅〉},
{〈1, {2}〉}, {〈1, {2}〉, 〈1, ∅〉}, {〈1, {2}〉, 〈1, ∅〉, 〈2, {1}〉},
{〈1, ∅〉}, {〈1, {2}〉, 〈2, ∅〉}, {〈1, {2}〉, 〈1, ∅〉, 〈2, ∅〉},
∅.

2.2 q-uniform directed hypergraphs

Given k non-negative integers q1, q2, · · · , qk with q1 + q2 + · · ·+ qk = q − 1, denote

Q = Q(q1, q2, · · · , qk)

= {Q = Q1 ∪Q2 ∪ · · · ∪Qk : |Qi ∩ {ni1, ni2, · · · , nipi}| = qi, i = 1, 2, · · · , k}.
Let ξ = qiη/pi if pi/η divides qi. By Lemma 2, if Qi is left fixed by ρ(πt) then the

sequence Qi = ai1ai2 · · · aipi is determined uniquely by its subsequence ai1ai2 · · · aiη. In
this case, if such Qi exists then pi/η must divide qi and consequently, the subsequence
ai1ai2 · · · aiη consists of exactly qi/(pi/η) = qiη/pi = ξ elements 1. The number of such
subsequences, i.e., the (0,1)-sequences of length η consisting of exactly ξ elements 1, is
clearly

(
η
ξ

)
if pi/η divides qi and is zero for otherwise. Again by Lemma 2, 〈urs, Qr〉 is

left fixed by ρ(πt) if and only if t is a multiple of pr, i.e., t = mpr for some integer m.
Therefore, the number of the pairs 〈urs, Qr〉 is clearly pr

(
pr−1
qr

)
.

On the other hand, the arc 〈urs, Q〉 is left fixed by ρ(πt) if and only if 〈urs, Qr〉 and
Qi are left fixed by ρ(πt) for each i ∈ {1, 2, · · · , k} \ {r}. In this case we have t = mpr for
some integer m. Therefore, the number of such arcs is equal to

Ψ(ρt(P )) = pr

(
pr − 1

qr

)∏
i 6=r

(
ηim
ξim

)
(4)

if pi/ηim divides qi for each i ∈ {1, 2, · · · , k} \ {r} and is 0 for otherwise, where ηim =
(mpr, pi), ξim = qiηim/pi.

Let lcm(Qr) be the least common multiple of pr and those pi with qi 6= 0, i =
1, 2, · · · , k. Then,

Ω(ρ(P )) =
1

[p1, p2, · · · , pk]

[p1,p2,··· ,pk]∑
t=1

Ψ(ρt(P ))

=
1

[p1, p2, · · · , pk]
∑
Q

k∑
r=1

[p1, p2, · · · , pk]
lcm(Qr)

∑
m∈Mr

Ψ(ρt(P )), (5)

where ηim = (mpr, pi), ξim = qiηim/pi and

Mr = {m ∈ {1, 2, · · · , lcm(Qr)/pr} : pi/ηim divides qi, i = 1, 2, · · · , k; i 6= r}.

Combining with (2)-(5), we reach the following result.
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Theorem 5. The number of unlabeled q-uniform directed hypergraphs of order n is given
by

dq(n) =
∑

P∈P(n)

1

1α12α2 · · ·nαnα1!α2! · · ·αn!
2Ω(ρ(P )),

where Ω(ρ(P )) is defined as in (5). �

In the following we give the more concise expressions of Ωq(P ) for q ∈ {2, 3}, in
terms of pi, i = 1, 2, · · · , k. The result for q = 2 (Corollary 6), i.e., the ordinary directed
graphs, simplifies the one given by Harary and Palmer [9] by using the generating function
approach.

Corollary 6.

Ω2(P ) = n− k +
∑
i<j

2(pi, pj).

Proof. For convenience, we write

ω(Qr) =
1

lcm(Qr)
∑
m∈Mr

pr

(
pr − 1

qr

)∏
i 6=r

(
ηim
ξim

)
.

Since q = 2, we have two cases to discuss.
Case 1. qi = 1 for some i 6= r and qj = 0 for all j 6= i.

In this case, we have lcm(Qr) = [pi, pr]. Let m ∈Mr. Since qi = 1, then pi/(mpr, pi) |
qi (i.e., pi/(mpr, pi) divides qi) implies that pi | mpr. Therefore, [pi, pr] | mpr. On the
other hand, by the definition of Mr, m 6 lcm(Qr)/pr = [pi, pr]/pr. So m = [pi, pr]/pr,
i.e., Mr = {[pi, pr]/pr}. Noticing that qr = 0, we have

ω(Qr) =
1

[pi, pr]
pr

(
pr − 1

qr

)(
pi
1

)
= (pi, pr).

The sum over all the i’s and the root subscript r’s with r 6= i is clearly∑
i<j

2(pi, pj).

Case 2. qr = 1 and qi = 0 for all i 6= r.
In this case we have lcm(Qr) = pr and ω(Qr) = pr − 1 directly. The sum over all r’s

is clearly
k∑
r=1

(pr − 1) = n− k. �

Corollary 7.

Ω3(P ) =
k∑
i=1

(
pi − 1

2

)
+ 3

∑
i<j<h

(pi, pj, ph)
2

+
1

4

∑
i<j

(pi, pj)
(
6pi + 6pj − 12 +

∣∣(−1)[pi,pj ]/pi − (−1)[pi,pj ]/pj
∣∣) .
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Proof. Since q = 3, we have four cases to discuss.
Case 1. qi = qj = 1 (i, j 6= r) and qh = 0 for all h 6= i, j.

The discussion for this case is similar to Case 1 in the proof of Corollary 6, which
yields

ω(Qr) =
1

[pi, pj, pr]
pr

(
pr − 1

qr

)(
pi
1

)(
pj
1

)
= (pi, pj, pr)

2.

The sum over all the triples i, j, r with root subscript r is clearly

3
∑
i<j<h

(pi, pj, ph)
2. (6)

Case 2. qi = qr = 1 and qj = 0 for all j 6= i, r.
The discussion is similar to that in Case 1 which yields that

ω(Qr) =
1

[pi, pr]
pr

(
pr − 1

qr

)(
pi
1

)
= (pr − 1)(pi, pr).

The sum over all the pairs r and i with root subscript r is clearly∑
i<j

(pi + pj − 2)(pi, pj). (7)

Case 3. qi = 2, i 6= r, and qj = 0 for all j 6= i.
In this case, lcm(Qr) = [pi, pr]. Suppose m ∈ Mr. Then we have pi/(mpr, pi) = 1 or

pi/(mpr, pi) = 2.
If pi/(mpr, pi) = 1 then mpr = [pi, pr] since m 6 [pi, pr]/pr.
If pi/(mpr, pi) = 2 then mpr = αpi/2, where α is an odd integer. Notice that the

equation 2mpr = αpi implies that [pi, pr] | αpi and [pi, pj] | 2mpr, i.e., αpi = 2mpr =
l[pi, pr] for some integer l > 1. On the other hand, we note that mpr = αpi/2 6= [pi, pr]
since α is odd. Therefore, mpr = αpi/2 < [pi, pr] since m 6 lcm(Qr)/pr = [pi, pr]/pr.
This means that αpi = 2mpr = [pi, pr]. Thus, m = [pi, pj]/2pr, which is valid only when
[pi, pr]/pi is odd and [pi, pr]/pr is even.

The above discussion shows that Mr = {[pi, pr], [pi, pr]/2} if [pi, pr]/pi is odd and
[pi, pr]/pr is even, or Mr = {[pi, pr]} for otherwise. Thus,

ω(Qr) =
1

[pi, pr]
pr

(
pr
0

)((
pi
2

)
+

(
pi/2

1

))
= (pi, pr)

(
pi − 1

2
+

1

2

)
if [pi, pr]/pi is odd and [pi, pr]/pr is even, or

ω(Qr) = (pi, pr)
pi − 1

2

for otherwise. We note that the same discussion can be also taken for the case when i
represents the root subscript and qr = 2. We denote it by Qi. Combining these two cases,
if [pi, pr]/pi is odd and [pi, pr]/pr is even or [pi, pr]/pr is odd and [pi, pr]/pi is even, then

ω(Qr) + ω(Qi) =
1

2
(pi, pr) (pi + pr − 2 + 1) .
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Table 2: Numerical results for d2(n) and d3(n) with n = 1, 2, · · · , 13.
n d2(n) d3(n)
1 1 1
2 3 1
3 16 4
4 218 218
5 9608 8978144
6 1540944 1601285885249024
7 882033440 8048575244466823237217930240
8 1793359192848 92793754751169593095822191027513×1014

9 13027956824399552 19943247292031145872447822753972×1039

10 341260431952972580352 64719537664622829251804470296850×1070

11 32522909385055886111197440 25626667592781594075154365586886×10110

12 11366745430825400574433894004222 99875777723160235238919560135473×10158

13 14669085692712929869037096075314×106 30864266716019372520365057557707×10217

Otherwise, we have

ω(Qr) + ω(Qi) =
1

2
(pi, pr)(pi + pr − 2).

Both of the above two equations could be written as the following form:

ω(Qr) + ω(Qi) =
1

4
(pi, pr)

(
2pi + 2pr − 4 + |(−1)[pi,pr]/pi − (−1)[pi,pr]/pr |

)
. (8)

Case 4. qr = 2 and qi = 0 for all i 6= r.
In this case we have lcm(Qr) = pr and

ω(Qr) =
1

lcm(Qr)
pr

(
pr − 1

qr

)
=

(
pr − 1

2

)
. (9)

The corollary now follows directly by combining (6)-(9). �

By Corollary 6 and Corollary 7, the numerical results of the number of unlabeled
q-uniform directed hypergraphs with q = 2, 3 and the number of vertices from 1 up to 13
are listed in Table 2, as an example. The results with the number of vertices up to 8 for
2-uniform directed hypergraphs (i.e., the ordinary directed graphs) were also listed in [9].
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