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Abstract

A vertex colouring of a graph is nonrepetitive if there is no path for which the
first half of the path is assigned the same sequence of colours as the second half. The
nonrepetitive chromatic number of a graph G is the minimum integer k such that G
has a nonrepetitive k-colouring. Whether planar graphs have bounded nonrepetitive
chromatic number is one of the most important open problems in the field. Despite
this, the best known upper bound is O(

√
n) for n-vertex planar graphs. We prove

a O(log n) upper bound.

1 Introduction

A vertex colouring of a graph is nonrepetitive if there is no path for which the first half
of the path is assigned the same sequence of colours as the second half. More precisely, a
k-colouring of a graph G is a function ψ that assigns one of k colours to each vertex of G.
A path (v1, v2, . . . , v2t) of even order in G is repetitively coloured by ψ if ψ(vi) = ψ(vt+i)
for all i ∈ [1, t] := {1, 2, . . . , t}. A colouring ψ of G is nonrepetitive if no path of G is
repetitively coloured by ψ. Observe that a nonrepetitive colouring is proper, in the sense
that adjacent vertices are coloured differently. The nonrepetitive chromatic number π(G)
is the minimum integer k such that G admits a nonrepetitive k-colouring.

The seminal result in this field is by Thue [19], who in 1906 proved that every path is
nonrepetitively 3-colourable. Nonrepetitive colourings have recently been widely studied;
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see the surveys [6, 10, 11]. A number of graph classes are known to have bounded non-
repetitive chromatic number. In particular, trees are nonrepetitively 4-colourable [5, 14],
outerplanar graphs are nonrepetitively 12-colourable [4, 14], and more generally, every
graph with treewidth k is nonrepetitively 4k-colourable [14]. Graphs with maximum de-
gree ∆ are nonrepetitively O(∆2)-colourable [3, 8, 10, 13].

Perhaps the most important open problem in the field of nonrepetitive colourings is
whether planar graphs have bounded nonrepetitive chromatic number. This question,
first asked by Alon et al. [3], has since been mentioned by numerous authors [2, 4, 7, 9–
14, 16, 18]. It is widely known that π(G) ∈ O(

√
n) for n-vertex planar graphs1, and this

is the best known upper bound. The best known lower bound is 11, due to Pascal Ochem;
see Appendix A. Here we prove a logarithmic upper bound.

Theorem 1. For every planar graph G with n vertices,

π(G) 6 8(1 + log3/2 n) .

We now explain that the above open problem is solved when restricted to paths of
bounded length. For p > 1, a vertex colouring of a graph G is p-centered if for every
connected subgraph X of G, some colour appears appears exactly once in X, or at least p
colours appear in X. In a repetitively coloured path of at most 2p− 2 vertices, there are
at most p− 1 colours each appearing at least twice. Thus the colouring is not p-centered.
Equivalently, every p-centered colouring is nonrepetitive on paths with at most 2p − 2
vertices. Nešetřil and Ossona de Mendez [17] proved that for every graph H and integer
p > 1, there exists an integer c, such that every graph with no H-minor has a p-centered
colouring with c colours. This shows that (with H = K5) for every integer p > 1, there
exists an integer c, such that every planar graph has a c-colouring that is nonrepetitive
on paths with at most 2p vertices. Note that the bound on c in terms of p here is large. It
is open whether there is a polynomial function f such that for every integer k > 1 every
planar graph G has a f(k)-colouring that is nonrepetitive on paths with most 2k vertices.

Finally, we mention a class of planar graphs that seem difficult to nonrepetitively
colour. Let T be a tree rooted at a vertex r. Let Vi be the set of vertices in T at distance
i from r. Draw T in the plane with no crossings. Add a cycle on each Vi in the cyclic
order defined by the drawing to create a planar graph GT . It is open whether π(GT ) 6 c
for some constant c independent of T . Note that this class of planar graphs includes
examples with unbounded degree and unbounded treewidth.

2 Proof of Theorem 1

A layering of a graph G is a partition V0, V1, . . . , Vp of V (G) such that for every edge
vw ∈ E(G), if v ∈ Vi and w ∈ Vj then |i − j| 6 1. Each set Vi is called a layer. The
following lemma by Kündgen and Pelsmajer [14] will be useful.

1One can prove this bound using a naive application of the Lipton-Tarjan planar separator theorem.
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Lemma 2 ([14]). For every layering of a graph G, there is a (not necessarily proper) 4-
colouring of G such that for every repetitively coloured path (v1, v2, . . . , v2t), the subpaths
(v1, v2, . . . , vt) and (vt+1, vt+2, . . . , v2t) have the same layer pattern.

A separation of a graph G is a pair (G1, G2) of subgraphs of G, such that G = G1∪G2.
In particular, there is no edge of G between V (G1)− V (G2) and V (G2)− V (G1).

Lemma 3. Fix ε ∈ (0, 1) and c > 1. Let G be a graph with n vertices. Fix a layering
V0, V1, . . . , Vp of G. Assume that, for every set B ⊆ V (G), there is a separation (G1, G2)
of G such that:

• each layer Vi contains at most c vertices in V (G1) ∩ V (G2) ∩B, and

• both V (G1)− V (G2) and V (G2)− V (G1) contain at most (1− ε)|B| vertices in B.

Then π(G) 6 4c(1 + log1/(1−ε) n).

Proof. Run the following recursive algorithm Compute(V (G), 1).

Compute(B, d)

1. If B = ∅ then exit.

2. Let (G1, G2) be a separation of G such that each layer Vi contains at most c
vertices in V (G1) ∩ V (G2) ∩ B, and both V (G1) − V (G2) and V (G2) − V (G1)
contain at most (1− ε)|B| vertices in B.

3. Let depth(v) := d for each vertex v ∈ V (G1) ∩ V (G2) ∩B.

4. For i ∈ [1, p], injectively label the vertices in Vi∩V (G1)∩V (G2)∩B by 1, 2, . . . , c.
Let label(v) be the label assigned to each vertex v ∈ Vi ∩ V (G1) ∩ V (G2) ∩B.

5. Compute((V (G1)− V (G2)) ∩B, d+ 1)

6. Compute((V (G2)− V (G1)) ∩B, d+ 1)

The recursive application of Compute determines a rooted binary tree T , where each
node of T corresponds to one call to Compute. Associate each vertex whose depth and
label is computed in a particular call to Compute with the corresponding node of T .
(Observe that the depth and label of each vertex is determined exactly once.)

Colour each vertex v by (col(v), depth(v), label(v)), where col is the 4-colouring from
Lemma 2. Suppose on the contrary that (v1, v2, . . . , v2t) is a repetitively coloured path
in G. By Lemma 2, (v1, v2, . . . , vt) and (vt+1, vt+2, . . . , v2t) have the same layer pattern.
In addition, depth(vi) = depth(vt+i) and label(vi) = label(vt+i) for all i ∈ [1, t]. Let vi
and vt+i be vertices in this path with minimum depth. Since vi and vt+i are in the same
layer and have the same label, these two vertices were not labelled at the same step of
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the algorithm. Let x and y be the two nodes of T respectively associated with vi and
vt+i. Let z be the least common ancestor of x and y in T . Say node z corresponds to
call Compute(B, d). Thus vi and vt+i are in B (since if a vertex v is in B in the call to
Compute associated with some node q of T , then v is in B in the call to Compute asso-
ciated with each ancestor of q in T ). Let (G1, G2) be the separation in Compute(B, d).
Since depth(vi) = depth(vt+i) > d, neither vi nor vt+i are in V (G1) ∩ V (G2). Since z is
the least common ancestor of x and y, without loss of generality, vi ∈ V (G1) − V (G2)
and vt+i ∈ V (G2)− V (G1). Thus some vertex vj in the subpath (vi+1, vi+2, . . . , vt+i−1) is
in V (G1) ∩ V (G2). If vj ∈ B then depth(vj) = d. If vj 6∈ B then depth(vj) < d. In both
cases, depth(vj) < depth(vi) = depth(vt+i), which contradicts the choice of vi and vt+i.
Hence there is no repetitively coloured path in G.

Observe that the maximum depth is at most 1 + log1/(1−ε) n. Therefore the number of
colours is at most 4c(1 + log1/(1−ε) n).

We now show that a result by Lipton and Tarjan [15] implies the condition in Lemma 3
for planar graphs.

Lemma 4. Let r be a vertex in a connected planar graph G. For i > 0, let Vi be the
set of vertices at distance i from r. Then V0, V1, . . . , Vp is a layering of G. For every set
B ⊆ V (G), there is a separation (G1, G2) of G such that:

• each layer Vi contains at most two vertices in V (G1) ∩ V (G2) ∩B,

• both V (G1)− V (G2) and V (G2)− V (G1) contain at most 2
3
|B| vertices in B.

Proof. Let T be a breath-first spanning tree in G starting at r. Thus, for each vertex v,
the distance between v and r in T equals the distance between v and r in G.

Lipton and Tarjan [15, Lemma 2] proved that for every vertex weighting of G (with
non-negative weights totalling at most 1), there is an edge vw ∈ E(G)−E(T ), such that
if C is the ‘fundamental’ cycle consisting of vw and the two paths from v and w back to
their least common ancestor in T , then the vertices inside C have total weight at most 2

3
,

and the vertices outside C have total weight at most 2
3
.

Apply this result with each vertex in B weighted 1
|B| , and each vertex in V (G) − B

weighted 0. Let G1 and G2 be the subgraphs of G induced by C and the vertices inside C
and outside C respectively. Then (G1, G2) is a separation. The total weight of V (G1) −
V (G2) equals the number of vertices in (V (G1)−V (G2))∩B. Hence V (G1)−V (G2), and
by symmetry V (G2)− V (G1), contains at most 2

3
|B| vertices in B.

Since T is breadth-first, the paths from v and w back to their least common ancestor
in T each contain at most one vertex from each layer Vi. Hence, each layer Vi contains at
most two vertices in V (G1) ∩ V (G2) ∩B.

Lemmas 3 and 4 together prove Theorem 1 (by adding edges to make G connected).
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A Lower Bounds

Barát and Varjú [4] constructed a planar graph G with π(G) > 10. Pascal Ochem [private
communication] observed that this lower bound can be improved to 11 by adapting a
construction due to Albertson et al. [1] as follows. Barát and Varjú [4] constructed an
outerplanar graph H with π(H) > 7. Let G be the following planar graph. Start with
a path P = (v1, . . . , v22). Add two adjacent vertices x and y that both dominate P .
Let each vertex vi in P be adjacent to every vertex in a copy Hi of H. Suppose on the
contrary that G is nonrepetitively 10-colourable. Without loss of generality, x and y are
respectively coloured 1 and 2. A vertex in P is redundant if its colour is used on some
other vertex in P . If no two adjacent vertices in P are redundant then at least 11 colours
appear exactly once on P , which is a contradiction. Thus some pair of consecutive vertices
vi and vi+1 in P are redundant. Without loss of generality, vi and vi+1 are respectively
coloured 3 and 4. If some vertex in Hi∪Hi+1 is coloured 1 or 2, then since vi and vi+1 are
redundant, with x or y we have a repetitively coloured path on 4 vertices. Now assume
that no vertex in Hi ∪ Hi+1 is coloured 1 or 2. If some vertex in Hi is coloured 4 and
some vertex in Hi+1 is coloured 3, then with vi and vi+1, we have a repetitively coloured
path on 4 vertices. Thus no vertex in Hi is coloured 4 or no vertex in Hi+1 is coloured
3. Without loss of generality, no vertex in Hi is coloured 4. Since vi dominates Hi, no
vertex in Hi is coloured 3. We have proved that no vertex in Hi is coloured 1, 2, 3 or 4,
which is a contradiction, since π(Hi) > 7. Therefore π(G) > 11.
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