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Abstract

An equation is called graph-regular if it always has monochromatic solutions under
edge-colorings of KN. We present two Rado-like conditions which are respectively
necessary and sufficient for an equation to be graph-regular.
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1 Introduction

Ramsey’s theorem [3][8] states that, given numbers r and k, there is an R = R(r, k) so that
any r-coloring of the edges of the complete graph on R vertices contains a monochromatic
complete graph on k vertices.

Elsewhere in Ramsey theory, the related (but seemingly-unconnected) result of Rado
[2][3][7] characterizes the set of linear equations Ax = 0 such that, whenever N is finitely
colored, there is a solution whose entries fall into the same color class. Such an equation
is called partition-regular.

These two results were connected in a result by Deuber, Gunderson, Hindman, and
Strauss [1], and followed up by Gunderson, Leader, Prömel, and Rödl [4][5]. Their results
describe the equations Ax = 0 such that, for any m, a large two-colored graph must either
contain a complete blue subgraph whose vertices solve the equation, or a red Km with no
implied structure. If one can assure that there is no red Km, then the desired structured
set falls out nicely.

The first example of an equation with an unconditional monochromatic solution was
given in [6]. That paper introduced the notion of a graph-regular equation.
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Definition 1. For a fixed matrix A and vector b, we say Ax = b is graph-regular if there
is a function NA(r) so that, for all r, for all N > NA(r), every r-coloring of the complete
graph on [N ] has a solution x = (x(1), . . . , x(k)) so that (1) the edges {x(i), x(j)} are all
the same color, and (2) the values {x(i)} are distinct.

We require a solution by distinct values due to degeneracy issues which do not appear
in the case of coloring points. Further, for non-triviality, we require the equation to
contain at least three variables.

As the main contribution of this paper, we give two extensions of Rado’s “columns
condition” to the graph setting — the weak and strong graph columns conditions. We
will show that the weak version is necessary for an equation to be graph-regular, and the
strong version is sufficient.

The two sets of graph columns conditions are introduced in Section 2. In Section 3, we
show that the weak graph columns condition is necessary for graph-regularity, and along
the way we show that Ax = b may only be graph-regular if b = 0. Section 4 shows that
the strong graph columns condition is sufficient for graph-regularity. Finally, in Section 5,
we explore the natural extension of this problem to hypergraph-regular equations, and
find that the condition is too strong — no such equation exists.

2 The Graph Columns Condition

2.1 Definitions

Rado’s theorem [3][7] characterizes the partition-regular equations with use of the columns
condition. Here we state a new formulation which is equivalent to the original.

Definition 2. A matrix A satisfies the columns condition if there is a sequence of vectors
z1, . . . , zT in the nullspace of A and decreasing sequence of sets R1 ⊇ . . . ⊇ RT so that

1. If i ∈ Rt, then zs(i) = 0 for all s 6 t.

2. If i /∈ Rt, then there is an s 6 t with zs(i) = 1

3. RT = ∅.

Here is another perspective, closer to the usual. For a fixed i, the sequence of values
{zt(i)}Tt=1 is restricted to being 0 until some zt(i) is 1, after which it is free to take on any
value. Hence the sets Rt denote which variables are still restricted at time t.

The remarkable fact, proven originally in [7], and in [3], is that the columns condition
determines whether an equation is regular.

Theorem 3. The equation Ax = 0 has a monochromatic solution under any finite col-
oring of N whenever A satisfies the columns condition. If A does not satisfy the columns
condition then there is some p0 = p0(A) so that, for every prime p > p0, a monochromatic
solution is avoided by the coloring ψp (which will be introduced in Section 3.1).

the electronic journal of combinatorics 20(1) (2013), #P49 2



There are several ways to extend the columns condition to apply to edge-colorings.
We state two.

Definition 4. We say a matrix A with n columns satisfies the weak graph columns con-
dition (WGCC) if there is a sequence of vectors z0, . . . , zT in the nullspace of A, and a
decreasing sequence of graphs R0 ⊇ . . . ⊇ RT with common vertex set [n] so that

1. If {i, j} ∈ Rt, then zs(i) = zs(j) for all s < t.

2. If {i, j} /∈ Rt, then there is an s 6 t with |zs(j)− zs(i)| = 1.

3. RT = ∅.

4. z0 = 1.

Further, we say A satisfies the strong graph columns condition (SGCC) if we may
replace (1) and (2) by (1∗) and (2∗):

1∗. If {i, j} ∈ Rt, zs(i) = zs(j) ∈ {0, 1} for all s < t

2∗. If {i, j} /∈ Rt, then there is an s 6 t with zs(i) = 0 and zs(j) = 1 (or vice versa).

In words, the zt’s are restricted so that, for each i, j pair, as t increases, the values
zt(i), zt(j) are initially equal, remain equal until they differ by exactly 1, and are un-
restricted after that. An edge between i and j in graph Rt means that pair remains
restricted through time t. If {i, j} ∈ Rt, then we say the pair is restricted at time t,
otherwise it is unrestricted.

The strong graph columns conditions requires conditions on the values zt(i) in addition
to the differences across edges.

Example 5. Let

A =

(
1 −1 0 −1 4 −3
0 0 1 −1 1 −1

)
.

Here is one sequence of vectors showing A satisfies the graph columns condition (weak
and strong):

z0 =


1
1
1
1
1
1

 z1 =


1
1
0
0
0
0

 z2 =


1
0
1
1
0
0

 z3 =


3
0
1
0
0
1


The corresponding restriction graphs may be described simply:

• R0: All edges are restricted — R0 = K6.

• R1: All edges among {1, 2} and {3, 4, 5, 6} remain restricted.
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• R2: Edges {3, 4} and {5, 6} remain restricted.

• R3 is empty — no edges are restricted.

Note that, at each step, Rt is a union of disjoint cliques. This always happens.

Example 6. Fix any nonzero r ∈ Q. Let

A =


1 −1 0 0 0 0 −1 1
0 0 1 −1 0 0 −1 1
0 0 0 0 1 −1 −1 1
0 −1 0 −1 0 −1 −r r + 1

 .

Here is one sequence of vectors showing A satisfies the weak graph columns condition:

z0 =



1
1
1
1
1
1
1
1


z1 =



1
1
1
1
0
0
0
0


z2 =



1
1
0
0
1
1
0
0


z3 =



1
0
1
0
1
0

r + 1
r


Notice that z3 relaxes the restriction on the 7th and 8th columns by using values r and

r + 1, rather than 0 and 1 as required by the strong graph columns condition. Indeed, A
satisfies WGCC, but fails to satisfy SGCC. We believe 8 variables is minimal to separate
these conditions.

We now state our main result:

Theorem 7. Fix a matrix A. If Ax = 0 is graph-regular, then A satisfies the weak graph
columns condition. If A satisfies the strong graph columns condition, then Ax = 0 is
graph-regular.

We will prove WGCC is necessary in Section 3. The proof is based on both the
techniques and result of Rado, and is not particularly deep. In Section 4, we will show
SGCC is sufficient. The proof uses the machinery from [6] to expand the family of known
graph-regular equations which were missed on the first pass.

Of course the most interesting question here is to close the gap between the strong
and weak conditions — to classify the remaining equations. Is the matrix from Example 6
graph-regular?

3 Necessary conditions for graph-regularity

In this section, we define the appropriate colorings which allow us to essentially repeat
the proof of Rado’s theorem for our setting. After these colorings show some initial
structure of graph-regular equations, we will apply Rado’s theorem to show that WGCC
is necessary.
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3.1 Coefficients must add to 0

We define a family of colorings, fn, of
(N
2

)
by

fn(an+ x, bn+ y) =

{
blue if x = y
min{x, y} if x 6= y,

where x, y ∈ {0, 1, . . . , n−1}, and where we storm past the usual boundary between actual
colors and mathematician’s colors. We claim that all monochromatic triangles under fn
are blue.

Consider a triangle {x, y, z} with no blue edge, where x = an+i, y = bn+j, z = cn+k,
and i, j, k ∈ {0, 1, . . . , n − 1}. Then the numbers i, j, k must be distinct. Reordering so
that i < j < k, we see that fn(x, y) = fn(x, z) = i, while fn(y, z) = j 6= i. Thus a triangle
without a blue edge cannot be monochromatic. Turning this around, any monochromatic
triangle must be blue.

Going back to the definition of fn, this means that any monochromatic triangle —
and hence any monochromatic clique — must represent only one congruence class mod n.

Lemma 8. If
∑
aixi = b is graph-regular with b, ai ∈ Z, then b is a multiple of

∑
ai.

Proof. Write
∑
ai = M . If M 6= 0, then consider the coloring fM . Let {xi} be monochro-

matic under fM , so that xi = biM + c.
Then we have ∑

aixi =
∑
ai(biM + c)

= (
∑
aibiM) +

∑
aic

= (
∑
aibi)M + cM.

We see that
∑
aixi is a multiple of M . If

∑
aixi = b, then we see that b is a multiple of

M as well.
On the other hand, if M = 0, then we may repeat the above argument using any fn.

Since the cM term goes away, we learn that b is a multiple of n for every n we choose,
forcing b = 0 as well.

Fix n, and define the coloring gn of
(N
2

)
by

gn(nja, nkb) =

{
red if j 6= k
fn(a, b) if j = k,

where a and b are not divisible by n.

Note 9. Using the same argument as for fn, we see that any triangle which is monochro-
matic under gp must be red or blue for p prime. Writing xi = bin

ri , this means either all
ri values are distinct (yielding a red clique), or all ri values are equal and all bi values are
congruent modulo n (yielding a blue clique).

Lemma 10. If
∑
aixi = b is graph-regular with b, ai ∈ Z, then

∑
ai = b = 0.
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Proof. Suppose
∑
aixi = b is graph-regular, with M =

∑
ai 6= 0. By Lemma 8, we may

write b = kM . We assume each ai is non-zero, as removing superfluous variables will
preserve graph-regularity.

We apply a new coloring, which should be thought of as a hybrid between the colorings
fn and gn. There is a prime p which does not divide M nor any of the ai values, since
none of these values is 0. For any x, we may uniquely write x = cp + d + k, where
d ∈ {0, 1, . . . , p− 1} and k = b

M
was defined above.

Using this form, we define

χ(cp+ d+ k, c′p+ d′ + k) =

{
min{d, d′} if d 6= d′,
gp(c, c

′) if d = d′

Note that we treat the colors from the two pieces of this function as distinct — all
pairs in a monochromatic clique must have either all used the first piece, or all used the
second. In fact, we have already seen from our analysis of fn that no monochromatic
clique can arise from the first piece of the definition of χ, so any solution must come from
gp.

Let {xi} be a monochromatic solution. Since all edges must have been colored by the
second piece of χ, we can write xi = βip + d + k, where d ∈ {0, 1, . . . , p − 1} is common
for each xi.

1 This gives us ∑
aixi = b∑

ai (βip+ d+ k) = kM∑
aiβip+ dM + kM = kM

(
∑
aiβi) p+ dM = 0.

Since p does not divide M , and d is less than p, we must have d = 0. Dividing by p, we
are left with ∑

aiβi = 0.

Write βi = (bip + ci)p
ri , with ci ∈ {1, 2, . . . , p − 1}. From Note 9, we have either a

red clique with each ri distinct, or we have a blue clique with ri = r and ci = c common
across all i.
Case 1. The clique is blue, so βi = (bip+ c)pr.

We see that ∑
ai(bip+ c)pr = 0∑
ai(bip+ c) = 0∑

aic ≡ 0 (mod p)
cM ≡ 0 (mod p).

Since p divides neither c nor M , this is impossible.
Case 2. The clique is red, so βi = (bip+ ci)p

ri , with each ri distinct.

1For small values of xi, the resulting βi may be zero or negative. A little care is required to handle
βi = 0, but we will ignore it here.
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Let rj be the unique smallest exponent. We find∑
ai(bip+ ci)p

ri = 0∑
ai(bip+ ci)p

ri−rj = 0
aj(bjp+ cj) +

∑
i 6=j ai(bip+ ci)p

ri−rj = 0

ajcj. ≡ 0 (mod p)

Again, since p divides neither c nor aj, this is impossible.

Together, we have seen that M 6= 0 is impossible, so
∑
ai = M = 0. Since b = kM ,

we also get b = 0 for free.

Note that Lemma 10 extends to systems of linear equations — if Ax = b is graph-
regular, then b = 0 and the columns of A sum to 0. This is easily seen since each equation
from the system Ax = b must also be graph-regular.

Consider such an equation, a1x1 + . . .+ akxk = 0, where the coefficients sum to 0. We
may rewrite this as, for instance,

a1(x1 − xk) + . . .+ ak−1(xk−1 − xk) = 0,

now an equation relating differences. This suggests that we should consider colorings
based on these differences — colorings of the form χ(x < y) = f(y − x). We may now
take guidance from Rado’s theorem to get a better handle on things.

For a prime p, and x = pr(bp+s), let ψp(x) = s ∈ [p−1] be the “super mod p” coloring,
from Rado’s theorem. Rado’s theorem suggests to us that, when looking at colorings based
only on differences between endpoints, we need only consider the colorings ψp. We will
show that Rado’s theorem does apply here, but we begin with a simple consequence to
give a feel for how it works.

Theorem 11. Let
∑k

i=1 aixi = 0 be graph-regular with ai ∈ Z. Then there is a nonempty
set I ( [k] so that ∑

i∈I

ai =
∑
j /∈I

aj = 0.

To prove this, we introduce the graph version of ψp.
Define ϕp :

(N
2

)
→ [p− 1] by

ϕp(x < y) = ψp(y − x).

Proof. Fix a prime p and color
(N
2

)
by ϕp. Suppose x1, . . . , xk are distinct values satisfying

a1x1 + . . . + akxk = 0, with the edges among them all color c. Let xj be the smallest of
these values. As noted earlier, we see that∑

i 6=j

ai(xi − xj) = 0.
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By choice of xj, each of the terms xi − xj is positive. Thus we may write xi − xj =
pri(bip + c), since ϕp(xj < xi) = ψp(xi − xj) = c. Let r be the smallest exponent among
these k − 1 terms, and let I = {i ∈ [k] \ {j} | ri = r}. Note that ∅ ( I ( [k]. We see
that

0 =
∑
i 6=j

aip
ri(bip+ c)

=
∑
i 6=j

aip
ri−r(bip+ c)

=
∑
i∈I

ai(bip+ c) + p

 ∑
i/∈I∪{j}

aip
ri−r−1(bip+ c)


≡ c

(∑
i∈I

ai

)
(mod p)

Since c is in [p− 1], we see that p divides
∑

i∈I ai. If we take p >
∑k

i=1 |ai|, then the only

way this can happen is if
∑

i∈I ai = 0. Since we already know that
∑k

i=1 ai = 0, we learn
that

∑
j /∈I aj = 0 as well.

Corollary 12. No nondegenerate homogeneous linear equation of three variables is graph-
regular.

This was already proven in [6] using Brooks’ theorem, but we give a simpler proof.

Proof. Let k = 3, and let I ( {1, 2, 3} be nonempty. Then either I or its complement has
a single element. The corresponding coefficient must be 0, meaning the equation depends
on at most two variables and is trivial.

Corollary 13. Up to rescaling, the only graph-regular homogeneous linear equation of
four variables is w − x+ y − z = 0.

That this equation is regular was shown in [6]. We show that it stands alone.

Proof. Let aw+ bx+ cy+ dz = 0 be graph-regular, with a, b, c, d ∈ Z6=0. By Theorem 11,
we know that two complementary subsets of the coefficients must add to zero. Up to
permutation, this leaves us with aw−ax+ cy− cz = 0, or rather a(w−x) = c(z− y). We
may assume both a and c are positive by switching w and x, or y and z. We claim a = c.

Suppose not. After canceling common factors, we may assume we may assume c is
divisible by some prime p which does not divide a. Pick r so that pr divides c, but pr+1

does not. Consider the 2-coloring given by

χ(x, y) ≡
⌊
f(x, y)

r

⌋
(mod 2),

where f(x, y) gives the highest exponent of p which divides x− y.
Now suppose a(w−x) = c(z−y), with w, x, y, z distinct. Let f(w, x) = k. This means

that a(w− x) represents a power of pk on the left hand side. Dividing by c, we learn that
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(z − y) represents a power of pk−r, so f(y, z) = k − r. Looking at the corresponding χ
values of {w, x} and {y, z}, we see that they are different, so the edges among {w, x, y, z}
are not monochromatic.

3.2 Considering ϕp

Lemma 14. Let A be a matrix whose columns sum to 0. If the equation Ax = 0 has
a monochromatic solution under the edge-coloring ϕp for every prime p, then A satisfies
the weak graph columns condition.

Proof. Let Ax = 0 have a monochromatic solution under ϕp for every prime p. Denote
the columns of A by {ai}ni=1.

From A, we will make a larger matrix C with columns indexed by
(
[n]
2

)
= {(i, j) | 1 6

i < j 6 n}. The columns of C come from gluing the columns of A (or the zero vector) to
new vectors which bind relationships between the columns of A.

c1j =

 aj

—
b1j

 , and cij =

 0
—
bij

 if i > 1,

where

bij(k, `) =


1 if (k, `) = (1, j)
−1 if (k, `) = (1, i) or (i, j)
0 otherwise.

Note that the matrix C does not explicitly contain the column a1. However, since∑
ai = 0, that information is not lost.
Suppose Cy = 0, with y(1, j) = x(j) − x(1). The vectors {bij} are designed so that

y(i, j) = x(j)− x(i).
Turned around, when Ax = 0, and y is defined above, we get Cy = 0. Likewise, if

Cy = 0 then, for any value x(1), the values x(i) are uniquely defined from y, and they
satisfy Ax = 0.

We would like to say that, when Ax = 0 is a monochromatic solution under the edge-
coloring ϕp, the corresponding solution to Cy = 0 is monochromatic under the vertex-
coloring ψp. However, this is not quite true. The definition says ϕp(x, y) = ψp(y − x)
only when x < y. For a monochromatic solution under ψp, we would need x(1) < x(2) <
. . . < x(n). Instead, for each permutation σ ∈ Sn, we must define the matrix C(σ) which
will “work” when x(σ1) < x(σ2) < . . . < x(σn). We omit the definition of C(σ), but it is
essentially the same as C, defined in such a way that y(i, j) is always a positive number
when x is ordered by σ.

If x is a solution to Ax = 0, with x(σ1) < x(σ2) < . . . x(σn), then there is a corre-
sponding solution to C(σ)y = 0 by positive numbers, where y(i, j) = x(σ(j)) − x(σ(i)).
When x is monochromatic under ϕp, y is monochromatic under ψp.

We claim that some C(σ) satisfies the columns condition. Indeed, by Rado’s theo-
rem, any C(σ) failing to satisfy the columns condition has a monochromatic solution to
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C(σ)y = 0 under ψp for only finitely many primes p. Since each p yields some σ for which
there is a solution, we learn that some C(σ) gives a solution for infinitely many values of
p. That C(σ) must satisfy the columns condition.

Fix such a σ. For simplicity, we reorder the columns of A so that σ is the identity,
and C(σ) is the matrix C described originally.

The columns condition gives us vectors w1, . . . ,wT indexed by
(
[n]
2

)
, and sets R1 ⊇

. . . ⊇ RT = ∅ with vertex set
(
[n]
2

)
satisfying conditions (1)-(3) of Definition 2.

Define a sequence of vectors z1, . . . , zT on [n] by zt(1) = 0, and zt(i) = wt(1, i) for
i > 1. Additionally define z0 = 1 and R0 =

(
[n]
2

)
. We just need {zt}, {Rt} to satisfy

requirements (1)-(4) of the graph columns condition.
It will be helpful to know that, for k < `,

zt(`)− zt(k) = wt(k, `) (1)

To see this, consider the {k, `} row of the vectors bij within C. Since Cw = 0, inspecting
this row tells us that

wt(1, `)− wt(1, k) = wt(k, `).

By definition of zt, we see that

zt(`)− zt(k) = wt(k, `)

as desired.
Using this equation, properties (1)-(3) are immediate. Property (4) comes from the

assumption that the columns of A sum to 0.

Corollary 15. If a matrix A is graph-regular, then it satisfies the weak graph columns
condition.

Proof. From Lemma 10, we know that the columns of A sum to 0. Since A is graph-
regular, it must have a monochromatic solution under ϕp for every prime p. By Lemma 14,
A satisfies the weak graph columns condition.

We end this section by considering the sufficiency of the WGCC.

Corollary 16. If a matrix A satisfies the weak graph columns condition but is not graph-
regular, then the offending coloring is not of the form χ(x < y) = f(y − x).

To see this in action, consider the coloring ϕp and the matrix A from Example 6.
Suppose that 1 < r < pk − 1. Consider the vector x in the nullspace of A given by

x = (pk+2 + 1)z1 + (pk+1 + p)z2 + p2z3

where {zi} come from the analysis of this example earlier. It is easy to check that
x(1) > x(2) > . . . > x(8), and that ϕp colors all edges by “1”. Indeed, Lemma 14
actually shows that all colorings based on the difference of the endpoints will yield a
monochromatic solution. Therefore, if the equation Ax = 0 is not graph-regular, it must
be from some other type of coloring.
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4 Sufficient conditions for graph-regularity

We now prove the strong graph columns condition. We only have one tool at our disposal
to actually find a monochromatic solution to a general edge coloring — the machinery from
[6]. In order to get more mileage out of it, we define a large, hierarchical parameterized
grid, which we call a Gridn. The details of the definition are chosen to capture all of the
monochromatic structure guaranteed in that paper.

Definition 17. Fix x,y,b,d ∈ Nn. We say the grid of depth n with parameters x,y,b,d
— abbreviated Gridn(x,y,b,d) — is the collection of points A =

⋃n
k=1Ak where Ak is

the set of points of the form(
k−1∑
`=1

h(`)d(`) + x(k)d(k) + id(k + 1),
k−1∑
`=1

h(`)d(`) + y(k)d(k) + jd(k + 1)

)
such that h(`) ∈ {x(`), y(`)} and i, j ∈ [−c(k), c(k)] for some c(k) > b(k). As it is not
earlier defined, we use d(n+ 1) = 0.

For such a grid to behave nicely, we always require the parameters to satisfy:

1. d(k) divides d(k + 1),

2. x(k)b(k), y(k)b(k) 6 c(k − 1).

As a technical note, the use of c(k) > b(k) comes from requirement (2).
We say that a Gridn(x,y,b,d) is “proper” if (a) all x-coordinates of each of its points

is less than all y-coordinates, and (b) each coordinate has a unique representation of the
form

k∑
`=1

h(`)d(`) + id(k + 1)

over all values of k ∈ [n], h(`) ∈ {x(`), y(`)}, and i, j ∈ [−c(k), c(k)]. We may thus
unambiguously say that a point “resides at the kth level” of the grid if its coordinates
agree on h(`) for all ` < k, but disagree on h(k).

For convenience of notation, we will treat a proper Gridn as a graph, since it uniquely
stores pairs {x, y}.

The definition of a Gridn is admittedly overwhelming; It is best to think hierarchically.
A Grid1 (or the A1 portion of a Gridn) is simply a square grid of lattice points (x+ id, y+
jd) for i, j ∈ [−c, c]. The value c is chosen to be at least the prescribed minimum bound
b. A Grid1 is exactly what is guaranteed monochromatic by the Gallai-Witt theorem
[2][3]. The definition here appears slightly more general, but nothing is lost by assuming
d(1) = 1. When we view points as the edges of a graph, this grid will correspond to
a complete bipartite graph between two sets of arithmetic progressions — the vertices
{x+ id} on one side, and {y + jd} on the other.

A Grid2 extends a Grid1, and is given by A1 ∪A2. Beyond the Grid1, it includes two
additional grids of the same type: one with points of the form (x+x′d+ id′, x+y′d+ jd′),
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and the other with points (y+x′d+ id′, y+y′d+ jd′) where d′ is a multiple of the original
d. As before, each of these grids correspond to complete bipartite graphs between two
arithmetic progressions. Better, because of points (1) and (2) above, in each case the two
progressions are actually sub-progressions of the ones from the Grid1. That is, we now
have four progressions — anchored at x + x′d, x + y′d, y + x′d, and y + y′d respectively
— so that the complete 4-partite graph among them is contained in the Grid2.

Continuing this logic, a Gridn includes a complete 2n-partite graph on arithmetically-
related points, as well as some other edges.

The proof of Theorem 3.1 in [6] may be easily modified to give the following lemma.

Lemma 18. Fix b ∈ Nn. There is a number Q = Q(r,b) so that every r-coloring of [Q]2

admits vectors x,y,d ∈ Nn such that Gridn(x,y,b,d) is proper and monochromatic.
Moreover, the dependencies are such that the value of b(k) may be a function of upper

bounds for x(k + 1), y(k + 1), c(k + 1), and d(k+1)
d(k)

.

This lemma tells that we can always find a “large” monochromatic Gridn.

4.1 A Gridn is enough

Since we know every finite-coloring of [Q] × [Q] contains a large monochromatic Gridn
(for Q sufficiently large), we only need to show the following.

Lemma 19. Let A satisfy the strong graph columns condition. Then there is some n,
b so that the following holds. For every every proper G = Gridn(x,y,b,d), there is a
solution to Aw = 0 so that, for all i, j, the edge {w(i), w(j)} is in G.

In particular, if A satisfies the strong graph columns condition in T steps, then we
may take n = T .

Proof. Let A satisfy the columns condition, by vectors z0 = 1, z1, . . . , zT and graphs
R0 ⊇ . . . ⊇ RT = ∅.

Fix x,y,d ∈ NT . Define a sequence of vectors by

vt = x(t)d(t)z0 + (y(t)− x(t))d(t)zt = x(t)d(t)1 + (y(t)− x(t))d(t)zt,

each in the nullspace of A.
Define w =

∑T
t=1 vt. As a sum of vectors in the nullspace of A, we have Aw = 0.

We claim that this is the desired solution. It remains to show show that (1) every edge
{w(i), w(j)} is in G, and (2) the values w(i) are distinct.

Fix two indices i and j. By the strong columns condition, we know that the values
zt(i) and zt(j) are initially equal — with common value 0 or 1 — when {i, j} ∈ Rt. There
is a first time t∗ such that (without loss of generality) zt∗(i) = 0 and zt∗(j) = 1.

Moving to w, we see that zt(i) = 0 contributes x(t) to w(i), and zt(i) = 1 contributes
y(t) to w(i). Since vt(i) and vt(j) agree for t < t∗, we may call the common contribution
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at the t step h(t) = x(t) or y(t). At time t∗, v(i) = x(t∗) while v(j) = y(t∗). This suggests
the edge {w(i), w(j)} should reside at the (t∗)th level of G. For t > t∗, we have

|vt(i)| = |x(t)d(t) + (y(t)− x(t))d(t)zt(i)|

= |x(t) + (y(t)− x(t))zt(i)| × d(t)

6 |y(t) + y(t)zt(i)| × d(t) since 0 6 x(t) 6 y(t)

6 (‖zt‖∞ + 1) y(t)d(t)

Thus we see the total contribution to w(i) from the tail of the sum comes to∣∣∣∣∣∑
s>t∗

vt(i)

∣∣∣∣∣ 6
∑
s>t∗

(‖zs‖∞ + 1) y(s)d(s)

6 (‖zt∗+1‖∞ + 1) y(t∗ + 1)d(t∗ + 1) + . . .+

+ (‖zT−1‖∞ + 1) y(T − 1)d(T − 1) + (‖zT‖∞ + 1) y(T )d(T )

We now begin to see an appropriate choice of b. Set

b(T ) > ‖zT‖∞ + 1.

The last term of our bound above becomes b(T )y(T )d(T ), which by assumption is less
than c(T − 1)d(T ).

Next take

b(T − 1) > (‖zT−1‖∞ + 1) y(T − 1) + c(T − 1)

(
d(T )

d(T − 1)

)
.

Now the last two terms of the sum are bounded by c(T − 2)d(T − 1).
We may continue this process so that, for t > t∗, we have

b(t) > (‖zt‖∞ + 1) y(t) + c(t)

(
d(t+ 1)

d(t)

)
.

Working backwards to step t∗ + 1, we get∣∣∣∣∣∑
t>t∗

vt(i)

∣∣∣∣∣ 6 c(t∗)d(t∗ + 1).

We have written

w(i) = h(1)d(1) + . . .+ h(t∗ − 1)d(t∗ − 1) + x(t∗)d(t∗) + pd(t∗ + 1)

w(j) = h(1)d(1) + . . .+ h(t∗ − 1)d(t∗ − 1) + y(t∗)d(t∗) + qd(t∗ + 1)
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with p, q ∈ [−c(t∗), c(t∗)]. Thus we see {w(i), w(j)} is indeed a point in G, in the (t∗)th

level.
To wrap up this argument, we need only take b(t) to be the maximum of the lower

bounds seen, over all choices of i and j.
Finally, showing the points are distinct is simple. Since zt∗(i) = 0 and zt∗(j) = 1, we

see that w(i) involves x(t∗), while w(j) involves y(t∗). Since the grid is proper, the values
w(i) and w(j) must be distinct.

Corollary 20. Let A satisfy the strong graph columns condition. Then Ax = 0 is graph-
regular.

Proof. Let c be the vector given in Lemma 19, and let r ∈ N be a number of colors. We
claim that, if Q > Q(r, c) from Lemma 18, then any r-coloring of

(
[Q]
2

)
will contain a

solution to Ax = 0 so that the values {x(i)} are distinct, and the edges {x(i), x(j)} are
monochromatic.

Indeed, by Lemma 18, viewing χ as an r-coloring of [Q] × [Q] (minus the diagonal),
we find a monochromatic Gridn of distinct points, with size at least c. By Lemma 19,
this Gridn contains a solution to Ax = 0 as desired.

5 Hypergraph-regular equations

There is a natural extension of graph-regularity to the hypergraph Ramsey theorem.
Unfortunately, this extension is not fruitful. Say a homogeneous linear equation is “r-

graph-regular” if, for every coloring of the r-sets of N, it has a monochromatic solution by
distinct numbers. As with graphs, when considering an r-uniform hypergraph, we require
the equations to have at least r + 1 variables, or else every solution will be trivially
monochromatic.

Theorem 21. For r > 3, no homogeneous linear equation of at least r + 1 variables is
r-graph-regular for r-uniform hypergraphs.

Proof. We show the result for r = 3, and suggest the appropriate modifications for higher
r.

Assume each ai is nonzero, since discarding trivial variables only makes it easier to be
graph-regular.

For any n, define an (n+ 1)-coloring f
(3)
n of

(N
r

)
by

f (3)
n (an+ x, bn+ y, cn+ z) =


blue if x = y = z
min{x, y, z} if one of x, y, z is smallest
max{x, y, z} otherwise,

where x, y, z ∈ {0, 1, . . . , n − 1}. Similar to before, any set of four elements which is
monochromatic under this coloring must be blue.
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Now define g
(3)
n on

(N
r

)
by

g(3)n (nia, njb, nkc) =

 f
(3)
n−1(a, b, c) if i = j = k

red if one of i, j, k is smallest
green otherwise,

where a, b, c are not divisible by n. Again, similar to before, any monochromatic clique
under this coloring on at least four points must be red or blue. The proofs of Lemmas 8
and 10 now apply essentially unchanged to show that the coefficients of a hypergraph-
regular equation must sum to zero.

Therefore, we only consider
∑k

i=1 aixi = 0 where
∑
ai = 0.

Define a new coloring, hn(x, y, z) = gn(y − x, z − x), where x < y < z, and gn is the
graph-coloring used in Section 3.1.

Suppose x1, . . . , xk are distinct values satisfying
∑
aixi = 0, with the hyperedges

among them monochromatic — either red or blue. Let xj be the smallest of these values.
Since aj = −

∑
i 6=j ai, we see that ∑

i 6=j

ai(xi − xj) = 0.

By choice of xj, we see that {xi − xj}i 6=j is monochromatic under gn. As before, a red
clique means some ai is 0. If the clique is blue, then

∑
i 6=j ai = 0, meaning aj = 0. Since

none of the coefficients are 0, we have reached a contradiction. Thus no homogeneous
linear equation in at least 4 variables is hypergraph-regular under colorings of 3-sets.

For a general r-uniform hypergraph with r > 3, one can easily modify the definition of g
(3)
n

to find a suitable g
(r)
n , which will force coefficients to add to zero. Likewise, one may define

a coloring similar to hn which is built upon g
(r−1)
n , which will force one of the coefficients

to be zero. These two colorings together will avoid solutions to any equation in at least
r + 1 variables.

Evidently, the ability to color 3-sets (or higher) of integers is too strong to permit
monochromatic solutions to homogeneous linear equations. Is there a better definition for
an equation to be r-graph-regular which allows some equations to meet it, or is this the
end of the story?
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progressions in clique-free graphs on the natural numbers, J. Combin. Th. Ser. A 93
(2001), 1-17.

[5] D. S. Gunderson, I. Leader, H. J. Prömel, and V. Rödl, Independent Deuber sets in
graphs on the natural numbers, J. Combin. Th. Ser. A 103 (2003), 305-322.

[6] A. Parrish, An additive version of Ramsey’s theorem. J. Comb. 2 (2011), no. 4, 593-
613.

[7] R. Rado, Studien zur Kombinatorik, Math. Zeit. 36 (1933), 242-280.

[8] F. P. Ramsey, On a problem in formal logic, Proc. London Math. Soc. (2), 30 (1930),
264-286.

the electronic journal of combinatorics 20(1) (2013), #P49 16


