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Abstract

A partial ordering IP is chain-Ramsey if, for every natural number n and every
coloring of the n-element chains from P in finitely many colors, there is a monochro-
matic subordering Q isomorphic to P. Chain-Ramsey partial orderings stratify nat-
urally into levels. We show that a countably infinite partial ordering with finite
levels is chain-Ramsey if and only if it is biembeddable with one of a canonical
collection of examples constructed from certain edge-Ramsey families of finite bi-
partite graphs. A similar analysis applies to a large class of countably infinite partial
orderings with infinite levels.
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1 Introduction

A central definition of structural Ramsey theory is this:

Let P, @), and A be structures of the same type, and k a natural number.
Then

P — (Q)¢

if, for every coloring in k colors of the substructures of P isomorphic to A,
there is a monochromatic substructure of P isomorphic to Q.

*The author thanks Jared Corduan, Joseph Mileti, and Peter Winkler for many fruitful conversations.
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(See, for example, the survey paper by Nesetfil [9].) One of the concerns of infinitary
structural Ramsey theory is finding or classifying infinite structures P such that, for a
given A and all natural numbers k, we have P — (P)#. We will denote this property by
P — (P)4.

The original infinitary Ramsey’s theorem [11] can be interpreted as N — (N)" for
all n, where the natural numbers N are endowed with the usual ordering and n denotes
an n-element linear ordering, or as K, — (K,)% for all n, where K, is the complete
countably infinite graph and K, is the complete n-element graph.

The Rado graph, or countably infinite random graph, G satisfies G — (G)* when A
consists of a single vertex, but not when A consists of two vertices connected by a single
edge [4]. That is, G is vertex-Ramsey but not edge-Ramsey. Both vertex-Ramseyness
and edge-Ramseyness have been much investigated.

Milliken [6] shows that P — (P)4 where PP is the infinite binary tree equipped with
the relations “o and 7 are on the same level” and “y = inf(o, 7),” and A is the complete
binary tree of height n with the same relations.

A consequence of this theorem, explicitly stated by Chubb, Hirst, and McNicholl [1],
is that for all natural numbers n, P — (P)", where P is the infinite binary tree viewed
as a partial ordering, and n denotes an n-element linear ordering. We will call a partial
ordering with this property chain-Ramsey. Chubb, Hirst, and McNicholl ask about other
chain-Ramsey partial orderings.

This is a natural question. It is, perhaps, initially more appealing to ask which count-
ably infinite partial orderings P satisfy P — (P)# for all finite partial orderings A. The
answer is, not very many. In fact, up to biembeddability, there are only five. This can be
proven from the related analysis of collections of finite partial orderings by Nesetfil [10],
and we give a direct proof in Section 4. The difficulty Nesettil identifies is that it is hard
to satisfy P — (P)# if the structure A is not rigid, or, indeed, has substructures that are
not rigid. A partial ordering A has no non-rigid substructures exactly in case A is linear.

Thus it is natural to ask about colorings of chains. For instance, by work of Nesetftil
and Raodl [7],[8], finite linear orderings are among a small class of structures A for which,
given any finite partial ordering P and natural number k, there is a finite partial ordering
Q such that Q — (P)i!. Fouché [5] investigates the finite combinatorics of this proposition.

Corduan, Groszek, and Mileti [3] show that if the partial ordering P is a countably
infinite rooted tree, then PP is chain-Ramsey if and only if PP is biembeddable with either
the natural numbers or the infinite binary tree, both with the usual orderings.

This paper considers the general question of which countably infinite partial orderings
are chain-Ramsey.

In Section 2, we introduce some basic definitions, terminology and notation, much
of which is standard, but not all. In particular, we define a bipartite graph G with
distinguished parts M (G) and S(G) to be extensional if no two elements of S(G) have
edges to exactly the same elements of M (G). Equivalently, up to isomorphism, S(G) is a
collection of subsets of M (G) and the edge relation is membership. The name extensional
comes from the set-theoretic Axiom of Extensionality, which states that sets with the same
members are equal. Extensional bipartite graphs will arise naturally in the investigation
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of chain-Ramsey partial orderings.

In Section 3, we show we can restrict our attention to a special class of partial orderings.
First, if P is any countable partial ordering with the Ramsey property for 2-element
chains, then either P or the reverse ordering P* is w-linearizable. (To see this, let P =
{pn | n € N}, color 2-element chains p; <p p; red if ¢ < j and blue if ¢ > j, and
consider a monochromatic embedded copy of P.) Since P and P* share the same chain-
Ramsey properties, we consider only w-linearizable partial orderings. Second, we define
P and Q to be biembeddable if each is embeddable in the other. Biembeddability is
an equivalence relation that preserves Ramsey properties. Hence, rather than individual
partial orderings, we consider equivalence classes.

Since our partial orderings are w-linearizable, they are well-founded of height at most
w, so they stratify into levels; level n consists of all points of height n in the partial
ordering. We show that if P is a chain-Ramsey partial ordering with finite levels (meaning
that there are finitely many points on each level), then up to biembeddability P has a
least element, embeds into itself above any point, and contains no copy of the pentagon
lattice N5. We call partial orderings with these three properties proto-Ramsey.

In Section 4 we determine which proto-Ramsey partial orderings are chain-Ramsey.
This answers the question of which countable partial orderings with finite levels are chain-
Ramsey. Our analysis applies even if the levels of IP are not finite, and answers the question
of which countably infinite partial orderings with least element containing no copy of N5
are chain-Ramsey. We do not know whether there are any chain-Ramsey partial orderings
with least element that contain a copy of N5. (If we do not require P to be connected,
then there are such examples; one is the disjoint union of all finite partial orderings.)

To give a little more detail, we show that a proto-Ramsey partial ordering P naturally
gives rise to a collection of extensional, connected bipartite graphs G(P). If P has finite
levels, then all elements of G(IP) are finite. The characterization theorem states that a
proto-Ramsey partial ordering P is chain-Ramsey if and only if G(P) is edge-Ramsey and
has the joint embedding property.

In Section 5 we show how to construct from a collection G of finite, extensional,
connected bipartite graphs a proto-Ramsey partial ordering P(G) such that G(P(G)) is
biembeddable with G. (That is, each element of either collection is embeddable in some
element of the other.) We say that G is singular if every element G of G has only one vertex
in S(G), and P is singular if G(P) is singular. In the nonsingular case, there is a one-
to-one correspondence between equivalence (biembeddability) classes of proto-Ramsey
partial orderings with finite levels and equivalence (biembeddability) classes of collections
of extensional, connected, finite bipartite graphs. Specifically, (up to biembeddability)
G(P(G)) = G, and (up to biembeddability) P(G(IP)) = P. In the singular case, each
collection G corresponds to two equivalence classes of proto-Ramsey partial orderings,
one with branching and one without; for example, the collection containing only the
single graph consisting of two points connected by an edge corresponds to both w (the
natural numbers with the usual ordering) and the complete binary tree.

In Section 6, we exploit the correspondence between chain-Ramsey partial orderings
and edge-Ramsey collections of bipartite graphs to generate an infinite sequence of col-
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lections of finite, connected, extensional bipartite graphs, such that each collection is
edge-Ramsey and has the joint embedding property. This sequence corresponds to an
infinite sequence of chain-Ramsey partial orderings.

In Section 7, we conclude with some questions.

2 Notation and Terminology

2.1 Structures and Ramsey properties

Definition 2.1. A structure P consists of a set P equipped with some relations and
functions. A substructure consists of a subset of P with the restricted relations and
functions. That is, substructure always means induced substructure.

Because we are interested in finite and countably infinite structures, unless otherwise
specified, we will assume P is a set of natural numbers.
We will often abuse notation by conflating PP and P.

Definition 2.2. We say P embeds into @), written P < @), if there is an isomorphism
from P to a substructure of (), where isomorphism preserves functions, relations and non-
relations. If both P < () and () — P, then we say that P and () are biembeddable and
write P & Q).

A relevant example is the following: The complete binary tree 2<“ and the complete
infinitely branching tree w<“, viewed as partial orderings, are biembeddable. Any em-
bedding of w<¥ into 2<% is an embedding of partial orderings only; it does not preserve
infima.

For any substructure ) of P, we have P = () if and only if P — Q.

Definition 2.3. If C and C’ are collections of structures, we say C — C’ if for every
Q@ € C there is P € C’ such that Q — P. If C — C’ and C' — C, we say C and C’ are
biembeddable, C = C’.

Biembeddability, both of structures and of collections of structures, is an equivalence
relation.

Definition 2.4. A collection C of structures has the joint embeddability property if for
every (1 and ()5 in C, there is P € C such that Q; — P and ()» — P. We say C is j.e.p.

Definition 2.5. Let P, ), and A be structures of the same type, and k a natural number.
PUAl is the set of all substructures of P isomorphic to A.
An A-coloring of P in k colors is a function ¢ : P — {0,1,... k —1}.
A substructure P’ of P is homogeneous for ¢, or monochromatic, if there is some i < k
such that c[(P")4)] = {i}. We say P’ is homogeneous in color 1.
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Definition 2.6. We say P — (Q)s if for every A-coloring of P in k colors there is a
monochromatic substructure of P isomorphic to Q.

We say P — (Q)4 if P — (Q)# for every natural number k.

If P— (P)" we say P is A-Ramsey.

Definition 2.7. A collection C of structures is A-Ramsey if for every () € C and every
natural number k there is P € C such that P — (Q)2.

The property of being A-Ramsey is preserved by biembeddability, both of structures
and of collections of structures.

In this paper our interest is in two cases. Either our structures are partial orderings
and A is a finite linear ordering, or our structures are bipartite graphs and A consists of
(two points joined by) a single edge.

2.2 Partial orderings

Definition 2.8. The natural number n, as a partial ordering, denotes an n-element linear
ordering, also called a chain.

If P is a partial ordering and P — (IP)", we say P has the n-Ramsey property, or P is
n-Ramsey, and write R"(P).

If P is n-Ramsey for every natural number n, we say P is chain-Ramsey, and write
R(P).

Because biembeddability preserves Ramsey properties, we can characterize the chain-
Ramsey partial orderings by characterizing their biembeddability classes.

Definition 2.9. If P = (P, <) is a partial ordering, P* = (P, >).

Definition 2.10. The partial ordering w consists of the natural numbers {0,1,2,...}
with the usual ordering.

Definition 2.11. A countably infinite partial ordering P = (P, <p) is w-linearizable [or
w*-linearizable] if the elements of P can be enumerated as {p, | n € w} such that if
Pm <p Dn then m < n [or m > n].

If P = (P, <p) is w-linearizable, we may assume that P C w, and that if p <p ¢ then
p <gq.

Definition 2.12. An w-linearizable partial ordering P is stratified into levels, defined
recursively by:

Level 0 contains all minimal points.

Level n + 1 contains all points not on earlier levels all of whose predecessors (in the
<p ordering) are on earlier levels.

Level n of P is denoted P,, and if p € P,, then lev(p) = n.

Pep = | J Pmand P, = | J P

m<n m<n

Pred(p) = {q € P'| ¢ <p p}.
If n < lev(p) then Pred,(p) ={q € P, | ¢ <p p}.

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(1) (2013), #P50 5



Definition 2.13. An w-linearizable partial ordering P is a finite-level partial ordering if
all its levels are finite.

We will give a complete characterization of the biembeddability classes of countably
infinite, finite-level chain-Ramsey partial orderings.

2.3 Bipartite graphs

Definition 2.14. A bipartite graph G = (M(G), S(G), E(G)) consists of disjoint sets of
vertices M(G) and S(G), and a set of edges E(G) C M(G) x S(G).

Our bipartite graphs have distinguished parts, so an embedding of G into H must
send M(G) to M(H) and S(G) to S(H).

Definition 2.15. As a bipartite graph, e denotes the graph consisting of two vertices
connected by a single edge. For e-Ramsey we may write edge-Ramsey.

Definition 2.16. A bipartite graph G is extensional if no two distinct points in S(G)
have edges to exactly the same points in M(G). Equivalently, up to isomorphism, the
points in S(G) are subsets of M(G) and the edge relation is membership.

The notation S(G) and M(G) is intended to suggest sets and members. The term
extensional comes from the set-theoretic Axiom of Extensionality, which states that sets
with exactly the same members must be equal.

Definition 2.17. For p and ¢ in S(G), define p =), ¢ if and only if p and ¢ are connected
to exactly the same points in M(G).

A maximal extensional subgraph of G is a subgraph H such that M(H) = M(G) and
S(H) contains exactly one element from each =j;-equivalence class of S(G).

As all maximal extensional subgraphs of G are naturally isomorphic, we may speak of
the maximal extensional subgraph of G.

We will be concerned with connected, extensional bipartite graphs because they arise
naturally in the analysis of chain-Ramsey partial orderings. For the same reason we will
be concerned with collections that are closed under (connected extensional) subgraphs
and have the joint embedding property. However, the following proposition indicates that
even if our interest were in edge-Ramsey collections of bipartite graphs, it would make
some sense to consider j.e.p. collections of connected, extensional bipartite graphs.

Proposition 2.18. Let G be a collection of bipartite graphs.

The collection G is edge-Ramsey if and only if G is a union of j.e.p. edge-Ramsey
collections.

If G is edge-Ramsey, so are the following:

1. The collection of all subgraphs of elements of G.

2. The collection of all connected subgraphs of elements of G.
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3. The collection of all connected, extensional subgraphs of elements of G.

4. The collection of all connected graphs whose mazximal extensional subgraph can be
embedded in an element of G.

5. If every element of G s finite, the collection of all finite connected graphs whose
mazimal extensional subgraph can be embedded in an element of G.

This is mostly well-known and standard. For questions involving extensional sub-
graphs, note that a coloring ¢ of G' naturally induces a coloring of the maximal extensional
subgraph of G, by coloring an edge (p, s) a color that appears at least as often as any
other among the c(p, t) with t =y, s.

Definition 2.19. If G is a collection of bipartite graphs, C/(G) is the collection of all
connected, extensional bipartite graphs H with M(H) C w and S(H) C w that can be
embedded in elements of G.

Claim 2.20. If G is a collection of bipartite graphs, CL(CU(G)) = CL(G). If all elements
of G are connected and extensional, then G = CU(G). Furthermore, if also all elements of
H are connected and extensional, then G — H if and only if C{(G) C CL(H), and G = H
if and only if CL(G) = CU(H).

3 Countable Chain-Ramsey Partial Orderings

In this section, we develop some structural properties of countably infinite chain-Ramsey
partial orderings.

From the known proof that the rationals do not have the 2, 2-Ramsey property, we
can derive the following fact [3].

Proposition 3.1. If P is a countably infinite partial ordering and R*(P) holds, then P is
either w-linearizable or w*-linearizable.

Proof. Assume P C w. Color 2-element chains from P according to whether or not the
<p ordering agrees with the usual ordering < on w; for p <p ¢,

0 p<g;
c(p,q) = L poq

Let H be a homogeneous subordering isomorphic to P. Suppose that H is homogeneous
in color 0, that is, for (p,q) € HI?! we have c(p,q) = 0. Then the enumeration of H in
its natural ordering shows H is w-linearizable. If H is homogeneous in color 1, then H is
w*-linearizable. Since H is isomorphic to P, this shows that P is either w-linearizable or
w*-linearizable. O

If P is w*-linearizable, then P* is w-linearizable. As P* is chain-Ramsey if and only if
P is, we will restrict our attention to w-linearizable partial orderings.
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Definition 3.2. Points p and ¢ in P are compatible if they have a common upper bound
r (p <pr and ¢ <p r), and incompatible otherwise. If p and ¢ are incompatible we write

pLag.

Lemma 3.3. Suppose that P is an w-linearizable finite-level partial ordering and R3(PP)
holds. Then for any p in P, there is an n € w such that if py <p p1 <p -+ <p Pn 1S aNY
increasing chain, either p <p p, or p L p,.

Proof. Assume P C w. Color 3-chains a <p b <p c as follows: For ¢ <p 7, let i(q,r) be
the least i (in the sense of the usual ordering < on w) such that i £p ¢ but i <p . Color
the chain (a, b, ¢) color 0 if i(a,b) < i(b,c) and color 1 if i(a,b) > i(b, c).

Let ¢ be an isomorphism of P onto a monochromatic isomorphic subordering Q. As the
finite-level chain-Ramsey partial ordering Q must have an infinite increasing chain gy <p
@1 <p ..., Q must be homogeneous in color 0; we must have i(qx, gx+1) < #(Grs1, Qrro)
rather than the reverse.

Now let ¢ = ¢(p) and n = ¢ + 2. Suppose toward a contradiction that p €p p,
and p [ p, for some increasing chain py <p p; <p -+ <p pn. Let g = @(px) for
k< mn. Then q £€p q, and q¢ L ¢, in Q. Because the function ¢ increases along chains,
i(qn-1,qn) = n—1> q. Since ¢ L g, let r be a common upper bound in Q. Then as
q Lp ¢, but g <p r, we have i(¢,,r) < ¢ < i(¢n—1,¢n). This means the chain (g,_1,qn,7)
has color 1, a contradiction. O

Proposition 3.4. Suppose that P is an w-linearizable finite-level partial ordering and
R%*(P) and R*(P) hold. Then the following forbidden configuration does mot occur in P:
points p and q that are incomparable but compatible with common successor s, and a point
r that is below p but not below q.

S

/

p

r

Proof. By Lemma 3.3, for every p in P there is a level h(p) such that any point on level
h(p) or above must be either above or incompatible with p. Because the levels of P are
finite, we can define a function f as follows: f(0) = 0; given f(n), choose f(n+ 1) so that
for any point p on or below level f(n), we have h(p) < f(n+ 1).

Color chains p <p ¢ as follows: Let n be least such that p is below level f(n). Then
the chain (p, ¢) has color 0 if ¢ is above level f(n + 2), and color 1 otherwise.

Let Q be an isomorphic monochromatic subordering. Because Q has infinite height, it
must be monochromatic in color 0. Suppose toward a contradiction that p,q, s, r realize
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the forbidden configuration in @, and let n be least such that the level of r is below f(n).
By definition of f, as r and ¢ are incomparable but compatible, the level of ¢ is below
f(n+ 1), and as p and ¢ are incomparable but compatible, the level of p is below level
f(n + 2). But this means the chain (r,p) has color 1, a contradiction. O

This forbidden configuration, when augmented by a bottom point, becomes a copy of
the pentagon lattice N5. As we will very soon restrict our attention to partial orderings
with a least element, we make the following definition.

Definition 3.5. A partial ordering with least element in which this forbidden configura-
tion does not occur is called N5-omitting.

Proposition 3.6. Suppose that P is a partial ordering with finitely many minimal ele-
ments, and R'(P) holds. Then P is biembeddable with a partial ordering Q with a least
element. Furthermore, if P is finite-level or omits the forbidden configuration, the same
holds for Q.

Proof. By assumption, P has finitely many minimal nodes. Color the nodes of P according
to the least (in the sense of the ordering on w) minimal node below them. By R'(P)
there are a minimal node py and an embedding ¢ of P into {p | p =p po}. Let Q =
range(p) U {pg}. Then P = Q. O

Definition 3.7. A point p of a partial ordering P is a base of P if there is an embedding
¢ of Pinto {q | p <p ¢}. The embedding ¢ witnesses that p is a base of PP.
The partial ordering P is densely self-embeddable if every point of P is a base of PP.

Note that the bases of P form a downward-closed suborder.

Proposition 3.8. Suppose that P is a partial ordering with least element py and R(PP)
holds. Then P is biembeddable with a densely self-embeddable Q with least element. Fur-
thermore, if P is finite-level or omits the forbidden configuration, the same holds for Q.

Proof. Let Q consist of all the bases of P. Then p, is also the least element of QQ, and
Q is downward closed in P, hence if P is finite-level so is Q. Color P by giving color
0 to the elements of @, and color 1 to all other points. Let ¢ be an embedding of P
with monochromatic range. Clearly ¢(pg) is a base of P, so ¢ embeds P into Q, showing
P=Q.

To see that Q is densely self-embeddable, first note that any embedding ¢ : P — P
must send Q to Q: Suppose that ¢ : P — P witnesses that ¢ is a base of P. Then ¢ o
witnesses that ¢(q) is a base of P; that is, p(q) € Q.

But now, if ¢ witnesses that r is a base of P, then ¢ | Q witnesses that r is a base of
Q. Hence every element of QQ is a base of QQ, so Q is densely self-embeddable. O

Definition 3.9. A partial ordering P is proto- Ramsey if P is w-linearizable, N5-omitting,
and densely self-embeddable, and has a least element.

A partial ordering P is weakly proto-Ramsey if P is w-linearizable and N5-omitting,
and has a least element (but is not necessarily densely self-embeddable).
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By Proposition 3.8, if P is weakly proto-Ramsey and chain-Ramsey, then P is biem-
beddable with a proto-Ramsey, chain-Ramsey partial ordering.

Proposition 3.10. If a finite-level partial ordering is chain-Ramsey, then it is biembed-
dable with a proto-Ramsey finite-level partial ordering.

Proof. This follows from Propositions 3.4, 3.6, and 3.8, using only R"(P) forn < 3. O

Our task now becomes to determine which proto-Ramsey partial orderings are chain-
Ramsey. We will do this in Section 4. Noting some structural properties of proto-Ramsey
partial orderings will be useful.

Proposition 3.11. Suppose that P is a weakly proto-Ramsey partial ordering. Then any
two incomparable but compatible points of P must have exactly the same predecessors. It
follows that:

If p and q are incomparable but compatible, then p and q are on the same level, and
have a common successor on the next level.

Predecessors of p on different levels must be comparable. The predecessors of p are in
a sense almost linearly ordered: If ¢ <p p has level n, and r <p p has level m < n, then
r<pg(g.

If p is above level n, and p <p q, then p and q have the same predecessors on level n.

If p is above level n, then Pred,(p) = Pred,(q) for some q € P,y1.

The ordering <p is the transitive closure of {(p,q) | p <p q & lev(q) = lev(p) + 1}.

In general, the structure and complexity of a weakly proto-Ramsey partial ordering
are completely determined by the ordering between successive levels.

4 Edge-Ramsey Collections of Finite Bipartite Graphs

Throughout this section, P will denote a weakly proto-Ramsey partial ordering. From
P we define a collection G(PP) of bipartite graphs, such that C/(G) depends only on the
biembeddability class of P. We will show that if P is proto-Ramsey, then P is chain-
Ramsey if and only if G(IP) is edge-Ramsey and has the joint embedding property.

4.1 G(P) and colorings of P

Definition 4.1. Let p and ¢ be in P,. Define p =, ¢q if Pred(p) = Pred(q), with the
equivalence class of p denoted [p],,. Define = to be the transitive closure of the compat-
ibility relation on P, (where p and ¢ are compatible if they have a common successor),
with the equivalence class of p denoted [p].

Because P is N5-omitting, each = class is contained within a single =, class. By
definition, each set s = Pred,(p) is contained within a single = class.
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Definition 4.2. For each = class a = [p| for p € P,, define a connected extensional
bipartite graph G,. Set M(G,) = a and S(G,) = {s C a | (J¢) (Pred,(q) = s)}. The
edge relation of G, is membership.

Because P is w-linearizable, even if P is not finite-level, each set Pred,(q) must be
finite.

Definition 4.3. G(P) = {G}, | p € P}.

In the rest of this section, we show that if P is proto-Ramsey, then P is chain-Ramsey
if and only if G(P) is edge-Ramsey and has the joint embedding property.

Definition 4.4. If G is a collection of bipartite graphs, an edge coloring of G in & colors
is a collection {cs : E(G) — {0,1,...,k—1} | G € G}.

In the above definition, G must be understood as a collection of individual graphs
rather than isomorphism types. Isomorphic elements of G may be colored differently.

Definition 4.5. If ¢ is an edge coloring of G(P), and n > 1, then ¢ induces a coloring ¢
of n-element chains in P by

c(p1,p2,- .- Pn) = Cc[pl](pl, Predicvep,) (p2))-

Such a coloring is called graph-induced.
If ¢ is an edge coloring of G(P) such that, for (q,s) € G,, the color cg,(q,s) depends
only on ¢, and we denote that color by cg,(q), then ¢ induces a coloring ¢ of 1-tuples in

P by ¢(p) = cay, (p)-

Remark 4.6. Any coloring ¢ of n-element chains in P such that ¢(py, ps, ..., p,) depends
only on p; and Predieyp,)(p2) is graph-induced, and ¢ determines the corresponding edge
coloring ¢ of G(P) by cq,(p,s) =¢(p,q,73,...7Ty), Where Prediey ) (q) = s.

Proposition 4.7. An embedding ¢ : P — P induces an embedding of Gy, into G,y 1If
the range of ¢ is homogeneous for some coloring ¢ induced by an edge coloring ¢ of G(P),
then the image of Gy is a subgraph of Gy homogeneous for cgy, . Conversely, if, for
some 1, each image of each G is homogeneous for cq in color i, then the range of ¢
18 homogeneous for ¢ in color i.

[e(p)]

Proof. Define k : G — G as follows: For ¢ € M(Gy,)) = [p] let k(q) = ¢(q). For
s € S(Gyy)), choose 1 such that s = Prediey)(r), and let k(s) = Prediey ) (©(7)).

(This embedding is not necessarily unique; if also s = Predieyp) ('), and r L 7/, we
can have Predieyup) (¢(r)) # Predics,p)(@(r')), as long as their difference lies outside
the range of ¢.)

The edge in G,y between k(p) = ¢(p) and k(s) = Prediey,p)(¢(r)) is assigned
color cg, ., (0(p), Predicupop)) (¢(1))) = e(@(p), o(r),p3, ..., py) for any ps,...,p, in the
range of ¢ above (r), so if the range of ¢ is monochromatic in color 4, so is the range of
k. Similarly, if the range of £ is monochromatic in color ¢ for all k, then the range of ¢ is
monochromatic in color 7. O
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Proposition 4.8. Let P be a weakly proto-Ramsey partial ordering. If P is chain-Ramsey,
then G(PP) is edge-Ramsey and has the joint embedding property.

Proof. 1f G(IP) fails to have the joint embedding property, choose G, and Gig such that
no element of G(IP) contains copies of both Gy and Gg. Edge color G(P) by coloring
all edges of G color 0 if G| < G, and color 1 otherwise, which induces a coloring ¢
of singletons in P. Any embedding ¢ of P into itself must send G, to a graph with
color 0 edges, and Gg to a graph with color 1 edges, and so the range of ¢ cannot be
homogeneous. Hence R!(P) fails.

If G(IP) fails to be edge-Ramsey, choose G and k such that for each G' € G(IP) there is
a coloring cg of the edges of GG in k colors such that G contains no homogeneous copy of
G- The collection of ¢ is an edge coloring of G(IP), which induces a coloring ¢ of pairs in
P. Any embedding ¢ of P into itself must send G, to a graph that is not homogeneous,
and so the range of ¢ cannot be homogeneous. Hence R?*(P) fails. O

In the rest of this section we prove the converse to this proposition for proto-Ramsey P.
As a corollary we will see that for finite-level partial orderings P we have R*(P) = R(P).

4.2 Embeddings of weakly proto-Ramsey partial orderings

Definition 4.9. Points p and ¢ in an w-linearizable partial ordering P are strongly in-
compatible, written p L ¢, if for any p’ = p and ¢’ = ¢, we have p’ L ¢'.

Remark 4.10. Equivalently, if lev(p) < lev(q) and r <p ¢ has the same level as p, then
p Lg g if and only if p #Z r, and symmetrically if lev(q) < lev(p).
Ifp Lg p<pp and ¢ <pd, thenp" Ly ¢

Proposition 4.11. Let P and Q be weakly proto-Ramsey partial orderings. If
(1.) (Vg € Q)(¥Yp € P)(Ir Zp p)(Glg — G}y), and
(2.) every element of P has incompatible successors,

then there is an embedding from Q into P.

Before proving Proposition 4.11, we make some comments and give a relevant defini-
tion.

Notice that if P is in fact proto-Ramsey, then G(Q) — G(P) implies (1). Also, if
P is proto-Ramsey, then (1) implies (2), provided there is at least one G, in G(P) for
which S(G,) contains more than one element, or provided that P has at least one pair of
incompatible points.

The idea behind the proof of Proposition 4.11 is as follows. We wish to define j
embedding Q into P level-by-level, choosing j(q) for ¢ € @, and then choosing j(r) for
r € Qu41. In order to do this, if, for example, r >q ¢1, 2, © #@ ¢3, then there must be
some point p >p j(q1),7(q2), p #p j(g3) to choose as j(r). In fact, by Proposition 4.7, the
embedding j | [¢] must extend to an embedding k : Gy — G q)-

It turns out that the existence of suitable embeddings k for each G, is precisely what
we need to appropriately define j on Q, ;. Hence we make the following definition.

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(1) (2013), #P50 12



Definition 4.12. An extendible n-embedding of QQ into P is an embedding j : Q<, — P
such that:
(1.) For m < n and p,q € Q,,,
(a.) if p # g then j(p) Ly j(q),
(b.) if p = g then j(p) = j(q).
By (b), if a = [p|, we can unambiguously set j(a) = [j(p)].
(2.) There is, for each m < n and [¢] C Q,,, an embedding ki of Gy to Gy
satisfying:
() K 1la) = 7 1 [g] (recall that [q] = M(Gyy),
(b.) if s = Pred,,(r) € S(Gq) for ¢ <r € Q«p, then ki (s) = Predieu(j(q)) (J(7))-

Proof of Proposition 4.11. We define an embedding from Q to P as the limit of a sequence
of extendible n-embeddings.

If go is the least element of Q, then Gy, consists of two vertices connected by an
edge. We can define an extendible 0-embedding by choosing j(qy) arbitrarily, setting
Kiq1(20) = 7(qo), and, for the unique element s of S(G|y), choosing ki (s) to be any
element of S(GTj(4)) connected to j(go) by an edge. (Equivalently, choose 7 >p j(qo), and
set kig)(5) = Prediey(igo) (r)-)

We will show that every extendible n-embedding can be extended to an extendible
(n + 1)-embedding.

Suppose, then, that the functions ky for [p] € Q, witness that j is an extendible
n-embedding. We wish to extend j to j on Q41 and define functions ki, for [¢] € Q41
witnessing that j is extendible.

We define j and the E[q] as follows.

1. Each set Pred,(q) for ¢ € Q41 appears as an element s € S(Gp,)) for a unique
[p] € Q. Suppose that ki (s) = Predie(jp))(r). Then by condition (2) in the definition of
n-extendible, for p’ € [p], 1(p') = k) (p') <p r if and only if p’ <g ¢, and by condition (1),
for p’ € Q. —[p], 7(») £p r. For each s choose such a r, such that ki, (s) = Predie(jp))(r),
denoted r;.

If s # s’ then r, and 7y are incompatible: Choose p € s and p’ € s, s0 s € S(Gp) and
s' € S(Gpyp). We have that j(p) <p rs and j(p') <p re. If p #Z p’ then by condition (1)
rs L ry. If p=p', then because j(p) = j(p'), we have lev(j(p)) = lev(j(p')). Because s
and s contain different points, s and ry have different predecessors on the level of j(p),
so again, because P is N5-omitting, ry L ry.

Using Remark 4.10 and Proposition 3.11, by replacing r, and ry with proper successors,
if necessary, we guarantee ry Ly ry.

Any extension of j that sends the elements of each [¢],. € Q41 to distinct extensions
of 7pred, (q Will be an embedding of Q,; into P. It remains to see how to extend j to
an extendible embedding of Q1.

2. For each [q] C Qn41, let s = Pred,(q), and choose rig >p r,, such that if [¢'] # [q]
then rgn Lg 7(q. This is possible because every point in P has infinitely many incompat-
ible successors, and successors of incompatible points are strongly incompatible.
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Any extension of j that sends the elements of each [¢] to distinct =-equivalent exten-
sions of (g will satisfy conditions (1) and (2b) of the definition of n-extendible. (Satisfying
(2b) makes sense, as (2b) depends only on ki, for ¢ € Q«,.) It remains only to see how
to define j and k on Q,;; so condition (2a) is satisfied.

3. By assumption, above each r; is some p such that G|, < G|,). Choose such a p
and an embedding E[q] 1 Gl — G-

4. For each [q] C Q.41 and ¢’ € [q], let j(¢') = E[q](q’).
This completes the construction. O

Corollary 4.13. If Q is weakly proto-Ramsey, and P is proto-Ramsey and has incompa-
rable points, then Q — P if and only if G(Q) — G(P), if and only if CLG(Q) C CLG(P).

If Q and P are proto-Ramsey and have incomparable points, then Q = P if and only
if G(Q) = G(P), if and only if CLG(Q) = CLG(P).

4.3 Proving chain-Ramseyness from edge-Ramseyness and the
joint embedding property

Now we wish to show that if P is proto-Ramsey and has incompatible points, and G(P) is
j.e.p. and edge-Ramsey, then P is chain-Ramsey. (We will handle the case where P does
not have incompatible points later, in Proposition 4.20.) We will first show that if ¢ is a
graph-induced coloring of P, then P has a monochromatic isomorphic subordering. Since
all colorings of singletons are graph-induced, this shows R'(P). Then, as the inductive
step, we will show that if R™(P) holds, and c¢ is a coloring of (m + 1)-chains from P in
finitely many colors, then P has an isomorphic subordering on which ¢ is graph-induced.
This shows that R™(P) implies R™*1(P), completing the proof.

Thus we must prove the following two propositions. In their proofs, we will build
embeddings of P into itself. We will in each case indicate how to suitably modify the
construction of an embedding in the proof of Proposition 4.11.

Proposition 4.14. If P is proto-Ramsey and has incompatible points, G(P) is j.e.p. and
edge-Ramsey, and c is a graph-induced coloring of P, then there is an embedding of P into
P whose range is monochromatic.

Proposition 4.15. If P is proto-Ramsey and has incompatible points, R™(IP) holds, and
c is any coloring of (m + 1)-chains in P, then there is an embedding of P into P on whose
range ¢ is graph-induced.

Now we prove Propositions 4.14 and 4.15.

The proof of Proposition 4.14 basically consists of constructing an embedding j as
in Proposition 4.11, guaranteeing that the range of j is monochromatic by guaranteeing
that, for some 4, the range of every kjg is monochromatic for ¢y in color 7. (Recall that
the ki, are the graph embeddings of the G|, into Gijg) for ¢ € Q, that are used to
determine the definition of j on Q,,1;.) This suffices by Proposition 4.7.
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To do this, we need Lemma 4.16, which shows that we can define j on the minimal
node of P and choose 7 in such a way that we can always define each kj,; to have range
monochromatic in color 7. This, of course, uses the edge-Ramsey property of G(P) to
guarantee the existence of monochromatic subgraphs.

Lemma 4.16. Suppose that P is proto-Ramsey, G(P) is j.e.p. and edge-Ramsey, and c
is a graph-induced coloring of P in k colors {0,1,... k — 1}. We identify ¢ with the
corresponding collection of edge colorings on graphs G,.

Then there is a color i and there is an r € P such that, for each G, € G(P), the set of
p such that G, contains a color i monochromatic copy of G, is dense in P above r. That
is, for any q Zp r, there is p Z2p q such that Gy, contains a color i monochromatic copy

of G,.

Proof. Suppose not. Then for each i and each r € P, there are a G, € G(P) and a ¢ > r
such that for no p > ¢ does G, contain a color 7 monochromatic copy of Gj,.

Define a sequence as follows: r( is any element of P. Given r;, choose a; and ;.1 > 1;
such that for no p > 4, does G, contain a color ¢ monochromatic copy of G,,. Then,
for no color 7 < k and no p > 1, does G|, contain a color ¢ monochromatic copy of
Ga;. Because G(PP) has the joint embedding property, there is some = equivalence class
a such that, for all 7 < k, we have G,, — G,. But then for no p > r;, does G, contain
a monochromatic copy of G, in any color, contradicting our assumptions that G(P) is
edge-Ramsey and PP is densely self-embeddable. O]

Proof of Proposition 4.14. Suppose ¢ is a graph-induced coloring. We must find an em-
bedding of P into P with monochromatic image.

Choose 7 and r as in Lemma 4.16, such that for any ¢ >p 7, there is p >p ¢ such that
Gy contains a color ¢ monochromatic copy of G,.

We construct an embedding of P into P as the limit of a sequence of extendible n-
embeddings, as in the proof of Proposition 4.11, guaranteeing at each stage that all edges
in the image have color 1.

Begin by defining an extendible 0-embedding j as follows. Choose p >p r connected
by an edge of color i to t € S(Gp). Set kig)(q0) = j(q0) = p and, for the unique element
s of S(G[qo]), set k[qo](s) =1.

Extend each extendible n-embedding to an extendible n + l-embedding using the
construction of Proposition 4.11. In step (3), choose p and E[q] : Gig — Gy such that the
range of E[q] is monochromatic in color ¢. This is possible by the choice of 7 and r.

By Proposition 4.7, the range of the embedding thus constructed is monochromatic
for ¢ in color 7. O

Corollary 4.17. If P is proto-Ramsey and G(P) is j.e.p. and edge-Ramsey, then R'(PP).
Proof. Any coloring of singletons is graph-induced. O]

Now we prove Proposition 4.15, which states that if R™(P) holds and if ¢ is a coloring
of m+ 1-chains from P, then there is an isomorphic suborder on which c is graph-induced.
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To explain the idea behind this proof, we consider the simpler result that if P is the
complete binary tree, then R'(P) = R?(P). Given a coloring ¢ of 2-chains, we build an
embedding j on which the color of a chain {p, ¢} depends only on the first element p, as
follows. The minimal element of Pis (): choose j(()) arbitrarily. Now choose a copy of the
binary tree Q above j(()) and a color d(y such that for all ¢ € Q, we have c(j(()),q) = dy;
we can do this by R'(P). Choose incomparable points j((0)) = o and j((1)) = ¢; from
Q. Now, choose copies of the binary tree Q; € Q above j((i)) and colors dy; such that
for all ¢ € Qg), we have c(j((i)),q) = d. Iterate this process, at each stage choosing
values j(p) inside the previously chosen monochromatic subtrees. By construction, for
any 2-chain j(p) <p ¢ in the image of j, we have ¢(j(p),q) = d,.

For a more complex P, we carry out the analogous construction. In general, this
produces not a coloring of 2-chains that depends only on the smaller element, but a
coloring of 2-chains that is graph-induced. To see this, consider the analogous case where
we have defined j(p) and now must define j(r) and j(r’) for r and " above p on the
next level of P. If » and 7’ have different predecessor sets on the level of p, say s and ¢/,
then we must choose j(r) above k(s) and j(r’) above k(s"). We can choose these points
in suborderings above k(s) and k(s’) monochromatic for the coloring ¢(q) = ¢(j(p), q),
but those suborderings may not be monochromatic for the same color. Hence, the color
will depend not only on p but also on s. That is, on the image of j, the coloring will be
graph-induced.

This proof uses the inductive hypothesis R™(PP), but does not use the edge-Ramseyness
of G(P).

Proof of Proposition 4.15. Suppose c is a coloring of m + 1-chains in P, and R™(P) holds.
We must find an embedding j : P — P on whose range c is graph-induced.

We define an extendible n-embedding j to be color-extendible if there are functions
kp, witnessing that j is extendible and, for each s € S(Gy)) for u € Pg,, a substructure
P, = P with least element p, such that:

(3.) Prediey(jtu)(ps) = Kiu(s).

(4.) For all p € s, there is a color 4, , such that, for all (j(p),p2,ps,-..,Pm+1) from
range(j) UP,, we have c((p), ps, ps, - -+ Pms1) = s

(5.) If g € Py, s = Pred,,(q), and q € s’ € S(G|q), then j(¢) € Py and Py C P.

We show that every color-extendible n-embedding can be extended to a color-extend-
ible (n + 1)-embedding. Then we embed P into P via the limit of a sequence of color-
extendible n-embeddings. On the image, ¢ is graph-induced.

First we show there is a color-extendible 0-embedding. Let gy be the least element
of P. Choose j(qo) = kig)(qo) arbitrarily. Because P is densely self-embeddable, there is
a copy Q of P above j(qp). We can color m-chains from that copy by ¢(zs, ..., 2m+1) =

(j(qo); 22, - - -, Zm+1). Choose a e-monochromatic in color ¢ copy Q@ C Q with least element
z. For .the unique element s of S(G[y), set kig)(s) = Predie(jg))(2) and Py = Q and
lgo.s = -

Now we extend a color-extendible n-embedding j with witnesses {kp, | [u] C P} and
{P, | s C [u]} to a color-extendible n + 1-embedding j. We follow the construction of the
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proof of Proposition 4.11, working inside the P,. More precisely:

In step (1), take ry >p ps with 7, in Ps.

In step (2), for [¢] C s = [q]pr, choose 774 € Ps.

In step (3), choose G in P;. More precisely, for p € Py, let @M denote G as defined
in P,. Choose p € P, with k : Glg — E[p}. By Proposition 4.7, the inclusion map from Py
to P induces an embedding ¢ : G[p] — Gp). Define E[q} : Glg — Gpp) by E[q] =iok.

Having defined j(q) and ki, for ¢ € P, 41, we must define Ps for 5 € S(Gy).

Suppose Pred,(q) = s. We need to choose P;z C P, to satisfy (4) with respect to some
choice of i, 5 for p € Pp,1;.

To do this, for 5 € S(G|y)), by our choice of Gp, in step (3), we have ky(5) =
Pred, G (r), for some r € P, Let Q C {q € P [ 7 <p g} be isomorphic to P and color
m-chains from Q by

E<p27' <. 7pm+1) = <C(j(p)7p27 s 7pm+1> ’p € §>

Since 5 is finite, ¢ is a coloring in finitely many colors. Choose Pz C QQ to be monochromatic
with color (¢, | p € 5) and define 7,5 = ¢,.

This completes the construction.

For all chains (j(p), p2, p3, - - -, Pm+1) from range(j), by construction, {p2, ps, ..., Pmi1}
C Py where s = Predjey(r) for r such that j(r) = py, and so c¢(j(p), p2, D3, - - - s Pm+1) =
ips- Thus, c(j(p), P2, Ps, - - -, Pm+1) depends only on p and s. Since p is determined by j(p)
and s is determined by kp,j(s) = Predieo(jp) (p2), ¢(J(P), P2, Ps; - - - s Pm41) depends only on
J(p) and Prediey(jp))(p2). That is, on the range of j, the coloring c is graph-induced. [

4.4 The singular case

Now we consider the singular case in which every graph G € G(IP) has only one element
in S(G), and P may or may not contain incompatible points. In this case, if incomparable
elements of P are compatible, then they have exactly the same successors in P. This case
is anomalous because, by Corollary 4.13, it is only in this case that for non-biembeddable
proto-Ramsey partial orderings P and Q we may have C{(G(P)) = C4(G(Q)).

In order to analyze the singular case, we first make the following definitions.

Definition 4.18. For P an w-linearizable partial ordering and n < w,
Mult,(P) = {(p,i) | peP&i<n}

Mult(P) = {(p,i) | pe P & i < lev(p)}

in both cases ordered by
(p,i) <{a,)) <= p<eq

Definition 4.19. The complete bipartite graph G with a single point in S(G) and n points
in M(G) is denoted Sing(n). Thus Sing(1) is the graph with two vertices connected by
a single edge.
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Proposition 4.20. Suppose that P is proto-Ramsey and singular (every graph G € G(P)
has only one element in S(G)). Then there are three possible cases.

1. If G(P) contains only Sing(1l), then P is biembeddable with either w or 2<“. The
collection G(PP) is edge-Ramsey and has the joint embedding property, and the partial
ordering P is chain-Ramsey.

2. If G(P) contains Sing(n) for arbitrarily large n, then P is biembeddable with ei-
ther Mult(w) or Mult(2<¥). The collection G(P) is edge-Ramsey and has the joint
embedding property, and the partial ordering P is chain-Ramsey.

3. If G(IP) contains Sing(n) for some largest n > 1, then P is biembeddable with either
Mult,(w) or Mult,(2<%). The collection G(P) is not edge-Ramsey and the partial
ordering P is not chain-Ramsey.

Proof. 1f P has incompatible points, then by Corollary 4.13 P is biembeddable with 2<%,
Mult(2<¥), or Mult,(2<“), in cases (1), (2), and (3), respectively. If not, then P has
finitely many points on each level, and points on different levels are always comparable,
in which case the biembeddability class of P is determined by the maximum number n
of points on any level, or the lack of such a maximum. This is because if there is one
level with at least n-many points, then because P is densely self-embeddable, there are
infinitely many such levels.

In case (3), it is easy to see that G(PP) is not edge-Ramsey, and so by Proposition 4.8,
P is not chain-Ramsey.

In cases (1) and (2), P is chain-Ramsey [11],[1],[2]. Thus, by Proposition 4.8, G(P) is
edge-Ramsey and has the joint embedding property. This is also easy to check directly. [

4.5 Characterization theorems
We have finished proving the following theorem.

Theorem 4.21. Let P be a proto-Ramsey partial ordering. Then P is chain-Ramsey if
and only if G(P) is edge-Ramsey and has the joint embedding property.

Proof. The = direction is Proposition 4.8, and the <= direction follows from Propo-
sitions 4.14 and 4.15 for P with incompatible elements, and from Proposition 4.20 for P
without incompatible elements. O

Corollary 4.22. Let P be a finite-level partial ordering. Then P is chain-Ramsey if and

only if
(a.) P is biembeddable with a proto-Ramsey partial ordering, and
(b.) G(P) is edge-Ramsey and has the joint-embedding property.

Now we address a question raised earlier.

Proposition 4.23. If P is a countably infinite partial ordering and P — (P)* for all
finite partial orderings A, then P is biembeddable with one of the following: an infinite
antichain, w, Mult(w), w*, or (Mult(w))*.
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Proof. By way of contradiction, suppose that P is a counterexample. By Proposition 3.1,
we may assume that elements of P are natural numbers, and that p <p g = p < q.
First, let B be the partial ordering consisting of four points a; < as and b; < by with
a; incomparable with b;. We will show that [P cannot contain a copy of B. Let A be the
partial ordering consisting of three points, ¢; < ¢, and d incomparable to both ¢; and cs.

as b Co

ay by C1 d

Color a copy p1 <p pe, q of A in P with color 0 if p; < ¢ (as natural numbers), and with
color 1 if ¢ < p;. Replace P with a monochromatic suborder. Now, in P we cannot have
a copy p1 <p P2, ¢1 <p g2 of B, for suppose p; < ¢; as natural numbers. Then py, ps, 1
is a copy of A in color 0, and q1, g2, p1 is a copy of A in color 1, which is a contradiction.

If P is finite-level, then since P is chain-Ramsey, P is biembeddable with a proto-
Ramsey partial ordering Q. Now Q cannot have incompatible elements, or else it would
contain a copy of B. Hence, by Proposition 4.20, P must be biembeddable with either w
or Mult(w), and thus not a counterexample.

Hence, P is not finite-level, so P has an infinite antichain. Color pairs of incomparable
points in PP color 0 if they are on different levels, and color 1 if they are on the same level.
Let Q be a monochromatic suborder.

First, suppose Q has color 1. Then QQ has an infinite antichain X C P,, for some n,
and all incomparable pairs in Q must be contained in X. No element of Q can be in P,
for any m > n, because such an element would be comparable to (hence greater than)
all elements of X, contradicting p <p ¢ = p < q. Now if we color elements of QQ with
n+ 1 colors by ¢(p) = lev(p), a monochromatic suborder must be an antichain. Therefore
P must in fact consist of a single antichain, so P is not a counterexample.

Now suppose QQ has color 0, and let X be an infinite antichain, so elements of X are on
arbitrarily high levels of P. All elements of X must be maximal elements of P. (Suppose
not. Then consider some element p € X with a successor p’ in P. Consider another
element ¢ € X at least two levels above the level of p/; and an immediate predecessor ¢
of ¢ in P. Then {p,p’,¢,q} is a copy of B.) Now color elements of Q color 0 if they are
maximal in PP, and color 1 otherwise. A monochromatic suborder of color 1 cannot be
isomorphic to P. (A monochromatic suborder of color 1 cannot have an infinite antichain,
because by the same argument we applied to QQ, an infinite antichain must consist of
elements maximal in P.) A monochromatic isomorphic suborder, then, must have color 0
S0, since it consists entirely of elements maximal in P, it must be an antichain. Again, P
must in fact consist of a single antichain, so P is not a counterexample. O
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5 Canonical Representatives

In this section we specify a canonical representative of each biembeddability class of finite-
level proto-Ramsey partial orderings.

The singular cases where G(P) C {Sing(n) | n € w} are covered by Proposition 4.20;
the canonical representatives are w, 2<%, Mult,(w), Mult,(2<), Mult(w) and Mult(2<¥).
The following construction addresses other cases.

5.1 Constructing P from G

Definition 5.1. A bipartite graph G is of finite down-degree if every point in S(G) is
connected by edges to only finitely many points of M (G).

If G € G(P) for some weakly proto-Ramsey P then, by w-linearizability, G must be of
finite down-degree.

Definition 5.2. Let G = (G, | n < w) be any sequence of finite or countable connected
extensional bipartite graphs of finite down-degree, with Gy = Sing(1). Define a weakly
proto-Ramsey partial ordering P(g), level by level, as follows:

Stage 0: At level 0 put a single point py, to correspond to the single point of M (Gy).
At level 1, put a single equivalence class, to correspond to the single point of S(Gy); all
elements of this equivalence class will be above the single point at level 0. At stage 1 we
will determine the elements of this equivalence class. Stage 0 guarantees that G, = G.

Stage n for n > 0: At stage n—1 we determined which equivalence classes would be on
level n, and which points on level n — 1 they would lie above. For each equivalence class a,
set a = {prq | * € M(G,)}. Now for each equivalence class a and each y € S(G,,), put on
level n 4 1 an equivalence class ¢(a, y), lying above exactly the points {p,, € a | (z,y) €
E(G,)}. Stage n guarantees that G, = G, for every g on level n of P(G).

The partial ordering is determined by closing the relation between levels to make it
transitive.

Proposition 5.3. If G = (G, | n < w) is any sequence of finite or countable connected

—

extensional bipartite graphs of finite down-degree with Gy = Sing(1), then P(G) is weakly
proto-Ramsey, and CL(G(P(G))) = CL({Gy | n € w}). Furthermore, if for every m there

=,

isn > m such that G,, = G,, then P(G) is densely self-embeddable, hence proto-Ramsey,

—

and if every G, is finite, then P(G) is finite-level.

-, -,

Proof. By construction, P(G) has a least element. By induction, every level of P(G) is
countable (finite if each G,, is finite), and every element has finitely many predecessors,

-,

so P(G) is w-linearizable (and finite-level if each G,, is finite).

By construction, two elements on the same level of P(g) have a common successor
on the next level only if they have the same predecessors (as they must be in the same

equivalence class). To show P(G) is N5-omitting, hence weakly proto-Ramsey, it suffices
to show that any pair of incomparable elements p and ¢ with any common successor have
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the same predecessors. To show this, suppose r is a common successor of p and ¢ of
minimal level, say level n 4+ 1. Because the partial ordering is the transitive closure of
the ordering between levels, there are p and § on level n such that p <pg) P S<p(g) " and
q <pg) 1 Spg) " Because p and ¢ are on the same level and are compatible, they must
have the same predecessors, including p if p <pi) P and q if ¢ <p(g) 7 By the minimality
of the level of r, then, p =p and ¢ = ¢, so p and ¢ have the same predecessors.

By construction, as for ¢ € P(G), we have Gjy = G, we have CUG(P(G))) =
Cl{G, | n € w}).

It for every m there is n > m such that G,, < G, then by Proposition 4.11 in

the nonsingular case, and by an easy argument in the singular case, P(G) is densely
self-embeddable, hence proto-Ramsey. O

Definition 5.4. Fix an enumeration of the collection of all nontrivial connected exten-
sional finite bipartite graphs G with M(G) C w and S(G) C w, with a copy of the
single-edge graph listed first.

If G is any collection of nontrivial connected extensional finite bipartite graphs, let

—

Cl(G) be the induced enumeration of C/(G), and define P(G) = P(C/(G)) = IP’(CK(Q)).

Proposition 5.5. If P is a finite-level proto-Ramsey partial ordering such that at least
one G, € G(P) has more than one point in S(G,), then P = P(G(P)).

Furthermore, if G is any collection of nontrivial connected extensional finite bipartite
graphs, then CL(G(P(G))) = CL(G), and P(CL(G)) is proto-Ramsey.

Proof. Note that each G € G has infinitely many isomorphic copies in C{G, so ClG has
the property that for every m there is n > m such that G,, — G,,.

The first part of Proposition 5.5 follows from Propositions 5.3 and 4.11. The second
follows directly from Proposition 5.3. O]

5.2 Summary of results

We have shown the following:

If P is a finite-level or weakly proto-Ramsey partial ordering, and if IP is chain-Ramsey,
then by Propositions 3.8 and 3.10, PP is biembeddable with a proto-Ramsey partial order-
ing.

(In general, by Proposition 4.11, a nonsingular weakly proto-Ramsey partial ordering P
is isomorphic to a subordering of P(G(P)). A Cantor-Bendixson-type analysis determines
whether P contains a copy of P(G(P)), an analogue of a perfect kernel. If P is chain-
Ramsey, by Propositions 3.8, 3.10, 4.7 and 4.11, it must contain such a copy. A similar
analysis holds in the singular case, with P(G(P) replaced by one of the partial orderings
of Proposition 4.20.)

If P is a proto-Ramsey partial ordering, then by Theorem 4.21, P is chain-Ramsey if
and only if G(P) is edge-Ramsey and has the joint embedding property.

Furthermore, if P is finite-level, proto-Ramsey and nonsingular, then, by Corollary 4.13
and Proposition 5.5, there is a canonical representative P(G(IP)) of the biembeddability
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class of P. In the nonsingular case, by Proposition 5.5, there is a one-to-one correspondence
between biembeddabilty classs of proto-Ramsey partial orderings and collections of finite
bipartite graphs of the form C¢G, associating the class of P to the collection C¢(G(P))
and the collection C{G to the class of P(G). In the singular case, each collection C{G
corresponds to two classes of partial orderings, one with branching and one without.
Canonical representatives of classes of singular proto-Ramsey partial orderings are given
by Proposition 4.20.

In general, Proposition 5.3 gives us a similar analysis for infinite-level partial orderings
P, with the complication that if G contains an infinite graph, then C¢(G) is not countable.
However, if G is any countable collection of connected, extensional, countable bipartite
graphs of finite down-degree, then C¢(G) corresponds to a proto-Ramsey partial ordering
P, constructed as follows. Choose a sequence (G,, | n € w) from C¢(G), such that for every
G € G there are infinitely many n such that G — G,,, so C{(G) = CL({G,, | n € w}). Then
CUG(P((G, | n € w)))) =ClG. Since G(P) is in fact countable, applying this construction
to G(IP) produces a representative of the biembeddability class of P, unique up to the choice
of the sequence (G,, | n € w).

In summary, the constructions C/(G(P)) and P(G) provide almost one-to-one associa-
tions (the anomalous singular cases being covered by Proposition 4.20) of biembeddabil-
ity classes of proto-Ramsey partial orderings with countably generated collections C{G of
connected extensional countable bipartite graphs of finite down-degree, by which chain-
Ramsey partial orderings are associated with edge-Ramsey j.e.p. collections of graphs,
and conversely.

6 Generating Examples

So far, the only explicit examples of countably infinite chain-Ramsey partial orderings
we have seen are those biembeddable with w, 2<% Mult(w) or Mult(2<¥) (or with w*,
(2<9)*, (Mult(w))* or (Mult(2<“))*).

We have seen that finite-level chain-Ramsey partial orderings P correspond to edge-
Ramsey j.e.p. collections G(IP) of finite bipartite graphs, and conversely. Hence, from
families of finite bipartite graphs that have been shown to be edge-Ramsey, we can define
new finite-level chain-Ramsey partial orderings.

In this section we note another way in which a chain-Ramsey partial ordering P gener-
ates an edge-Ramsey family of finite bipartite graphs, in general not the same as G(PP). Us-
ing this family G to determine a new finite-level chain-Ramsey partial ordering P(G) # P,
and iterating, we can construct new examples.

Definition 6.1. For P a partial ordering, we define the following bipartite graphs:

The graph G (P) = ({z, [ p € P}, {y, | ¢ € P}, {{2p,5) | P <p ¢})-

The graph G=(P) = ({z, | p € P}, {yg | ¢ € P}, {{2p,50) | P >p })-
We then define the following collections of finite bipartite graphs:

The collection of all finite subgraphs of G (IP), denoted G (P).
The collection of all finite subgraphs of G+ (PP), denoted G- (P).
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Proposition 6.2. If P is a chain-Ramsey partial ordering, then G (P) and G- (P) are
edge-Ramsey bipartite graphs, and G-(P) and G~ (P) are edge-Ramsey collections of finite
bipartite graphs with the joint embedding property.

Proof. If G is G-(P) [or G=(P)], a coloring of edges of G is exactly a coloring of 2-element
chains from P, so if R?(P) holds, we can find a monochromatic isomorphic subordering Q.
Restricting the points of G to points x4, and y, for ¢ € Q produces, then, a monochromatic
isomorphic subgraph. Hence G is edge-Ramsey.

Now G (PP) [or G~ (P)] is the collection of finite subgraphs of G, which is edge-Ramsey
by compactness. O]

Definition 6.3. For n > 2, define the finite bipartite graphs W,, and M,,:
Wo={z; |1<i<n}, {y; |1 <j<n+1}, {{z,y;) |j=iorj=i+1}).
M,={z;|1<i<n+1},{y; |1 <j<n}, {{z,y)) |j=iorj=1i—1}).

Pictured are W5 and Ms.
Y1 Y2 Ys
Iy o)
hn Yo Y3
T T2 T3 Ty

Lemma 6.4. Suppose G is an edge-Ramsey collection of finite bipartite graphs, closed un-
der connected extensional subgraphs, containing W, but not W, .1, and let P = P(CL(G)).
Then G (P) contains W,, and M, 1 but not W, 1 (and therefore not M, ).

Hence, G~ (P) contains W,1 but not Wy, 5.

Proof. First, as W,, € G, by construction of P = P(C¢(G)) there is some p € P with W,, —
Gy That is, there are elements py,...,p, in [p], and there are elements ¢i,...,¢,1 €
P such that ({p;}, {Pred,(¢;)}, €) is a copy of W,. But then, so is ({p:}, {¢;}, <p),
witnessing W,, € G (P).

Now, consider p;, g; as above. As the ¢; have different predecessors, they are incom-
patible. As p; and p;,; are incomparable but compatible, the p; all lie on the same level
n. Choose any r >p ¢ and 1’ >p ¢,,1. Because P is N5-omitting, » and ' have the same
predecessors on level n as ¢; and g,1, respectively. Then

]

<{q1ap17 <y Dn, QHJrl}a {7", q2,--.,4qn, T'/}, <IP’>

is a copy of M, 1, witnessing M,, .1 € G_(P).

Finally, by way of contradiction, suppose ({z,,}, {yq,}, <p) witnesses W, 11 € G(P).
Distinct p; must be incomparable because each has a successor not above the other.
Because the p; are incomparable but =-equivalent in P, they are all in the same equivalence
class a C P,,. But then ({p;}, {Pred.,(q;)}, €) realizes W, as a subgraph of G,,
contradicting our assumptions on G. 0
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Proposition 6.5. There is an infinite sequence of distinct edge-Ramsey collections of
finite bipartite graphs, (G, | n € w), each closed under subgraphs and having the joint
embedding property, and a corresponding sequence of pairwise non-biembeddable countably
infinite chain-Ramsey partial orderings, (P, | n € w).

Proof. Define
]PO = 2<w;

gn = g> (Pn)
IP)n—l-l = P(Cg(gn))

An argument similar to that in the proof of Proposition 6.4 shows that G_(2<“) con-
tains My but not W5, and therefore Gy contains W5 but not Ws. It then follows from Propo-
sition 6.4 that the G, are distinguished from each other by the fact that W, .5 € G, but
Whis € Gp. Corollary 4.13 then implies that the P,, are pairwise non-biembeddable. [

However, G, is not characterized by omitting W, 3, as there are other finite bipartite
graphs it also omits. For instance, an argument similar to that in the proof of Proposi-
tion 6.4 shows that if a simple cycle of length greater than four is not in G (where G is
closed under subgraphs), then it cannot be in G (P(C¢(G))), and hence it cannot be in
G- (P(CL(G))). Therefore, every G, omits every simple cycle of length greater than four.

7 Questions

We have given a complete characterization of the biembeddability classes of finite-level
chain-Ramsey partial orderings.

(1.) Is there a finite-level partial ordering P such that R?*(P) holds but R3(P)
does not hold?

For a proto-Ramsey partial ordering P, by Propositions 4.8 and Theorem 4.21, R%(P)
implies R(PP).

The only use of R3(P) in the proof that every finite-level chain-Ramsey partial ordering
is biembeddable with a proto-Ramsey partial ordering is in Lemma 3.3 to the proof that
a finite-level chain-Ramsey partial ordering with least element must be N5-omitting. If
R%*(P) could be shown to suffice, it would then follow that R?*(P) implies R*(P) (and, in
fact, R(P)) for every finite-level partial ordering.

There are many examples of countably infinite partial orderings for which R!(IP) holds
but R?*(P) does not. The essentially binary nature of a partial ordering might suggest
that R?*(PP) should imply R(P). On the other hand, R*(w) is proof-theoretically weaker
than R3(w) (see [12]). This suggests that R%*(P) might not suffice to imply R3(IP).

(2.) Is there a partial ordering P with least element such that R(IP) holds but
P is not N5-omitting?
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Such an example could not be finite-level by Proposition 3.4. As any countably in-
finite chain-Ramsey partial ordering with least element must have an infinite chain, the
assumption “PP is finite-level” in Lemma 3.3 can be replaced by “P has a least element.”
Only the proof of Proposition 3.4, then, relies on the assumption that P is finite-level.
The proof of Proposition 3.4 can be modified to show that if P is any countably infinite
chain-Ramsey partial ordering with least element, possibly having infinite levels, then P

omits the hexagon lattice.
(]
@) @)

@) @)
(]
A negative answer to this question would show that all countably infinite w-linearizable
chain-Ramsey partial orderings with least element (or, in fact, with any finite maximal
antichain) are biembeddable with proto-Ramsey partial orderings, hence biembeddable

with partial orderings P(G) for j.e.p. edge-Ramsey collections G of finite or countably
infinite bipartite graphs.

(3.) What examples can be generated by modifications of the construction of
Proposition 6.57

For example, suppose we start with w rather than 2<“. In the initial stages, we have
w = 2% = P(Gs (w)) — P(G5(277)),

and none of these embeddings reverses, suggesting this might generate an entirely different
sequence.

(4.) Find a complete characterization of the countably infinite chain-Ramsey
partial orderings. That is, extend the characterization result Corollary 4.22
to all w-linearizable partial orderings.

As noted above, a negative answer to question (2) above would lead to a characteriza-
tion of countably infinite chain-Ramsey partial orderings that have a least (or a greatest)
element.

The (possibly) larger class of connected countably infinite chain-Ramsey partial order-
ings might be a next step. For a chain-Ramsey P not to be biembeddable with a partial
ordering with least element, it is necessary (and sufficient) that P has no base (in the sense
of Definition 3.7); if P is w-linearizable, it is necessary that P has no finite antichain.

There are many countably infinite chain-Ramsey partial orderings with infinitely many
connected components. For example, if [P is any countably infinite chain-Ramsey partial
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ordering with least element, then the disjoint union of the finite suborders of P is itself
chain-Ramsey; if P is proto-Ramsey and has incompatible elements, any number of con-
nected components isomorphic to P may be adjoined to get another chain-Ramsey partial
ordering, although this one is biembeddable with P. As another example, the disjoint
union of the P, constructed in Proposition 6.5 is a chain-Ramsey partial ordering; this
has infinite connected components, but is not biembeddable with any connected partial
ordering. As a third example, the fact that for any natural numbers n and k and any finite
partial ordering P there is a finite partial ordering @ with @ — (P)} ([7],[8]) shows that
the disjoint union of all finite partial orderings is chain-Ramsey; because this collection
contains N5, it does not arise as the collection of finite suborders of any proto-Ramsey
partial ordering. The disparity of these examples suggests that the general question might
be more difficult than the question of connected partial orderings.

(5.) For other collections A of finite partial orderings, consider the question
of which countably infinite partial orderings P satisfy (VA € A) [P — (P)4].

Proposition 4.23 showed that if A is the collection of all finite partial orderings, then up
to biembeddability, there are only five countably infinite P with this property. Section 1
suggested two reasons that many more countably infinite partial orderings are chain-
Ramsey: first, chains have no non-rigid suborderings; second, chains are among a small
class of A for which, given any natural number k£ and any finite partial ordering P, there
is a finite partial ordering @ with @ — (P)3 [7],[8]. The first property appears to be the
more salient. The second property also applies to chain sums of antichains [7],[8] (that
is, finite suborderings of Mult(w)); however, the only proto-Ramsey partial orderings
that satisfy P — (P)# even for a two-element antichain A are w and Mult(w). There is,
however, at least one example of a countably infinite partial ordering P with P — (P)# if
A is a chain-sum of antichains, but not if A is an arbitrary finite partial ordering; namely,
the disjoint union of finite chains of arbitrary length.

(6.) Following the lead of Nesetfil [9],[10], and noting that the proof of Propo-
sition 4.23 depends partly on the interplay between the ordering <p and the
natural ordering < of the elements of P (assuming P C w), consider countably
infinite partial orderings P augmented with a linearization < of <p in order
type w.

If we ask, in the context of these augmented structures, which countably infinite [P
satisfy P — (PP)* for all finite A, we get no new proto-Ramsey partial orderings beyond w
and Mult(w), but again we get at least one new countably infinite partial ordering beyond
the five of Proposition 4.23, namely the disjoint union of finite chains of arbitrary length
(with a suitable linearization).

(7.) Find a complete characterization, phrased in terms of omitted subgraphs,
of the edge-Ramsey, j.e.p. collections of finite bipartite graphs of the form

)
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This is a long-standing open problem. In a sense, the characterization results The-

orem 4.21 and Corollary 4.22 of this paper are incomplete without an answer to this

question.
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