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Abstract

We explore an extremal hypergraph problem for which both the vertices and
edges are ordered. Given a hypergraph F (not necessarily simple), we consider
how many edges a simple hypergraph (no repeated edges) on m vertices can have
while forbidding F as a subhypergraph where both hypergraphs have fixed vertex
and edge orderings. A hypergraph of n edges on m vertices can be encoded as
an m × n (0,1)-matrix. We say a matrix is simple if it is a (0,1)-matrix with no
repeated columns. Given a (0,1)-matrix F , we define fs(m,F ) as the maximum,
over all simple matrices A which do not have F as a submatrix, of the number of
columns in A. The row and column order matter. It is known that if F is k × `
then fs(m,F ) is O(m2k−1−ε) where ε = (k − 1)/(13 log2 `). Anstee, Frankl, Füredi
and Pach have conjectured that if F is k-rowed, then fs(m,F ) is O(mk). We show
fs(m,F ) is O(m2) for F =

[
1 0 1 0 1
0 1 0 1 0 · · ·

]
and for F =

[
1 0 1 0 1
1 0 1 0 1 · · ·

]
. The proofs use a

type of amortized analysis. We also give some constructions.

Keywords: extremal set theory, forbidden submatrix, ordered sets, trace, amor-
tized analysis

1 Introduction

We are considering a problem in extremal set theory. We find it convenient to use the
language of matrix theory and of sets. Let [m] = {1, 2, . . . ,m}. We define a simple matrix
as a (0,1)-matrix with no repeated columns. An m× n simple matrix A can be thought
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of as a simple hypergraph A of n edges S1, S2, . . . , Sn, each a subset of [m], where i ∈ Sj
if and only if the i, j entry of A is 1.

We are interested in the property of forbidding a submatrix F . Here we are concerned
about both row and column order. This would be a subhypergraph with vertex and edges
ordered. The 1’s are as important as the 0’s unlike in the study of patterns [7] where
1’s are the dominant focus. We could forbid the pattern associated with the 1’s of F by
forbidding as submatrices, all matrices G such that F 6 G i.e. all matrices with 1’s in
the same position as F . Typically the goal of forbidden patterns is an upper bound on
the number of 1’s.

Note that forbidding a submatrix F is a weaker condition than the condition of for-
bidding all row and column permutations of F as a submatrix. This latter notion is that
of a forbidden configuration studied in various papers including [2].

Sometimes we are able to obtain structural results about a simple matrix A with no
submatrix F . A case of some interest for optimization problems, considered in [6] and
[3], were totally balanced matrices (defined by a family of forbidden configurations) which
were precisely those matrices for which we could order the rows and columns so that the
resulting matrix had no submatrix

Γ =

[
1 1
1 0

]
.

Γ-free matrices are explored in a number of papers.
Our goal in this paper is to consider the extremal problem of how many columns an

m-rowed simple matrix A can have under a forbidden submatrix property. Let ‖A‖ denote
the number of columns of a matrix A. Let F be given. We define

fs(m,F ) = max
A
{‖A‖ : A is m-rowed simple with no submatrix F}.

Alternatively fs(m,F ) is the smallest value so that if A is an m × (fs(m,F ) + 1) simple
matrix then A must contain the submatrix F . Note that we do not require F to be
simple in the definition; most forbidden submatrices in this paper are non-simple. The
best general result is the following.

Theorem 1.1 [1] Let F be a k × ` (0,1)-matrix. Then fs(m,F ) is O(m2k−1−ε) where
ε = (k − 1)/(13 log2 `).

There is a conjecture on the asymptotics of fs(m,F ).

Conjecture 1.2 [4],[5] Anstee, Frankl, Füredi, Pach. Let F be a given k×` (0,1)-matrix.
Then fs(m,F ) is O(mk).

The evidence for the conjecture is not extensive. We do know the conjecture is true
for 1 × ` F [4] and also for the k × 2 matrix of a column of 1’s followed by a column
of 0’s [5] as well as a few other cases. The conjecture has not been established for 2 × `
F . Theorems 1.4 and 1.5 are modest progress and further evidence for the conjecture
while showing the utility of an amortized approach. We have been unable to extend the
amortized approach to general 2× ` F .

the electronic journal of combinatorics 20(1) (2013), #P5 2



Lemma 1.3 [4] Let α be a k × 1 (0,1)-column. Then

fs(m, [α]) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
i.e. fs(m,α) is Θ(mk−1).

Proof: Let α = (a1, a2, . . . , ak)
T . Consider any m × 1 (0,1)-column β not containing α.

Some notation can help in describing the columns which we will treat as strings of 0’s and
1’s. For a ∈ {0, 1}, let ā denote the (0,1)-complement of a, and let a∗ denote a string of
zero or more copies of a. Then for each β there will be a j with 0 6 j < k so that column
β will contain (a1, a2, . . . , aj)

T as a submatrix and not contain (a1, a2, . . . , aj+1)
T . Then

β is some instance of
((ā1)

∗a1(ā2)
∗a2(ā3)

∗ · · · aj(āj+1)
∗)T .

The number of columns β which contain (a1, a2, . . . , aj)
T and not (a1, a2, . . . , aj+1)

T is
seen to be

(
m
j

)
considering the choices for the positions of a1, a2, . . . , aj in β. Summing

over all choices for j we obtain fs(m,α) =
(
m
k−1

)
+
(
m
k−2

)
+ · · ·+

(
m
0

)
.

It is interesting that Conjecture 1.2 proposes such a narrow range on the asymptotics
of fs(m,F ), since for k-rowed F by Lemma 1.3, fs(m,F ) is Ω(mk−1). Moreover for F con-
taining two non-identical columns, then by Proposition 5.4, there is a Ω(mk) construction
avoiding F . Several results which confirm Conjecture 1.2 are in [4] and [5]. The evidence
is limited. We are able to offer some additional evidence and some constructions avoiding
certain F that may be useful in considering this problem.

Theorem 1.4 Let ` be given. Let F be the 2× ` matrix

F =

[
1 0 1 0 · · ·
0 1 0 1 · · ·

]
. (1)

Then

(`− 1)

(
m

2

)
− `2m− 3`2 6 fs(m,F ) 6 (`− 1)

(
m

2

)
+m+ 1. (2)

Theorem 1.5 Let ` be given. Let F be the 2× ` matrix

F =

[
1 0 1 0 · · ·
1 0 1 0 · · ·

]
. (3)

Then

(`− 1)

(
m

2

)
− `2m− 3`2 6 fs(m,F ) 6 6(`− 1)

(
m

2

)
+m+ 2. (4)
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This does not answer Conjecture 1.2 but may stimulate further work. The bound
in Theorem 1.4 for ` = 2 can be found in [4] while the exact bound for Theorem 1.5
for ` = 2 of

(
m
2

)
+ 2m − 1 is established in [5]. Also note that a row interchange of (1)

contains a 2×(`−1) submatrix (1) and the matrix (3) is not affected by row permutations.
Thus row order is not very important in these cases. We introduce some constructions
in Proposition 5.1, Proposition 5.4 in Section 5. In Corollary 5.2, we use the following
easy monotonicity result but point out that the corresponding result for a single forbidden
configuration is not known.

Lemma 1.6 For a given F and m > 2, we have fs(m,F ) > fs(m− 1, F ).

Proof: Let A be an (m − 1) × fs(m − 1, F ) simple matrix with no submatrix F . Then
either

[
A

0 0···0

]
or
[

A
1 1···1

]
is an m× fs(m−1, F ) simple matrix with no submatrix F .

It is known that there are families of forbidden configurations not having montonicity
as above. For forbidden families of submatrices there will also be problems. A simple
example is to forbid all 2k k× 1 (0,1)-submatrices for which the bound would be 2k−1 for
m = k − 1 and the bound would be 0 for m > k.

For a subset S ⊆ [m] of rows, let A|S denote the submatrix of A given by rows S. Let
[A|B] denote the concatenation of two matrices A, B on the same number of rows. We
define the lower triangular matrix Tm as the m×m (0,1)-matrix with 1’s in positions i, j
if and only if i > j. Let 0m denote the m× 1 column of all 0’s.

2 Amortized analysis

Let F be a k-rowed matrix. In order to search for a submatrix F in a matrix A, the
natural idea is to process the columns of A from left to right keeping track of how much
each k-set of rows already contains of the initial columns of F . For each k-set, we have a
bucket. Each bucket will contain a k-rowed submatrix of A, possibly of no columns. Let
an initial submatrix of F be the submatrix formed by taking the first i columns for some
i. After processing say the first t columns of A, corresponding to the m × t submatrix
A(t) of A of its first t columns, the bucket associated with a k-set S will hold the largest
initial submatrix of F contained in A(t)|S.

A contribution is an addition of a column to a bucket. We refer to a column of A
as a contributing column if it adds a column to at least one bucket. We may think of
our buckets as a pushdown stack, the top of the stack recording the last contribution.
The number of contributions of a contributing column is the number of buckets that are
augmented. A filler column is one that makes no contribution. It can be shown that we
can process at most O(mk−1) filler columns before encountering a contributing column.
After (`− 1)

(
m
k

)
+ 1 contributions at least one bucket will have a submatrix of ` columns

yielding the forbidden submatrix F . This yields that after O(m2k−1) columns A has a
submatrix F from the pigeonhole argument as reported in [5]. We need a more detailed
analysis. An amortized approach was used to handle the 1-rowed F = [1 0 1 0 · · · ] in [1].
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In our proofs of Theorem 1.4 and Theorem 1.5, we partition A into blocks A =
[A0|A1|A2| · · · ], where each block Ai (except A0) consists of a single contributing column
αi followed by any number of filler columns. Block A0 has no contributing columns and
hence may have no columns. Consider a contributing column with t contributions. Then
we imagine that we have credits (t credits in our proof of Theorem 1.4 and 6t credits in
our proof of Theorem 1.5) sufficient to pay for the filler columns with a limited number of
exceptions (m+ 1 in Theorem 1.4 and m+ 2 in Theorem 1.5). This will yield the results.

The following two lemmas give us some useful structural information for a block Ai.
The first considers matrix (1).

Lemma 2.1 Assume that an m-rowed simple matrix A has neither submatrix
[
1 0
0 1

]
nor[

0 1
1 0

]
. Then A is a submatrix of some row and column permutation of [Tm|0m].

Note that any pair of columns of A of the same column sum will contain either
[
1 0
0 1

]
or
[
0 1
1 0

]
. Moreover a column α of sum r and a column β of sum s with r < s cannot have

row where α is 1 and β is 0 since then there will also be a row where α is 0 and β is 1
yielding either

[
1 0
0 1

]
or
[
0 1
1 0

]
.

The second lemma considers matrix (3). Define a m-rowed sunflower A as an m-rowed
matrix which has a centre X ⊆ [m] and columns which are all 1’s on rows X and have
at most one 1 in a row of [m]\X. The sunflower idea is well used in [5]. We define the
centre column ψ(A) of the sunflower as the column which is all 1’s on rows X and 0’s
on [m]\X but note that this column need not be a column of A. We also consider the
(0,1)-complement of A, which we call a inverse sunflower whose centre is X (all columns
in the inverse sunflower will be all 0’s on the rows X).

Lemma 2.2 Assume that an m-rowed simple matrix A has neither submatrix
[
1 0
1 0

]
nor[

0 1
0 1

]
. Then the columns of A form an m-rowed sunflower or inverse sunflower.

The proof is easy for A having one or two columns. Once A has 3 columns, we may
uniquely determine the centre X and whether A is a sunflower or inverse sunflower. Any
additional columns will simply extend the sunflower or inverse sunflower [5].

3 Checkerboard

Proof of Theorem 1.4: Let F be the matrix of (1). We may use Corollary 5.3 to
establish the lower bound for fs(m,F ). For the upper bound, partition A into blocks
A = [A0|A1|A2| · · · ], where each block Ai (except A0) consists of a single contributing
column αi followed by any number of filler columns. A0 has no contributing columns and
hence may have no columns. We have that Ai has neither submatrix

[
1 0
0 1

]
nor

[
0 1
1 0

]
and

so by Lemma 2.1, the columns of Ai are contained in some row permutation of [Tm|0m].
We will show a little more below.

We assign one credit to each contribution of a contributing column and then show
that all columns (except possibly up to m+1 columns from [Tm|0m] which are all possible
filler columns initially) in A will be paid for by credits. This yields the bound (2).
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We can record the state of our
(
m
2

)
buckets as follows. Form a digraph D = ([m], E)

where we have a directed edge p→ q ∈ E if we are looking for p
q

[
1
0

]
to add to our bucket

{p, q}. What we are looking for on a pair of rows is the opposite of the top of the stack
in the bucket of that pair of rows. If the bucket is empty (all buckets will be empty
initially) then for p < q we are looking for p

q

[
1
0

]
and so have the directed edge p → q.

We necessarily have a tournament (for each bucket {p, q}, we have p→ q or q → p) and
initially we have a transitive tournament (p→ q and q → r implies p→ r) or what can be
called a total order of the rows 1, 2, . . .m so that for all pairs p, q with p < q in that order,
we have p → q. After we process a contributing column the directed graph changes, for
each contribution to a bucket {u, v} we reverse the arc in D joining u and v. We will
show by induction that when we process a contributing column that the resulting digraph
is still a total order. Assume that after processing αi−1, we have a total order that is in
fact 1, 2, . . . ,m. We would typically have to permute the rows of A for this to be true,
but note that this is the correct order in the case i = 1 before processing any contributing
column. Now consider processing the next contributing column αi = (a1, a2, . . . , am)T .
Let b1 < b2 < . . . < bs be the rows containing the 0’s of αi and let c1 < c2 < . . . < ct be the
rows containing the 1’s of αi where of course s+t = m. We replace the order 1, 2, . . . ,m by
the order σ(1) = b1, σ(2) = b2, . . . , σ(s) = bs, σ(s + 1) = c1, σ(s + 2) = c2, . . . , σ(m) = ct.
We claim σ yields a total order for the new graph D. Consider a pair of rows σ(p), σ(q)
for p < q. If 1 6 p < q 6 s or if s + 1 6 p < q 6 m, then our contributing column has
made no changes to the bucket {σ(p), σ(q)} and so we have σ(p)→ σ(q). If 1 6 p 6 s and
s + 1 6 q 6 m, then either we begin with σ(p) → σ(q) and so our contributing column
will not change the arc in D for {σ(p), σ(q)} or we begin with σ(q) → σ(p) and so our
contributing column will add to the bucket and the arc will be reversed in D. Thus we
end with a new total order with the rows ordered using σ. By induction on the number
of contributing columns processed, D is always a total order.

Let σi, σi+1 be the total orders of D before and after processing αi. We note that
the number of contributions of αi can be computed as follows. Let x be the smallest
index so that entry σi(x) of αi is 1 and let y be the largest index so that entry σi(y) of
αi is 0. Using that σi is a total order, we have that for e < f that σi(e) → σi(f). For
every z with x < z < y we either have a 1 in αi in row σi(z) and so a contribution on
the pair σi(x), σi(z) or we have a 0 in αi in row σi(z) and so a contribution on the pair
σi(z), σi(y). Also we have a contribution from the pair of rows σi(x), σi(y). Then the
number of contributions from αi is at least y − x.

The number of columns which would be filler columns with respect to σi+1 is exactly
m+ 1 by Lemma 1.4 but we need only count those new filler columns that were not filler
columns with respect to σi. It is easy to count that the number of possible filler columns
with respect to σi+1 that were not filler columns with respect to σi is at most y − x. Of
course one of the new filler columns with respect to σi+1 is in fact the contributing column
αi. Thus the arithmetic works out perfectly: the y − x (or more) contributions from αi
yield y−x credits to pay for αi as well as the new filler columns with respect to σi+1. We
will also need up to m + 1 credits to pay for the possible filler columns associated with
the initial order (namely columns contained in [Tm|0m]).
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4 Striped

Proof of Theorem 1.5: Let F be the matrix in (3). We may use Corollary 5.3 to
establish the lower bound for fs(m,F ). For the upper bound, partition A into blocks
A = [A0|A1|A2| · · · ], where each block Ai (except A0) consists of a contributing column
αi followed by any number of filler columns. A0 has no contributing columns and hence
may have no columns. We have that Ai has neither submatrix

[
1 0
1 0

]
nor

[
0 1
0 1

]
and, as noted

in describing the proof of Lemma 2.2 for ‖Ai‖ > 3, we can identify Ai as a sunflower or
inverse sunflower and uniquely identify the centre X and the centre column ψ(Ai) (which
need not be present in Ai or A). For a sunflower, we define the petals P (Ai) ⊆ [m]\X of
all rows for which there is a column of Ai with a 1 in the row (and all 1’s on the rows of
X). For a inverse sunflower replace 1 by 0 and continue to call them petals.

If ‖Ai‖ = 2 then either there is a single row where the two columns differ or there
are two rows where the two columns differ. Identifying such a situation as a sunflower or
inverse sunflower is not so helpful. Similarly for ‖Ai‖ = 1. Thus we define

P (Ai) = ∅ if ‖Ai‖ 6 2. (5)

We proceed with a slightly different form of amortized analysis. We will process the
blocks Ai as whole units. In general we wish each column to be paid for with a credit
but allow up to m columns to be unpaid for. We create a debt structure that keeps track
of all columns we have not yet paid for (except for two special cases noted below when
considering A0 for which up to 2 columns may not be paid for). This debt structure
consists of a set U ⊆ [m] and a function φ from elements of U to columns of A so that
for u ∈ U , column φ(u) has not yet been paid for. Thus, the size of our debt at any point
will be bounded by m. As the debt structure changes, we show below that we are able to
pay for all the deleted columns with credits. By this reasoning, we obtain the bound (4)
where the m comes from the debt structure and the 2 comes from the special cases.

It suffices for each contributing column to assign 4 special credits plus a number of
credits equal to twice the number of contributions. Note that we would not need special
credits if we simply counted each contribution from a contributing column as 6 credits,
and it is this overcount which yields the upper bound of (4). We are saying that the
number of paid columns is at most 6 times the number of contributions and we have a
bound on the number of contributions. The rest of the proof shows that the debt structure
works as claimed.

We have a split structure for each Ai. For ‖Ai‖ > 3 we define J(Ai) (respectively
Z(Ai)) to be the rows which have a 1 (resp. 0) in the centre column ψ(Ai). For ‖Ai‖ 6 2,
we select the first column αi of Ai and similarly define J(Ai) (respectively Z(Ai)) to be
the rows which have a 1 (resp. 0) in the column αi. In either case this yields a partition
J(Ai)∪Z(Ai) = [m]. The notations J, Z are in analogy with the use of J to represent the
matrix of 1’s and Z to represent the matrix of 0’s. On every pair of rows u, v in J(Ai),
we are looking for [ 00 ] (the top of the stack for the bucket u, v is [ 11 ]). On every pair of
rows in Z(Ai), the reverse is true. Since the first column of F is [ 11 ], we find it convenient
to set J(A0) = ∅ and Z(A0) = [m].
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When processing A0, we set U0 = P (A0) with φ(u) being the column associated with
the petal in A0. But this may leave up to 2 columns of A0 not in the debt structure. For
‖A0‖ 6 2 we have U0 = P (A0) = ∅ and so in this special case up to 2 columns are not
in the debt structure and must be paid for in some other way. For ‖A0‖ > 3, the centre
column if present in A0 is not added to the debt structure and so in this special case up
to 1 column must be paid for in some other way. This gives the special cases noted above
yielding the 2 in the bound (4).

We update the debt structure from Ui−1, φi−1 to Ui, φi in a two stage process. First we
delete some elements x of Ui−1 and their corresponding columns φi−1(x). For each pair of
rows u, v for which the contributing column αi adds a contribution to the bucket {u, v},
we delete both u and v and the columns φi−1(u), φi−1(v) (if present in the debt structure)
from the debt structure. If |J(Ai−1) ∩ Z(Ai)| = 1 and {w} = J(Ai−1) ∩ Z(Ai) ⊆ Ui−1,
then we delete w and φi−1(w) from the debt structure. If |Z(Ai−1) ∩ J(Ai)| = 1 and
{t} = Z(Ai−1)∩J(Ai) ⊆ Ui−1, then we delete t and φi−1(t) from the debt structure. Then,
for ‖Ai‖ > 3, we add P (Ai) and all the petal columns from Ai to the debt structure.

After completing this process for Ai, then for u ∈ Ui,

φi(u) =

{
petal column of Ai for row u if u ∈ P (Ai), ‖Ai‖ > 3,

φi−1(u) otherwise.

After processing block Ai, the debt structure consists of a set of rows Ui ⊆ [m], together
with a mapping φi from Ui to a petal column contained in [A1|A2| · · · |Ai]. Recalling that
A is simple yields that column φi(u) also identifies a unique block Aj for some j 6 i which
contains the column φi(u). Also, we only add columns to the debt structure when they
are petal columns and so u is a petal in P (Aj) and φi(u) corresponds to the column of
Aj that yields the petal u. Each row u ∈ Ui indicates that the column φi(u) has not yet
been paid for by a credit. As we process blocks of A, we need that every column not yet
paid for is remembered in our debt structure.

Note that we will need to immediately pay for the centre column ψ(Ai), if it exists
in Ai, since it does not correspond to a petal and so cannot enter the debt structure
(there is no row to point to ψ(Ai)). Similarly we will have to immediately pay for all the
columns of Ai in the case ‖Ai‖ 6 2 since these columns do not enter the debt structure
(P (Ai) = ∅).

We may use the two credits associated with a contribution of αi to bucket {u, v} to
pay for the two columns φi−1(u), φi−1(v) deleted from the debt structure. We use up
to two special credits from αi to either pay for the columns of Ai when ‖Ai‖ 6 2 or
to pay for the centre column (if present) for ‖Ai‖ > 3. We also use up to two special
credits to pay for the deletion of φi−1(w) and φi−1(t) (if they are present) with w, t as
described above. Thus if u moves from ‘Z’ to ‘J ’ (namely u ∈ Z(Ai−1) ∩ J(Ai)) then u
and φi−1(u) are deleted from the debt structure in the first stage of the update (u may
reenter Ui in the second stage if u ∈ P (Ai)). Similarly if u moves from ‘J ’ to ‘Z’ (namely
u ∈ J(Ai−1) ∩ Z(Ai)) then u and φi−1(u) are deleted from the debt structure in the first
stage of the update. In the worst case we need to assign to each contributing column 4
special credits plus 2 credits for each contribution.
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The rest of our proof is to ensure that for rows u ∈ P (Ai), when we add the petal
column φi(u) from Ai to the debt structure, we have already deleted the column φi−1(u)
for u ∈ Ui−1. Assume u ∈ P (Ai) has column φi−1(u) still in the debt structure when we
attempt to add the petal column of Ai associated to row u. Without loss of generality,
we assume that Ai is a sunflower. Thus u ∈ Z(Ai) (u will be a petal in the sunflower).

The column φi−1(u) belongs to Aj for some j 6 i − 1. Let γ = φi−1(u) = φj(u). If
u ∈ J(Aj)∩Z(Ai), then at some intermediate stage we will have moved u from ‘J ’ to ‘Z’
and γ will have been deleted at that point. Therefore we deduce that u ∈ Z(Aj). Given
that γ enters the debt structure while processing Aj we deduce that ‖Aj‖ > 3. Also since
u ∈ Z(Aj) and u must be a petal then Aj is a sunflower. If J(Aj) = J(Ai), then γ is
also a column of Ai (since u ∈ P (Ai)), contradicting that we have a simple matrix. Thus
J(Aj) 6= J(Ai).

Assume there is a row v ∈ J(Aj)\J(Ai) = J(Aj)∩Z(Ai). Then we have
[
1
1

]
at the top

of the stack in the bucket u, v after processing Aj (by the column γ in Aj) and we have
[
0
0

]
at the top of the stack in the bucket u, v after processing A1A2 · · ·Ai (since u, v ∈ Z(Ai)).
Thus we will have a contribution on rows u, v by the time we have processed Ai and so
we would have deleted u (and perhaps v if it is in the debt structure) and column γ from
the debt structure Ut−1 for some t with j < t 6 i. Thus we have deleted γ by the time
we wish to add P (Ai) to the debt structure.

Similarly assume there is a v ∈ J(Ai)\J(Aj) = J(Ai) ∩ Z(Aj). Then we have
[
0
0

]
at

the top of the stack in the bucket u, v after processing A1A2 · · ·Aj (u, v ∈ Z(Aj)) and we
have

[
1
1

]
at the top of the stack in the bucket u, v after processing A1A2 · · ·Ai (by petal

column for u in Ai). Again we will have deleted γ. This contradiction to our choice of u
shows that the debt structure is always updated successfully.

We do not expect our coefficient of 6(` − 1)
(
m
2

)
in Theorem 1.5 to be best possible

and instead expect the lower bound to be closer to the truth. Computer searches suggest
(`− 1)m2/2 will be the leading term. Our proof would not allow us to reduce the 6 to a
number below 2.

5 Constructions

We offer two construction techniques (Proposition 5.1, Proposition 5.4) helpful in finding
matrices avoiding a given submatrix.

Proposition 5.1 Let F be a k × l (0, 1)-matrix with a non-constant bottom row. Let
F = [G|φ|H], where φ is any column of F and the blocks G,H may be empty. Then

fs(m,F ) > fs(m− 1, [G|φ]) + fs(m− 1, [φ|H]). (6)

Proof: Since F has a non-constant bottom row, either [G|φ] contains a 1 in its bottom
row and [φ|H] contains a 0 in its bottom row, or vice-versa. Without loss of generality
assume the former case. Find an (m − 1) × fs(m − 1, [G|φ]) simple matrix B with no
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submatrix [G|φ] and an (m − 1) × fs(m − 1, [φ|H]) simple matrix C wih no submatrix
[φ|H] and consider

A =

[
B C

0 · · · 0 1 · · · 1

]
.

Suppose A contains F = [G|φ|H] as a submatrix where the ith column of A contains
the column of F corresponding to φ. Since F contains a [10] in its bottom row, F must
lie above the bottom row of A. If column i occurs in the first fs(m − 1, [G|φ]) columns
of A then B contains [G|φ] as a submatrix, a contradiction. If column i occurs in the
last fs(m− 1, [φ|H]) columns of A then C contains [φ|H] as a submatrix, a contradiction.
Thus A cannot contain F as a submatrix, establishing (6).

We can generalize this as follows.

Corollary 5.2 Let F be a k × ` (0, 1)-matrix with a non-constant bottom row. Let F =
[φ0|F1|φ1|F2|φ2 · · ·φr−1|Fr|φr], where the φi’s are any columns of F and the Fi’s may be
empty. Then

fs(m,F ) >
r∑
i=1

fs(m− r + 1, [φi−1|Fi|φi]). (7)

Proof: We use induction on r. When r = 1, the inequality is an equality. Now suppose
the proposition holds with r replaced by r − 1. Let F = [φ0|F1|φ1|F2|φ2 · · ·φr−1|Fr|φr],
where the φi’s are any columns of F and the Fi’s may be empty. Since F has a non-
constant bottom row, either [φ0F1φ1 · · ·Fr−1φr−1] or [φ1F2 · · ·φr−1Frφr] has a non-constant
bottom row. Without loss of generality assume the former case. By Proposition 5.1 we
have

fs(m,F ) > fs(m− 1, [φ0F1φ1 · · ·Fr−1φr−1]) + fs(m− 1, [φr−1Frφr]),

while by the induction hypothesis we have

fs(m− 1, [φ0F1φ1 · · ·Fr−1φr−1]) >
r−1∑
i=1

fs(m− 1− (r − 1) + 1, [φi−1Fiφi]).

Also fs(m− 1, [φ0F1φ1 · · ·Fr−1φr−1]) > fs(m− r+ 1, [φ0F1φ1 · · ·Fr−1φr−1]) by Lemma 1.6.
Thus (7) is true.

Our proof shows that fs(m,F ) >
∑r

i=1 fs(m−ui, [φi−1|Fi|φi]), where (u1, u2, . . . , ur) is
some permutation of (1, 2, 3, . . . , r− 3, r− 2, r− 1, r− 1) determined by our construction.
We apply this construction idea to explore constructions for 2 × ` F . The case where
F is either all 0’s or all 1’s can be found in [4]. We obtain good constructions for other
2-rowed F which may be close to optimal.

Corollary 5.3 Let F be a 2× ` (0,1)-matrix. Assume F is not all 0’s or all 1’s. Let b be
the number of pairs of consecutive columns of F which yield the submatrix [ 1 1

0 0 ] or [ 0 0
1 1 ].

Then

fs(m,F ) >

(
m

2

)
(`− 1− b)− `2m− 3`2. (8)
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Proof: If F has all identical columns then the columns are either all [ 10 ] or all [ 01 ]; in
that case, b = ` − 1 and so (8) is trivial. Otherwise, assume without loss of generality
that F has a non-constant bottom row. Let G1, G2, . . . , G`−1 be the pairs of consecutive
columns of F . By Corollary 5.2 we have

fs(m,F ) >
`−1∑
i=1

fs(m− `+ 2, Gi).

By the results of Anstee and Füredi [4] and Frankl, Füredi, and Pach [5], for each Gi we
have

fs(m− `+ 2, Gi) >

(
m− `+ 2

2

)
+ (m− `+ 2) + 1 >

(
m− `

2

)
+ (m− `) + 1

unless Gi is [ 1 1
0 0 ] or [ 0 0

1 1 ], in which case we have instead

fs(m− `+ 2, Gi) > 2(m− `+ 2) > 2(m− `).

So

fs(m,F ) > (`− 1− b)
((

m− `
2

)
+ (m− `) + 1

)
+ 2b(m− `),

from which (8) follows.

This construction establishes the lower bounds of Theorems 1.4 and 1.5. However, for
a matrix such as

F =

[
1 1 0 0
0 0 1 1

]
,

the construction yields the lower bound

fs(m,F ) >

(
m

2

)
−O(m).

Our best upper bound is

fs(m,F ) 6 5

(
m

2

)
+m+ 1,

obtained from using the 2×6 forbidden submatrix
[
1 0 1 0 1 0
0 1 0 1 0 1

]
. We expect the smaller bound

to be correct and computer searches have supported this.
In order to apply Corollary 5.2 to more general F , it would be helpful to have good

constructions for any k × 2 matrix (obtained as a pair of consecutive columns of F ). We
already have bounds for each k × 2 F consisting of a pair of identical columns [4]. The
following handles k × 2 F with two non-identical columns. We use AT to refer to the
transpose of A.

Proposition 5.4 Let F be a k × 2 (0,1)-matrix with two different columns. Then

fs(m,F ) >

(
m

k

)
+

(
m

k − 1

)
+ · · ·+

(
m

0

)
. (9)
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Proof: Let

F =



a1 ∗
...

...
ap ∗
1 0
∗ b1
...

...
∗ bq


(10)

with p+ q + 1 = k; either p or q may be 0. Let

γ = [a1, a2, . . . , ap, 1, 0, b1, b2, . . . , bq]
T .

Following Lemma 1.3, let A be the m ×
(
(m
k

) + ( m
k−1) + · · ·+ (m

0
)
)

of all columns not
containing γ as a submatrix. Then, as described in Lemma 1.3, every column α of A is
an initial segment (from the top) of some instance of(

(ā1)
∗a1(ā2)

∗a2 · · · (āp)∗ap0∗1
↑
1∗0(b̄1)

∗b1(b̄2)
∗b2 · · · (b̄q)∗

)T
.

Let g(α) denote the index of the row in which the 1 indicated above occurs in α, or ∞ if
the indicated 1 does not occur in α. Let B be the matrix obtained from A by reordering
the columns of A by nonincreasing g, so that if column α occurs to the left of column β in
B then g(α) > g(β). Now B achieves the bound (9). To show that B has no submatrix
F , assume that F occurs in two columns α, β of B, α to the left of β and so g(α) > g(β).
By definition of g, the 1 in row p+ 1 of F occurs in or below row g(α) of α. On the other
hand, the 0 in row p + 1 of F occurs above row g(β) of β, since otherwise β contains a
copy of γ as a submatrix. Thus g(α) < g(β), a contradiction.

The construction used in the proof of Theorem 2.5 in [4] occurs as a special case when
a1 = a2 = · · · = ap = 1 and in addition the starred entries to their right (in (10)) are also
1.
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