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Abstract

Lipshitz showed that the diagonal of a D-finite power series is still D-finite, but
his proof seems hard to implement. This paper may be regarded as the first step
towards an efficient algorithm realizing Lipshitz’s theory. We show that the idea of
a reduced form may be a big saving for computing the D-finite functional equation.
For the residue in one variable of a rational function, we develop an algorithm for
computing its minimal algebraic functional equation.
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1 Introduction

The following rational power series

A(x, y, z) =
1

(1− x)2 (1− y)2 (1− z)2 (1− y − x) (1− z − y) (1− z − x)
,

came from polyomino enumerations [2]. Recently the first author was asked to compute
the diagonal F (t) of A(x, y, z), that is,

F (t) =
∑
n>0

[xnynzn]A(x, y, z)tn = CT
x,y

A(x, y, t/xy),

∗Corresponding author
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where [xnynzn] means to take the coefficient of xnynzn, CTx,y means to take the constant
term in x and y, and A(x, y, t/xy) is regarded as a power series in t with coefficients
Laurent series in x and y. This is our archetype.

The general theory of Lipshitz shows that the diagonal generating function F (t) is
D-finite [3], which means that there exist polynomials a0(t), a1(t), . . . , ad(t) such that
ad(t) 6= 0 and

ad(t)F
(d)(t) + ad−1F

(d−1)(t) + · · ·+ a0F (t) = 0.

However Lipshitz’s proof seems to give too large a degree bound to efficiently deliver the
desired D-finite functional equation.

In this paper we show how the idea of reduced form can be used to develop an efficient
algorithm realizing Lipshitz theory, at least in some special cases. The basic idea is as
follows. Suppose we need to compute the residue resxQ(x, t). Since the residue of a
differential is 0, we can deal with resxQ(x, t) instead where Q(x, t) = Q(x, t)− ∂xP (x, t)
for a suitably chosen P (x, t). Then Q(x, t) will have some nice minimal property leading
to some nice consequences.

This idea works nicely when Q(x, t) is a rational function (usually containing other
variables), which is the main object of study in this paper. We use the field of iterated
Laurent series of [7] to characterize the series expansion of Q(x, t). See Section 3 for a
brief description. Then the reduced form can be simplified further. As a consequence,
a D-finite equation of small order for resxQ(x, t) is easily constructed. It is also well-
known that resxQ(x, t) is in fact algebraic. We present an algorithm for computing the
minimal algebraic functional equation for resxQ(x) without using details of the roots of
the denominator. As an example, we find that the diagonal generating function F (t) is
algebraic of degree 6, with coefficients polynomials in t of degree 61.

Many combinatorial problems can be reduced to the computation of the residue in
several variables of certain rational functions. Given a rational function, it is a hard prob-
lem even for deciding the nullity of its residue. Lipshitz’s theorem applies, but it is clearly
not economic to use D-finiteness to characterize rational functions. Thus our algorithm
may be taken as the initial step before applying Lipshitz’s theorem. The potential for the
idea of reduced form in the general case is discussed in Section 8.

2 Residue reduced form of a rational function

Let K be a field of characteristic 0 and x a variable. Given a rational function Q(x) ∈
K(x), define Q1(x) to be residue equivalent to Q(x) if there exists R(x) such that Q(x) =
Q1(x) + ∂xR(x), where ∂x is short for ∂

∂x
. Denote

Q(x)≡
res
Q1(x)⇔ Q(x) = Q1(x) + ∂xR(x) for some R(x) ∈ K(x).

There are existing algorithms for finding Q1(x) and R(x) simultaneously with Q1(x)
minimal in some sense. Such a representation is useful when integrating Q(x). In the
context of residue computation, we are only interested in finding the minimal Q1(x),
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since the residue of ∂xR(x) is always 0, which explains the term residue equivalent. The
following result is well-known.

Proposition 1. Suppose Q(x) ∈ K(x) has denominator D1(x)r1 · · ·Dk(x)rk , where the
Di(x) ∈ K[x] are irreducible. Then there exist p1(x), . . . , pk(x) ∈ K[x] with deg pi(x) <
degDi(x) such that

Q(x)≡
res

p1(x)

D1(x)
+ · · ·+ pk(x)

Dk(x)
.

The right hand side is called the RRF (short for residue reduced form) of Q(x).

Proof. By the partial fraction decomposition, we may write

Q(x) = P (x) +
N1(x)

D1(x)r1
+ · · ·+ Nk

Dk(x)rk
,

where P (x) is a polynomial and Ni(x) is a polynomial of degree less than ri degDi(x). It
is clear that P (x)≡res 0 since

∫
P (x)dx is a polynomial. Thus it is sufficient to show that

Ni(x)

Di(x)ri
≡
res

pi(x)

Di(x)
(1)

holds for some pi(x) ∈ K[x]. We prove this by induction on ri. Equation (1) clearly holds
when ri = 1. Assume (1) holds for ri < r. Consider

∂x
L(x)

Di(x)r−1
=

∂xL(x)

Di(x)r−1
− (r − 1)L(x)∂xDi(x)

Di(x)r
.

Choose L(x) = rem( 1
r−1Ni(x)α(x), Di(x)), where rem(A,B) denotes the reminder of A

divided by B and α(x)∂xDi(x) + β(x)Di(x) = 1. Then Ni(x) − (r − 1)L(x)∂xDi(x) = 0
(mod Di(x)). This implies that

Ni(x)

Di(x)r
+ ∂x

L(x)

Di(x)r−1
=

N(x)

Di(x)r′

for some N(x) and r′ < r. Then by the induction hypothesis we have

Ni(x)

Di(x)r
≡
res

N(x)

Di(x)r′
≡
res

pi(x)

Di(x)
.

This completes the proof.

Here is an outline of the algorithm for RRF.
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RRF algorithm

INPUT : A rational function Q(x).
OUTPUT : The RRF of Q(x) in x.

1. As in the proof, write Q(x) as: Q(x) = P (x) +
∑k

i=1
Ni(x)
Di(x)ri

.

2. For i = 1, . . . , k do:

let r := ri, Pi(x) := Ni(x), and find α(x) so that α(x)∂xDi(x) + β(x)Di(x) = 1;

while r > 1 do:

find P ′i (x) such that

P ′i (x)

Di(x)r′
=

Pi(x)

Di(x)r
+ ∂x

L(x)

Di(x)r−1
,

where L(x) := rem( 1
r−1Pi(x)α(x), Di(x));

let r := r′, Pi(x) := P ′i (x).

pi(x) := rem(Pi(x), Di(x)).

3. Return p1(x)
D1(x)

+ · · ·+ pk(x)
Dk(x)

.

3 Residue reduced form in a field of iterated Laurent

series

Let K = K((xn)) · · · ((x1)) be the field of iterated Laurent series and let x be one of the
variables. Then a rational function Q(x) has a unique series expansion in K and hence the
residue resxQ(x) is defined to be the residue of the series expansion of Q(x). It should be
noted that Q(x) may have different residue in different field of iterated Laurent series, so
we must specify the working field when taking residues. This treatment works for almost
all residue calculations since K is maximal in some sense. In particular K includes the
field K(x1, . . . , xn) of rational functions as a subfield. See [7] for more details.

Our ultimate goal is to compute or characterize the residue resxQ(x) of a rational
function Q(x). We need some basic facts for elements in K. The field K defines a total
order 0 < x1 � x2 � · · · � xn < 1 on the variables, which induces a total group order
on the group of monomials. Here we only need the following two facts.

1. A monomial M = xk11 · · ·xknn 6= 1 is said to be small if k1 = · · · = ks = 0, ks+1 > 0,
otherwise it is said to be large. The initial term of a Laurent polynomial is the term
with the largest monomial.

For example, in the field K((x))((y))((t)), the initial term of x+ x2y + t/x is x.
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2. If F ∈ K and the initial term of 1 − F is 1, then (1 − F )−1 and log(1 − F )−1 are
also in K and we have the following series expansion:

1

1− F
=
∑
m>0

Fm, and log
1

1− F
=
∑
m>1

1

m
Fm.

Let D(x) be an irreducible polynomial of degree d with initial term cM . Then D(x)
is said to be crucial if 1 6 degx cM 6 d− 1. Our main result is the following.

Theorem 2. Suppose a rational function Q(x) has denominator D1(x)r1 · · ·Dk(x)rk .
Then there exist pi(x) and a constant C free of x such that it holds in K that

Q(x)≡
res

C

x
+
∑
i

pi(x)

Di(x)
,

where the sum ranges over all crucial irreducible factors Di, and degx pi(x) 6 degxDi(x)−
2. The right hand side is called the ILSRRF (Iterated Laurent series residue reduced form)
of Q(x).

Proof. By Proposition 1, we may assume the RRF of Q(x) is given by

Q(x) =
p1(x)

D1(x)
+ · · ·+ pk(x)

Dk(x)
.

By linearity, it is sufficient to consider p(x)/D(x). Let cM be the initial term of D(x),
and denote by d = degxD(x), and ` = degx cM . Write D(x) = a0 + a1x + · · · + adx

d,
and p(x) = b0 + b1x + · · · + bd−1x

d−1. Note that a0 6= 0 unless D(x) = x, since D(x) is
irreducible. We can simplify by the following three cases.

i) If ` = 0, then

p(x)

D(x)
=

p(x)

a0(1 + a1x/a0 + · · ·+ adxd/a0)
=
∑
n>0

p(x)

a0
(−1)n(a1x/a0 + · · ·+ adx

d/a0)
n

has only nonnegative powers in x. It follows that resx p(x)/D(x) = 0.
ii) If ` = d, then

p(x)

D(x)
=

p(x)

adxd(1 + ad−1

adx
+ · · ·+ a0

adxd
)

=
∑
n>0

(
b0
adxd

+
b1

adxd−1
+ · · ·+ bd−1

adx
)(−1)n(

ad−1
adx

+ · · ·+ a0
adxd

)n.

It follows that resx p(x)/D(x) = bd−1/ad.
iii) If 0 < ` < d, then D(x) is crucial and we do not have an expression as simple as

above. However, since the initial term of D(x)/a`x
` is 1, log D(x)

a`x`
∈ K. Therefore

res
x
∂x log

D(x)

a`x`
= res

x

∂xD(x)

D(x)
− ` = 0.
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Thus if we write
p(x)

D(x)
− bd−1
dad

∂xD(x)

D(x)
=

p(x)

D(x)
,

then p(x) has degree no more than d− 2 and it follows that

res
x

p(x)

D(x)
= res

x

p(x)

D(x)
+
`bd−1
dad

.

Based on the proof, we give an algorithm for computing the ILSRRF of a rational
function.

ILSRRF algorithm

INPUT: A rational function Q(x) and a working field K((xn)) · · · ((x1)), x is one of
the variables.

OUTPUT: The ILSRRF of Q(x) in x.

1. By the RRF algorithm, let the RRF of Q(x) be

Q(x) =
p1(x)

D1(x)
+ · · ·+ pk(x)

Dk(x)
.

2. Let C := 0;

for i = 1, . . . , k do:

d := degxDi(x);

[xd]Di(x) := ad;

[xd−1]pi(x) := bd−1.

find the initial term cM of Di(x) and let l := degx cM ;

if l = d, then C := C + bd−1/(adx);

else if l > 0, then C := C+pi(x)/Di(x)−bd−1∂xDi(x)/(dadDi(x))+ lbd−1/(dadx).

3. Return C.
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4 The D-finite functional equation

We follow the notations of the last section. Let t be another variable. An iterated Laurent
series G(t) ∈ K is said to be D-finite if there exist polynomials a0(t), a1(t), . . . , ad(t) such
that

ad∂
d
tG(t) + · · ·+ a1∂tG(t) + a0G(t) = 0,

where ad is nonzero. The smallest such d is called the order of the D-finiteness of G(t).
This slightly extends Stanley’s concept of D-finite generating functions. See [6] for more
information on the concepts of D-finite and P-recursive.

A direct consequence of Theorem 2 is the following.

Theorem 3. Let Q(x, t) be a rational function with irreducible denominator factors
D1, . . . , Dk. Then the residue resxQ(x, t) in K is D-finite of order at most 1+

∑
i(degxDi−

1), where the sum ranges over all crucial Di.

Proof. Assume the crucial Di’s are D1, . . . , Ds. Write G(t) = resxQ(x, t). Let L be the
linear space spanned by x−1 and {xij/Di(x, t) : 1 6 i 6 s, 0 6 ij 6 degxDi(x, t) −
2}, where the coefficients are rational functions free of x. Then dimL = d := 1 +∑s

i=1(degxDi(x, t)− 1).
By Theorem 2, there exists Q0(x, t) ∈ L such that G(t) = resxQ0(x, t). Recursively

define Qi(x, t) to be the ILSRRF of ∂tQi−1(x, t). Then it is clear that

∂i

∂ti
G(t) = res

x
Qi(x, t), and Qi(x, t) ∈ L.

Then by the method of undetermined coefficients we can find the ai’s not all zero such
that

a0Q0(x, t) + a1Q1(x, t) · · ·+ adQd(x, t) = 0,

which implies the D-finiteness of G(t) through taking residues.

Theorem 3 guarantees the existence of an annihilating operator L = ad∂
d
t + · · ·+a1∂t+

a0 for resxQ(x, t), i.e., L resxQ(x, t) = 0. Suppose the minimal annihilating operator is
M . It is not hard to show that M must be a right factor of L. Thus to find M , we need to
search for all right factors of L. This is hard since factorization for differential operators
is hard, due to the noncommutative relation ∂tt = 1 + t∂t.

5 The algebraic functional equation

We first recall some known results. Let K be a field. An element α is algebraic over K
if there is a polynomial p(x) ∈ K[x] such that p(α) = 0. Such a polynomial of minimal
degree is called the minimal polynomial (we do not need the monic condition). Assume
p(x) is the minimal polynomial of α and deg p(x) = d. Then it is clear that p(x) is
irreducible and K(α) is isomorphic to K[x]/〈p(x)〉. Thus when regarded as a K-linear
space, K(α) has the canonical basis {1, α, . . . , αd−1}, and hence has dimension d. A direct
consequence is the following.
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Lemma 4. Suppose α is algebraic of degree d. Then for any rational function R(x), R(α)
is algebraic of degree at most d.

Proof. Define P0(x) = 1, and define Pi(x) with degree less than d to be the representation
of Ri(α) as Pi(α) for i = 0, 1, . . . , d. Then P0(x), . . . , Pd(x) are K-linearly dependent.
By the method of undetermined coefficients, we can find the ai ∈ K not all zero so that
a0P0(x)+a1P1(x)+· · ·+adPd(x) = 0. Then q(x) = a0+a1x+· · · adxd satisfies q(P (α)) = 0.
This completes the proof.

From the above proof that we can easily get an algorithm for computing an algebraic
functional equation for R(α).

AFE algorithm

INPUT: A rational function R(x) and an algebraic functional equation Eq(x) for α
with degree d.

OUTPUT: An algebraic functional equation for R(α).

1. Let P (α) be the result of rationalizing of the denominator of R(α).

2. By the method of undetermined coefficients, find the ai ∈ K not all zero such that
a0 + a1P (α) + · · ·+ adP (α)d = 0.

3. Return a0 + a1x+ · · · adxd.

Note that in the AFE algorithm, we do not need the explicit form of α.
The following result is stronger than Lemma 4.

Lemma 5. Suppose α is algebraic of degree d. Let R(x) be a rational function and m(x)
be the minimal polynomial of R(α). Then degm(x) divides d.

Proof. Denote by b = degm(x). Suppose M(x) is the minimal polynomial of α and M(x)
has roots {αi}16i6d. We claim that m(x) is also the minimal polynomial of R(αi) for all
i. This is because m(R(αi)) = 0 if and only if m(R(x)) ≡ 0 (mod M(x)).

Consider q(x) = (x−R(α1)) · · · (x−R(αd)). Since q(x) is symmetric in the αi, it follows
that q(x) ∈ K[x] and hence m(x) divides q(x). On the other hand, each irreducible factor
of q(x) must vanish at R(αi) for some i and therefore be divisible by m(x). It follows that
q(x) must be equal to m(x)d/b up to a constant factor.

Another useful fact is that the set of algebraic elements form a field. In particular, we
need the following.

Lemma 6. If α and β are both algebraic then α + β is algebraic.
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Proof. Let γ = α + β. Suppose the minimal polynomials of α and β are p(x) and q(x)
with deg p(x) = d and deg q(x) = `. We provide two ways to find P (x) ∈ K[x] such that
P (γ) = 0.

The classical way: It is clear that γn = (α+β)n is a linear combination of αiβj, where
0 6 i < d, 0 6 j < `. Therefore {(α + β)n : 0 6 n 6 d`} is linearly dependent, and
hence we can find P (x) ∈ K[x] of degree at most d` such that P (γ) = 0 by the method
of undetermined coefficients.

An alternative way: Construct P (x) =
∏d

i=1

∏`
j=1(x−αi−βj), where the αi are all the

roots of p(x) and the βj are all the roots of q(x). Then it is clear that P (α+ β) = 0, and
P (x) is symmetric in the αi’s and in the βj’s and hence belongs to K[x]. It is a matter of
how to rewrite P (x) without the αi and βj. We can write P (x) = p(x− β1) · · · p(x− β`).
Indeed, if we let p(z) = p(x − z) then the roots of p(z) are x − αi, and P (x) is just the
resultant of p(z) and q(z), which has a determinant representation of size d+ `.

AFE2 algorithm

INPUT: An algebraic functional equation p(x) for α and an algebraic functional equa-
tion q(x) for β.

OUTPUT: A minimal polynomial of α + β.

1. Let R(x) be the resultant of p(x− z) and q(z) with respect to z.

2. Find an irreducible factor P (x) of R(x) such that P (α + β) = 0.

3. Return P (x).

Remark 7. It should be noted that if βi = ri(β) for some polynomials ri(x), then P (x) =
p(x− r1(β)) · · · p(x− r`(β)), whose standard representation contains no β. For example,
if ` = 2 and we know that one root β1 of q(x) is of the form c1 + c2

√
β, then P (x) can be

written as p(x− c1 − c2
√
β)p(x− c1 + c2

√
β), which contains no

√
β after simplification.

Remark 8. Let αi, i = 1, . . . , d be the roots of p(x). We claim that γ = α1 + · · · + αs
is algebraic of degree at most

(
d
s

)
. Let P (x) =

∏
|S|=s

(
x −

∑
i∈S αi

)
. Then P (γ) = 0,

degP (x) =
(
d
s

)
, and P (x) is symmetric in the αi and hence belongs to K[x].

The following theorem slightly generalizes the well-known result that the diagonal of
a rational generating function in two variables is algebraic.

Theorem 9. For any rational function Q(x) in K, the residue of Q(x) in x is algebraic,
and there is an algorithm to find the minimal polynomial of resxQ(x).

Proof. The proof is classical. Here we address how to find the minimal polynomial of
resxQ(x).

Assume the ILSRRF of Q(x) is a linear combination of p(x)/D(x) as described in
Theorem 2. Since linear combinations of algebraic elements are algebraic, it is sufficient
to show that resx p(x)/D(x) is algebraic.
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In some field extension, D(x) can be factored as ad(x− α1) · · · (x− αd). We have the
following partial fraction decomposition:

p(x)

D(x)
=

d∑
i=1

p(x)

D(x)/(x− αi)

∣∣∣
x=αi

· 1

x− αi

=
d∑
i=1

p(αi)

∂xD(αi)
· 1

x− αi
.

Suppose the initial term of D(x) is cM with s = degx cM . By renaming the αi’s we may
assume αi/x is small for i = 1, 2, . . . , r and αi/x is large for i = r + 1, . . . , d. Then we
have

res
x

p(x)

D(x)
=

r∑
i=1

p(αi)

∂xD(αi)
.

By the AFE algorithm, we can find Pi(x) ∈ K[x] of degree at most d such that

Pi(
p(αi)

∂xD(αi)
) = 0. It is clear that Pi(x) = Pj(x), and therefore by finding r we can apply

Remark 8 to find P (x) having resx
p(x)
D(x)

as a root.
We need not compute αi to get the value of r. Indeed we must have r = s. With the

condition given above, we can write

D(x) = (−1)d−sadx
sαr+1 · · ·αd(1− α1/x) · · · (1− αs/x)(1− x/αs+1) · · · (1− x/αd),

where each factor in parenthesis has 1 as the initial term. It follows that the initial term
of D(x) must have degree r in x, and hence r = s.

Finally, by the AFE2 algorithm we can find a polynomial A(z) having resxQ(x) as a
root. By checking for all irreducible factors of A(z), we can find the minimal polynomial.

Remark 10. The following fact will be used in our algorithm. Since deg p(x) 6 d− 2, we
have

d∑
i=1

p(αi)

∂xD(αi)
=

[xd−1]p(x)

[xd]D(x)
= 0.

If we takeR(x) = p(x)/∂xD(x) in the proof of Lemma 5, then we deduce that [xb−1]m(x) =
0.

Here is an outline of the algorithm for finding the minimal polynomial, suppose the
working field is C((x))((t)).

MP algorithm

INPUT: A rational function Q(x) in K.
OUTPUT: The minimal polynomial of resxQ(x).
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1. By the ILSRRF algorithm, let the ILSRRF of resxQ(x) with respect to x be

res
x
Q(x)≡

res
C +

k∑
i=1

res
x

pi(x)

Di(x)
.

2. Find the initial term cMi(x) of each Di(x), and let li := degx cMi(x); then Di(x)
has li small roots, and

res
x

pi(x)

Di(x)
=

li∑
j=1

pi(αj)

∂xDi(αj)
,

where the αj(j = 1, . . . , li) are the small roots of Di(x).

3. For i = 1, . . . , k do:

let degDi(x) = di; find Pi(Z) ∈ K[Z] such that Pi(
pi(α1)
∂xD(α1)

) = 0 by the AFE
algorithm;

if li = 1, then take Fi(Z) := Pi(Z);

else if 1 < li 6 di/2, let R(Z) := Pi(Z); for j = 1, . . . , li− 1, do: let R(Z) be the
resultant of R(Z − y) and Pi(y) with respect to y; find an irreducible factor Fi(Z)

of R(Z) such that Fi(resx
pi(x)
Di(x)

) = 0;

else if di/2 < li 6 di − 1, let R(Z) := Pi(Z); for j = 1, . . . , di − li − 1, do:
let R(Z) be the resultant of R(Z − y) and Pi(y) with respect to y; by Remark 10
we can take R(Z) = R(−Z); find an irreducible factor Fi(Z) of R(Z) such that

Fi(resx
pi(x)
Di(x)

) = 0;

for all the cases, Fi(Z) is an algebraic functional equation for resx
pi(x)
Di(x)

.

4. Recursively apply the AFE2 algorithm to C and F1(Z), . . . , Fk(Z) to get the minimal
polynomial of resxQ(x).

We conclude this section by giving three examples. The residues can be interpreted
as certain lattice paths in the plane. The degree of the algebraic functional equations for
these residues are lower than estimated. Our working field is C((x))((t)).

Example 11. Consider the residue:

F (t) = res
x

1

x
(
1− t

x2
− x4t

) = res
x

x

x2 − t− x6t
.

Because the denominator x2− t− x6t has initial term x2, then it has two small roots. By
Remark 8, the residue is algebraic of degree at most 15. But by the MP algorithm, we
obtain the following algebraic functional equation of degree 3 for F (t).

1 + 3Z +
(
27 t3 − 4

)
Z3.
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Example 12. Consider the residue:

F (t) = res
x

1

x
(
1− t

x
− xt− t

x2
− x2t

) = res
x

x

x2 − xt− x3t− t− x4t
.

Because the denominator x2− xt− x3t− t− x4t has initial term x2, then it has two small
roots. By Remark 8, the residue is algebraic of order at most 6. But by the MP algorithm,
we obtain the following algebraic functional equation of degree 4 for F (t).

(4 + 9 t) (4 t− 1)2 Z4 − 2 (4 t− 1) (3 t− 2)Z2 + t.

Example 13. Consider the residue:

F (t) = res
x

1

x
(
1− t3

x2
− t4

x2
− x2t− x2t2

) = res
x

x

x2 + x4t− x4t2 − t3 − t4
.

Because the denominator x2 + x4t − x4t2 − t3 − t4 has initial term x2, then it has two
small roots. By Remark 8, the residue is algebraic of order at most 6. But by the MP
algorithm, we obtain the following algebraic functional equation of degree 2 for F (t).

1 +
(
2 t3 + 2 t2 − 1

) (
2 t3 + 2 t2 + 1

)
Z2.

6 The archetype

Let A(x, y, z) be as in Section 1, and let B(x, y, t) = A(x, y, t/xy). Then we need to
compute

F (t) = res
x,y

B(x, y, t)

xy

= res
x,y

1

xy (1− x)2 (1− y)2
(

1− t
xy

)2
(1− y − x)

(
1− t

xy
− y
)(

1− t
xy
− x
) .

Our working field is C((x))((y))((t)).
We eliminate y first. Compute the ILSRRF with respect to y. The result is

res
y

B(x, y, t)

xy
= Q(x, t)− res

y

x3

(1− x)2 t2 (−t+ x2 − x3) (−t+ xy − xy2)
,

where Q(x, t) is a complicated rational function, whose ILSRRF with respect to x is given
by

Q(x, t)≡
res

2
1− 6 t+ 10 t2

(1− 4 t) t4 (x− t− x2)
− 1

3

2− 2x− 22 t+ 19 tx+ 47 t2 − 26 t2x

t4 (1− 8 t) (x− t− 2x2 + x3)

− 1

3

2x− 3 t− 19 tx+ 21 t2 + 26 t2x

t4 (1− 8 t) (−t+ x2 − x3)
− 2

3

1− 12 t+ 42 t2 − 95 t3 + 51 t4 − 48 t5 − 2 t6

t4 (1− t)4 x (1− 8 t)
.
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The remaining residue in y is computed as follows.

res
y

1

(−t+ xy − xy2)
=

1

x− 2xY
=

1

x
√

1− 4t/x
,

where Y is the unique small root of −t+ xy − xy2 for y given by

Y =
1−

√
1− 4t/x

2
=
t

x
+ · · · .

Similar argument gives

res
x

1

(x− t− x2)
=

1

1− 2X
=

1√
1− 4t

,

where X = 1−
√
1−4t
2

= t+ · · ·.
In summary, F (t) is equal to B1 +B2 +B3 +B4, where

B1 = −2

3

1− 12 t+ 42 t2 − 95 t3 + 51 t4 − 48 t5 − 2 t6

t4 (1− t)4 (1− 8 t)
+ 2

1− 6 t+ 10 t2

(1− 4 t) t4
√

1− 4t
,

B2 = res
x
−1

3

2− 2x− 22 t+ 19 tx+ 47 t2 − 26 t2x

t4 (1− 8 t) (x− t− 2x2 + x3)
,

B3 = − res
x

1

3

2x− 3 t− 19 tx+ 21 t2 + 26 t2x

t4 (1− 8 t) (−t+ x2 − x3)
,

B4 = res
x

x3

(1− x)2 t2 (−t+ x2 − x3)
√
x2 − 4tx

.

Our first try is to obtain the D-finite equation. The equation for B1, B2, B3 are easy.
For B4, we could use a similar idea of [9] to find the D-finite equation. Combining these
together, we could obtain a D-finite equation for F (t).

The D-finite equation for F (t) is of order 4, but is too lengthy to be put here. This
equation can be obtained by other methods, such as the theory of hypergeometric sum.
Zeilberger can compute it quickly using his software.

A. Goupil believes that F (t) is algebraic [1] and he is right. It is clear that B1, B2, B3

are algebraic. We need to show that B4 is algebraic, too. Note that the general theory
only shows that B4 is D-finite.

We need the well-known Jacobi’s change of variable formula. See, e.g., [8].

Theorem 14 (Jacobi’s Residue Formula). Let y = f(x) ∈ C((x)) be a Laurent series and
let b be the integer such that f(x)/xb is a formal power series with nonzero constant term.
Then for any formal series G(y) such that the composition G(f(x)) is a Laurent series,
we have

res
x
G(f(x))

∂f

∂x
= b res

y
G(y). (2)
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We make the change of variable x = u−1(u+ t)2. Then
√
x2 − 4tx = u−1(u+ t)(u− t).

The advantage of this change of variable is that the square root disappears, and we are
left with a residue of a rational function. This change of variable is inspired by the well-
known fact if we set x = u(1 +u)−2,

√
1− 4x becomes a rational function in u. One more

thing we need to take care is how to treat u: solving x = u−1(u+ t)2 for u gives

u = −t+
x+
√
x2 − 4tx

2
= x+ · · · , or u = −t+

x−
√
x2 − 4tx

2
=
t2

x
+ · · · .

We choose the former representation, which means u has initial term x and we shall
just treat u the same as x and hence we can replace u by x and still work in the field
C((x))((t)) of iterated Laurent series. If we choose the latter representation, then u has
initial term t2/x. Thus u is smaller than t and we need the theory of Malcev-Neumann
series to continue.

To avoid producing more denominator factors, we apply this change of variable to
B3 + B4. This gives the residue in u of a rational function. Now replacing u by x and
applying the ILSRRF algorithm with respect to x, we obtain

B3 +B4 =− 1

3

1− 8 t+ 4 t2

t4 (1− 8 t)
+

1− 6 t+ 10 t2

(1− 4 t) t4
√

1− 4t

− res
x

2

3

2x− 22 tx− 3 t2 + 47 t2x+ 21 t3

t4 (1− 8 t) (x2 − x3 − 3 tx2 − 3 t2x− t3)
.

Together with the formulas for B1 and B2, we obtain F (t) = C1 +C2 +C3 +C4, where

C1 = −1− 4 t+ 10 t2 − 6 t3 + 5 t4

(1− t)4 t4
,

C2 = 3
1− 6 t+ 10 t2

t4 (1− 4 t)
√

1− 4t
,

C3 = − res
x

1

3

2− 2x− 22 t+ 19 tx+ 47 t2 − 26 t2x

t4 (1− 8 t) (x− t− 2x2 + x3)
,

C4 = − res
x

2

3

2x− 22 tx− 3 t2 + 47 t2x+ 21 t3

t4 (1− 8 t) (x2 − x3 − 3 tx2 − 3 t2x− t3)
.

Now we deal with C3 first. The denominator factor −x + 2 x2 − x3 + t has initial term
−x, and hence has a unique small root denoted R3. Then the residue is computed as

C3 = −1

3

2− 2R3 − 22 t+ 19 tR3 + 47 t2 − 26 t2R3

t4 (1− 8 t)
(
1− 4R3 + 3R3

2
) .

Since R3 is algebraic of degree 3, C3 is algebraic of degree at most 3. By the AFE
algorithm we obtain an algebraic functional equation for C3 as follows.

g3(Z) = 27 (27t− 4) (8t− 1)3 Z3t12 + 9 (8t− 1)
(
2314t4 − 2272t3 + 720t2 − 91t+ 4

)
Zt4

+ 17576t6 − 59259t5 + 47838t4 − 16864t3 + 2928t2 − 246t+ 8.
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Next we deal with C4. The denominator factor t3 + 3 t2x+ 3 tx2 − x2 + x3 has initial
term −x2 and hence has two small roots. Thus the residue is computed as

C4 =
∑
R4

−2

3

2R4 − 22 tR4 − 3 t2 + 47 t2R4 + 21 t3

t4 (1− 8 t)
(
2R4 − 3R4

2 − 6 tR4 − 3 t2
) ,

where the sum ranges over the two small roots of the denominator factor. By the AFE
algorithm we can get an algebraic functional equation for one term, which is the following
degree 3 polynomial.

g4(Z) = 27 (27 t− 4) (8 t− 1)3 Z3t12 + 36 (8 t− 1)
(
2314 t4 − 2272 t3 + 720 t2 − 91 t + 4

)
Zt4

− 64 + 134912 t3 − 23424 t2 + 1968 t− 140608 t6 + 474072 t5 − 382704 t4.

Suppose the above polynomial has α1, α2, α3 as the three roots. Then C4 = α1 + α2

by suitably permuting the α’s. Notice that α1 + α2 + α3 = 0. The algebraic functional
equation for C4 must be −g4(−Z), so

g4(Z) = 27 (27 t− 4) (8 t− 1)3 Z3t12 + 36 (8 t− 1)
(
2314 t4 − 2272 t3 + 720 t2 − 91 t + 4

)
Zt4

− (−64 + 134912 t3 − 23424 t2 + 1968 t− 140608 t6 + 474072 t5 − 382704 t4).

Applying the AFE2 algorithm to C3+C4 we obtain the minimal polynomial of C3+C4

as follows.

g34(Z) =
(
1416 t14 + 4 t12 − 123 t13 + 13824 t16 − 7232 t15

)
Z3

+
(
−12 t4 − 61470 t8 + 369 t5 + 24096 t7 − 4344 t6 + 55536 t9

)
Z

+ 17576 t6 − 59259 t5 + 47838 t4 − 16864 t3 + 2928 t2 − 246 t+ 8.

To obtain the minimal polynomial of C2+C3+C4 it is easier to use Remark 7: the minimal
polynomial divides g234 = g34(Z+C2)g34(Z−C2), which is checked to be irreducible. The
final step for the minimal polynomial of C1 +C2 +C3 +C4 is easy, and we finally obtain
the minimal polynomial of the diagonal as follows.

g(Z) = 7776− 7776Z + t · (a lengthy polynomial).

The degree of g(Z) is 6 in Z and 61 in t. This shows that to guess g(Z) using something
like the gfun package is too expensive. Finally, we remark that g(Z) has a unique power
series root and this root has constant 1.

7 More examples

The following examples are chosen from [4]. Our working field for dealing with the exam-
ples is C((x))((t)) or C((x))((y))((t)).
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Example 15. [4, 4.5,7.3,4.6] The following three diagonals are simple and similar.

F1(t) =diag
2

1 + 2x+
√

1− 4x− 2xy
= res

x

2

x(1 + 2x+
√

1− 4x− 2x t
x
)
, (3)

F2(t) =diag
2

1 +
√

1− 4x2 − 2xy
= res

x

2

x
(
1 +
√

1− 4x2 − 2 t
) , (4)

F3(t) =diag
xy (1− x)3

(1− x)4 − xy (1− x− x2 + x3 + x2y)

= res
x

t (1− x)3

x
(

(1− x)4 − t (1− x− x2 + x3 + xt)
) . (5)

For F1(t) and F2(t) we need Jacobi’s residue formula to deal with the square root. For F1

we make the change of variable x = u(1 + u)−2. Then
√

1− 4x = (1− u)/(1 + u), and

F1(t) = res
u

(1− u) (1 + u)

u (1− t+ 2u− 2 tu− tu2)
.

Solving x = u(1 + u)−2 for u gives

u =
−2x+ 1 +

√
1− 4x

2x
= 1/x− 2− x+ · · · , or u = −2x− 1 +

√
1− 4x

2x
= x+ · · · .

We choose the later representation and treat u the same as x.
For F2 we make the change of variable x = u(1 +u2)−1. Then

√
1− 4x2 = (1−u)(1 +

u)/(1 + u2), and

F2(t) = res
u

(1− u) (1 + u)

u (1− t− tu2)
.

Solving x = u(1 + u2)−1 for u gives

u =
1 +
√

1− 4x2

2x
=

1

x
+ · · · , or u =

1−
√

1− 4x2

2x
= x+ · · · .

We choose the later representation and treat u the same as x.
F1(t), F2(t) and F3(t) are all of the form

res
x
q(t)

1 + x · r(x)

x(1− t+ x · p(x, t))
,

where q, r, p are polynomials. It is easy to get the above residues even without the ILSRRF
algorithm. Then

F1(t) = F2(t) =
1

1− t
, F3(t) =

t

1− t
.
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Example 16. [4, 4.10] Compute the diagonal

F (t) = diag
1

(1− z (1− x2y2)) (1− x (1 + y))
= res

x,y

1

xy
(
1− t

xy
(1− x2y2)

)
(1− x (1 + y))

.

(6)

Applying the ILSRRF algorithm with respect to y, we obtain F (t) = B1 +B2, where

B1 = res
x

1

2x (1− x− 2 tx+ tx2)
,

B2 = − res
x,y

2 tx− 2 t− 1

2 (1− x− 2 tx+ tx2) (xy − t+ tx2y2)
.

Applying the ILSRRF algorithm to B1 with respect to x, we get

B1 = res
x

1

2x
=

1

2
.

Since the initial term of xy − t+ tx2y2 in the denominator of B2 is xy, there is a unique
small root for y. Solving xy − t+ tx2y2 = 0 for y gives

y =
−1 +

√
1 + 4 t2

2tx
=
t

x
+ · · · , or y = −1 +

√
1 + 4 t2

2tx
= −x

t
− t

x
+ · · · .

The former one is small. It follows that

B2 =− res
x

2 tx− 2 t− 1

2 (1− x− 2 tx+ tx2) ∂y (xy − t+ tx2y2)

∣∣∣∣
y=−1+

√
1+4 t2

2tx

=− res
x

2 tx− 2 t− 1

2 (1− x− 2 tx+ tx2)x
√

1 + 4 t2
.

Applying the ILSRRF algorithm with respect to x, we obtain

B2 = res
x

1 + 2 t

2x
√

1 + 4 t2
=

1 + 2 t

2
√

1 + 4 t2
.

Then

F (t) =
1 + 2 t

2
√

1 + 4 t2
+

1

2
.

Example 17. [4, 5.3] Compute the diagonal

F (t) =diag
1 + x2y3 + x2y4 + x3y4 − x3y6

1− x− y + x2y3 − x3y3 − x4y4 − x3y6 + x4y6

= res
x

(
1 +

t3

x
+
t4

x2
+
t4

x
− t6

x3

)(
x

(
1− x− t

x
+
t3

x
− t3 − t4 − t6

x3
+
t6

x2

))−1
.
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Applying the ILSRRF algorithm with respect to x, we obtain

F (t) = −1

4
res
x

−t3x2 − t4x2 − 4 t4x− 2xt− 4 t4 + 3 t6 − 3x2 − 2 t3x

x3 − x4 − tx2 + t3x2 − t3x3 − t4x3 − t6 + t6x
+

1

4
.

The denominator x3 − x4 − tx2 + t3x2 − t3x3 − t4x3 − t6 + t6x has initial term x3, hence
has three small roots. Then the residue is computed as

F (t) =
∑
R

Q(R) +
1

4
,

where the sum ranges over the three small roots of the denominator and

Q(R) = −1

4

−t3R2 − t4R2 − 4 t4R− 2Rt− 4 t4 + 3 t6 − 3R2 − 2 t3R

3R2 − 4R3 − 2Rt+ 2 t3R− 3 t3R2 − 3 t4R2 + t6
.

Applying the AFE algorithm, we can get an algebraic functional equation for Q(R), which
is the following degree 4 polynomial.

g(Z) = a4Z
4 + a3Z

3 + a2Z
2 + a1Z + a0,

where

a4 = 256 (t + 1)
(
4t20 + 8t19 − 23t18 − 63t17 − 62t16 − 26t15 + 43t14 + 11t13 + 182t12 + 56t11

−t10 + 203t9 − 66t8 − 154t7 + 286t6 − 368t5 + 233t4 − 75t3 − 8t2 + 20t− 4
)
,

a3 = 0,

a2 = −384t21 − 1152t20 + 1440t19 + 8256t18 + 8928t17 − 3840t16 − 20064t15 − 17728t14

− 12640t13 − 8256t12 + 18016t11 + 15680t10 + 8352t9 + 29824t8 + 10624t7 − 8000t6

+ 6816t5 − 6464t4 − 2528t3 + 1408t2 − 768t + 1152,

a1 = 128t21 + 384t20 − 480t19 − 2752t18 − 2464t17 + 3328t16 + 9504t15 + 6976t14 + 1696t13

− 448t12 − 8352t11 − 8256t10 − 3552t9 − 9344t8 − 6656t7 + 2240t6 − 1248t5 − 2112t4

+ 1312t3 + 640t2 + 128t + 512,

a0 = −12t21 − 36t20 + 45t19 + 258t18 + 183t17 − 504t16 − 1139t15 − 690t14 + 173t13 + 390t12

+ 907t11 + 882t10 + 229t9 + 692t8 + 868t7 + 22t6 + 21t5 + 518t4 − 87t3 − 260t2

+ 256t + 60.

Suppose the above polynomial has r1, r2, r3, r4 as its four roots. Then
∑

RQ(R) =
r1 +r2 +r3 by suitably permuting the r’s. Notice that r1 + · · ·+r4 = 0, then the algebraic
functional equation for

∑
RQ(R) must be g(−Z). Thus the algebraic functional equation

for F (t) is

g(Z) = g(−Z +
1

4
) = a4(Z −

1

4
)4 + a2(Z −

1

4
)2 − a1(Z −

1

4
) + a0.
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Example 18. [4, 6.3] Compute the diagonal

F (t) = diag
3xz (1− z) (3− z)(

1− 3 y (1 + z)2
) (

27− xz (3− z)2
)

= res
x,y

3 t
(

1− t
xy

)(
3− t

xy

)
xy2

(
1− 3 y

(
1 + t

xy

)2)(
27− t

(
3− t

xy

)2
y−1
) .

Applying the ILSRRF algorithm with respect to y, we obtain

F (t) = res
x
Q(x, t) + res

x,y
R(x, y, t),

where

Q(x, t) = − x (3x2 − 72 tx− 2 tx2 + 378 t2 + 32xt2)

2 (−x4 − 378 t2x2 − 32 t2x3 + 864 t3x+ 36 tx3 + 256 t3x2 + 729 t3 + x4t)
,

and

R(x, y, t) =
x2 (−3x3 − 756xt2 − 112 t2x2 + 1296 t3 + 90 tx2 + 768 t3x+ 4 tx3)

2 (−x2y + 3x2y2 + 6xyt+ 3 t2)

·
(
−x4 − 378 t2x2 − 32 t2x3 + 864 t3x+ 36 tx3 + 256 t3x2 + 729 t3 + x4t

)−1
.

Applying the ILSRRF algorithm to Q(x, t) with respect to x, we get

res
x
Q(x, t) =

3− 2t

2(1− t)
.

The denominator factor −x2y + 3x2y2 + 6xyt + 3 t2 has initial term −x2y. Thus it has
the following unique small root

x− 6t−
√
x2 − 12 tx

6x
.

It follows that

resyR(x, y, t)

=
x (−x+ 12 t) (108 t2 + 64xt2 − 54 tx− 4 tx2 + 3x2)

2
√
x (x− 12 t) (x4 + 378 t2x2 + 32 t2x3 − 864 t3x− 36 tx3 − 256 t3x2 − 729 t3 − x4t)

.

We make the change of variable x = (u+ 3 t)2 u−1. Then
√
x(x− 12t) = (u+3t)(u−3t)/u.

Solving x = (u+ 3 t)2 u−1 for u gives

u =
x

2
− 3 t+

√
x2 − 12 tx

2
= x+ · · · , or u =

x

2
− 3 t−

√
x2 − 12 tx

2
= 9t2/x+ · · · .
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We choose the former representation and treat u the same as x. Therefore doing the
Jacobi’s change of variable and applying the ILSRRF algorithm with respect to x, we
obtain

res
x,y
R(x, y, t) =

4 t− 3

2 (1− t)
.

Then

F (t) =
t

1− t
.

Example 19. [4, 7.1] Compute the diagonal

F (t) = diag
1(

1 +
√

1− x− y
) = res

x

1(
1 +
√

1− x− t
x

)
x
.

We make the change of variable x = 4u
(1+u)2

. Then
√

1− x = 1−u
1+u

, and

F (t) = res
u

−4(1− u)

−8u+ t+ 3 tu+ 3 tu2 + tu3
.

Solving x = 4u
(1+u)2

for u gives

u =
−x+ 2 + 2

√
1− x

x
=

4

x
+ · · · , or u =

−x+ 2− 2
√

1− x
x

=
1

4
x+ · · · .

So we choose the later representation and treat u the same as x. The initial term of the
denominator −8u+ t+ 3tu+ 3tu2 + tu3 is u. Then the residue is computed as

F (t) =
−4(1−R)

−8 + 3 t+ 6 tR + 3 tR2
,

where R is the unique small root of −8u + t + 3tu + 3tu2 + tu3. Applying the AFE
algorithm, we can get the following algebraic functional equation for F (t).

(27 t− 32) tZ3 + (−12 t+ 16)Z + 8 t− 8.

Example 20. [4, 8.2] Compute the diagonal

F (t) = diag
1 + xy + x2y2

1− x− y + xy − x2y2
= res

x

1 + t+ t2

(x− x2 − t+ tx− t2x)
.

The denominator factor (x− x2 − t+ tx− t2x) has initial term x and hence has a unique
small root

1 + t− t2 −
√
−2 t+ 1− t2 − 2 t3 + t4

2
= t+ · · · .

Then the residue is

F (t) =

√
1 + t+ t2

1− 3 t+ t2
.
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8 Potential for the general Lipshitz theorem

It is possible to simplify residues in more variables. Suppose x and y are two variables
in K, and Q(x, y) is a rational function. Then resx,yQ(x, y) might not be algebraic. We
hope to find simple conditions for Q(x, y) to have an algebraic residue in x and y.

The natural condition would be that resxQ(x, y) or resyQ(x, y) is indeed rational. This
raises the following question: Given a rational function Q(x, y), determine if resxQ(x, y)
is rational or not. If the answer is positive, then give the explicit rational function.

Let G = resxQ(x, y). Then G is rational if and only if its minimal polynomial is
of degree 1. Since the minimal polynomial can be computed, we have an algorithm to
determine if G is rational. Note that the D-finite approach is not appealing. If G =
p(y)/q(y) is rational, then G satisfies the following first order D-finite equation:

q(y)2∂yG(y)− q(y)∂yp(y) + p(y)∂yq(y) = 0.

However, it is hard to find the minimal order D-finite equation.

Jacobi’s residue formula is powerful, but there is no general rule on how to make the
change of variables. By studying our archetype, we find a new class of rational functions
for which we can always make a change of variable to simplify further. Consider residues
of the following type

res
x,y

p(x, y)

q(x)D(x, y)
,

where p, q,D are polynomials with degy p(x, y) < degyD(x, y), and D(x, y) is irreducible.
If degxD(x, y) = 1, then we can solve D(x, y) for x, giving x = f(y) for rational f . We
claim that D(f(u), y) has y − u as a factor since D(f(u), u) = 0. Therefore, by making
the change of variable x = f(u), we obtain

res
x,y

p(x, y)

q(x)D(x, y)
= res

u,y

p(f(u), y)

q(f(u))D(f(u), y)
· ∂uf(u).

Applying the ILSRRF algorithm with respect to y gives the residue of a simpler rational
function. In particular, if degyD(x, y) = 2 and degxD(x, y) = 1, then resx,y

p(x,y)
q(x)D(x,y)

is
algebraic.

For example, when computing resx,y x
−1y−1B(x, y, t/xy), we met the following residue

res
x,y

x3

(1− x)2 t2 (−t+ x2 − x3) (−t+ xy − xy2)
.

If we make the change of variable x = t(u− u2)−1, then we get

res
u,y

(−1 + 2u) (−1 + u)u

(u− 1 + y) (u− y) (t− u2 + u3) (t− u+ 2u2 − u3) (−u+ u2 + t)2
.

Elimination of y must give a rational function, but one must be careful:

u =
1 +

√
1− 4t/x

2
= 1− t/x+ · · · or u =

1−
√

1− 4t/x

2
= t/x+ · · · .
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It follows that we can only chose the later and regard u as t/x. We omit the rest of the
computation for brevity.

For residue in two or more variables, we need Lipshitz’s D-finite theory. Lipshitz’s
idea can be reformulated as follows in its simple form. Let f be an iterated Laurent
series. Suppose f is D-finite in variables x and t. Then there exist nonzero linear partial
differential operators P1(x, t; ∂x) and P2(x, t; ∂t), called annihilating operators, such that

P1(x, t; ∂x)f = 0, P2(x, t; ∂t)f = 0.

To show that resx f is D-finite in t, it is sufficient to find operators L1 and L2 such that

L1(x, t; ∂x, ∂t)P1(x, t; ∂x) + L2(x, t; ∂x, ∂t)P2(x, t; ∂t) = P3(t; ∂x, ∂t)

is free of x. Then resx f will be annihilated by P3(t; 0, ∂t). Lipshitz showed the existence
of L1 and L2 by a clever dimension counting argument, but the dimension is usually too
huge in practice.

It has been observed that we only need an annihilating operator of the form P4(t; ∂t)+
∂x(P5(x, t; ∂x, ∂t)). Algorithms along this line have been developed. See [5, Chapter 9] for
explanation and references therein.

The idea of a reduced form can be used to simplify the computation. By using P1

we can define a reduced form for Q(x, t)∂itf , where Q(x, t) is a rational function. By
the reduced form, it will be easy to see that the ∂kt f have similar reduced forms, and
then deduce that they lie in a finite dimensional space. Then solving a system of linear
equation will give the desired D-finite equation. It is possible to use the powerful Jacobi’s
residue formula to reduce the dimension. This idea performs well when f =

√
S for some

rational function S. See [9].
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