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Abstract

We study the joint distribution of descents and inverse descents over the set
of permutations of n letters. Gessel conjectured that the two-variable generating
function of this distribution can be expanded in a given basis with nonnegative
integer coefficients. We investigate the action of the Eulerian operators that give
the recurrence for these generating functions. As a result we devise a recurrence for
the coefficients in question but are unable to settle the conjecture.

We examine generalizations of the conjecture and obtain a type B analog of the
recurrence satisfied by the two-variable generating function. We also exhibit some
connections to cyclic descents and cyclic inverse descents. Finally, we propose a
combinatorial model for the joint distribution of descents and inverse descents in
terms of statistics on inversion sequences.

Keywords: Permutations, descents, inverse descents, Eulerian numbers

1 Introduction

Let Sn denote the set of permutations of {1, . . . , n}. The number of descents in a per-
mutation π = π1 · · · πn is defined as des(π) = |{i : πi > πi+1}|. Our object of study is the
two-variable generating function of descents and inverse descents :

An(s, t) =
∑
π∈Sn

sdes(π
−1)+1tdes(π)+1 .
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The specialization of this polynomial to a single variable reduces to the classical Eulerian
polynomial :

An(t) = An(1, t) =
∑
π∈Sn

tdes(π)+1 =
n∑
k=1

〈n
k

〉
tk .

Eulerian polynomials and their coefficients play an important role (not only) in enu-
merative combinatorics. The univariate polynomials, An(t), are quite well-studied—see,
for example, [3, 6] and references therein. This cannot be said for the bivariate generating
function for the pair of statistics (des, ides). Here and throughout this note we will use
the shorthand ides(π) = des(π−1).

Our main motivation to study these bivariate polynomials is the following conjecture
of Gessel which appeared in a recent article by Brändén [2]; see also a nice exposition by
Petersen [15].

Conjecture 1 (Gessel). For all n > 1,

An(s, t) =
∑
i,j

γn,i,j(st)
i(s+ t)j(1 + st)n+1−j−2i ,

where γn,i,j are nonnegative integers for all i, j ∈ N.

If true, the above decomposition would refine the following classical result, the γ-
nonnegativity for the Eulerian polynomials An(t). (For background on γ-nonnegativity
we refer the reader to the works of Brändén [1] and Gal [9].)

Theorem 2 (Théorème 5.6 of [6]).

An(t) =

dn/2e∑
i=1

γn,it
i(1 + t)n+1−2i ,

where γn,i are nonnegative integers for all i ∈ N.

Before giving their proof, let us recall the recurrence satisfied by the Eulerian polyno-
mials:

An(t) = ntAn−1(t) + t(1− t) ∂
∂t
An−1(t) , for n > 2, (1)

with initial value A1(t) = t.
Foata and Schützenberger [6, Chapitre V] give a purely algebraic proof of Theorem 2

by considering the homogenized Eulerian polynomial, of degree n+ 1,

An(t; y) = yn+1An(t/y)

=
∑
π∈Sn

tdes(π)+1yasc(π)+1 , (2)

where asc(π) denotes the number of ascents (πi < πi+1) in the permutation π = π1 · · · πn.
Note that this polynomial is different from and therefore should not be confused with
An(s, t). To avoid confusion we use a semicolon and different variables. We include their
proof next, as we will be applying the same idea to the joint generating polynomial of
descents and inverse descents in Section 3.
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Proof of Theorem 2. The homogenized Eulerian polynomials defined in (2) satisfy the
recurrence

An(t; y) = ty

(
∂

∂t
An−1(t; y) +

∂

∂y
An−1(t; y)

)
, for n > 2 , (3)

which follows from observing the effect on the number of descents and ascents of inserting
the letter n into a permutation of {1, . . . , n− 1}. Compare this with recurrence (1).

It is clear from symmetry observations and homogeneity that An(t; y) can be written
(uniquely) in the basis {

(ty)i(t+ y)n+1−2i : i = 1, . . . , dn/2e
}

with some coefficients γn,i. To show that γn,i are in fact nonnegative integers consider the
action of the recurrence operator T = ty (∂/∂t+ ∂/∂y) on a basis element. Applying T
on the ith basis element we get that

T
[
(ty)i(t+ y)n+1−2i] = i(ty)i(t+ y)n+2−2i + 2(n+ 1− 2i)(ty)i+1(t+ y)n−2i,

which in turn implies the following recurrence on the coefficients:

γn+1,i = iγn,i + 2(n+ 3− 2i)γn,i−1. (4)

The statement of Theorem 2 now follows, since the initial values are nonnegative
integers, in particular, γ1,1 = 1 and γ1,i = 0 for i 6= 1. Furthermore, the constraint
1 6 i 6 dn

2
e assures that both positivity and integrality are preserved by recurrence (4).

Remark 3. The study of these so-called Eulerian operators goes back to Carlitz as it
was pointed out to the author by I. Gessel. See [4] for a slightly different variant of T .
Also, the operator t (n+ (1− t)(∂/∂t)) is closely related to a special case of a generalized
derivative operator already studied by Laguerre, called émanant or polar derivative; see,
for example, Section 6 in [13].

Finally, we must also mention the “valley-hopping” proof of Theorem 2 by Shapiro,
Woan, Getu [17, Proposition 4] which is a beautiful construction that proves that the
coefficients γn,i are not only nonnegative integers but that they are, in fact, cardinalities
of certain equivalence classes of permutations. Their proof is part of a more general
phenomenon, an action of transformation groups on the symmetric group Sn studied by
Foata and Strehl [7].

2 A homogeneous recurrence

The polynomials An(s, t) were first studied by Carlitz, Roselle, and Scoville [5]. They
proved a recurrence for the coefficients of An(s, t) (see equation (7.8) in their article—
note there is an obvious typo in the last row of the equation, cf. equation (7.7) in the same
article). The recurrence they provide for the coefficients is equivalent to the following one
for the generating functions.
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Theorem 4 (Equation (9) of [15]). For n > 2,

nAn(s, t) =
(
n2st+ (n− 1)(1− s)(1− t)

)
An−1(s, t)

+ nst(1− s) ∂
∂s
An−1(s, t) + nst(1− t) ∂

∂t
An−1(s, t)

+ st(1− s)(1− t) ∂2

∂s∂t
An−1(s, t) ,

with initial value A1(s, t) = st.

At first glance, this recurrence might not seem very useful at all. However, if we intro-
duce additional variables—to count ascents (asc) and inverse ascents (iasc)—we obtain a
more transparent recurrence. So, let us first define

An(s, t;x, y) =
∑
π∈Sn

sides(π)+1tdes(π)+1xiasc(π)+1yasc(π)+1 .

Proposition 5. The polynomial An(s, t;x, y) is homogeneous of degree 2n + 2 and is
invariant under the action of the Klein 4-group V ∼= 〈id, (12)(34), (13)(24), (14)(23)〉,
where the action of σ ∈ V on An(s, t;x, y) is permutation of the variables accordingly (for
example, σ = (13)(24) swaps x with s and y with t, simultaneously).

Proof. The homogeneity is immediate from

An(s, t;x, y) =
∑
π∈Sn

sides(π)+1tdes(π)+1xn−ides(π)yn−des(π)

= (xy)n+1An(s/x, t/y) .

The invariance is a consequence of the symmetry properties of An(s, t), such as An(s, t) =
An(t, s); see, for example, equations (12–14) in [15]. Note that, due to the introduction
of the new variables, for n > 4, the polynomial An(s, t;x, y) is not symmetric.

Now we are in position to give our homogeneous recurrence.

Theorem 6. For n > 2,

nAn(s, t;x, y) = (n− 1)(s− x)(t− y)An−1(s, t;x, y)

+ stxy

(
∂

∂s
+

∂

∂x

)(
∂

∂t
+

∂

∂y

)
An−1(s, t;x, y)

(5)

with initial value A1(s, t;x, y) = stxy.

Proof. Consider the bivariate recurrence given in Theorem 4 and observe that it can be
rewritten as

nAn(s, t) =

(
(n− 1)(1− s)(1− t) + st

(
n+ (1− s) ∂

∂s

)(
n+ (1− t) ∂

∂t

))
An−1(s, t).
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Let τn−1 denote the operator on the right-hand side, that is, nAn(s, t) = τn−1[An−1(s, t)].
Similarly, let

Tn = n(s− x)(t− y) + stxy

(
∂

∂s
+

∂

∂x

)(
∂

∂t
+

∂

∂y

)
. (6)

Finally, let hn denote the homogenization operator which maps the monomial satb to the
monomial (s/x)a(t/y)b(xy)n. In order to prove the theorem, it suffices to show that the
action of the operators τn−1 and Tn−1 agrees on the corresponding monomials, that is,

Tn−1
(
hn
[
satb
])

= hn+1

[
τn−1(s

atb)
]
.

For the multiplicative part we have that

(n− 1)(x− s)(y − t)hn
[
satb
]

= (n− 1)(x− s)(y − t)satbxn−ayn−b

= (n− 1)
(

1− s

x

)(
1− t

y

)( s
x

)a( t
y

)b
(xy)n+1

= hn+1

[
(n− 1)(1− s)(1− t)satb

]
.

And for the differential part we have

stxy

(
∂

∂s
+

∂

∂x

)(
∂

∂t
+

∂

∂y

)
satbxn−ayn−b = sx

(
∂

∂s
+

∂

∂x

)
saxn−aty

(
∂

∂t
+

∂

∂y

)
tbyn−b

and as it was already observed in [6]:

sx

(
∂

∂s
+

∂

∂x

)
saxn−a = asaxn+1−a + (n− a)sa+1xn−a

= hn+1 [(a+ s(n− a)) sa]

= hn+1 [s (n+ (1− s)∂/∂s) sa] .

Remark 7. The invariance of An(s, t;x, y) under the Klein-group action also follows easily
from recurrence (5) directly. Clearly, A1(s, t;x, y) = stxy is invariant under the action of
the group (in fact, it is symmetric) and also Tn—the operator acting on An(s, t;x, y)—is
invariant under the action of the Klein-group.

Finally, Theorem 6 allows for a (homogenized) restatement of Gessel’s conjecture:

Conjecture 8.

An(s, t;x, y) =
∑
i,j

γn,i,j(stxy)i(st+ xy)j(tx+ sy)n+1−2i−j,

where γn,i,j ∈ N for all i, j ∈ N.
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For example, we have (cf. page 18 of [15]):

A1(s, t;x, y) = stxy

A2(s, t;x, y) = stxy(st+ xy)

A3(s, t;x, y) = stxy(st+ xy)2 + 2(stxy)2

A4(s, t;x, y) = stxy(st+ xy)3 + 7(stxy)2(st+ xy) + (stxy)2(tx+ sy)

A5(s, t;x, y) = stxy(st+ xy)4 + 16(stxy)2(st+ xy)2 + 6(stxy)2(st+ xy)(tx+ sy)

+ 16(stxy)3

Remark 9. It is not too hard to see that Theorem 6 is, in fact, equivalent to Theorem 4.
At the same time, the symmetric nature of the homogeneous operator is more suggestive
to combinatorial interpretation. It would be nice to find such an interpretation (perhaps
in terms of non-attacking rook placements on a rectangular board).

3 A recurrence for the coefficients γn,i,j

Following the ideas in [6, Chapitre V] that were used to devise a recurrence for γn,i, we
apply the operator Tn to the basis elements to obtain a recurrence for the coefficients
γn,i,j. As a result, we obtain the following recurrence.

Theorem 10. Let n > 1. For all i > 1 and j > 0, we have

(n+ 1)γn+1,i,j = (n+ i(n+ 2− i− j))γn,i,j−1 + (i(i+ j)− n)γn,i,j

+ (n+ 4− 2i− j)(n+ 3− 2i− j)γn,i−1,j−1
+ (n+ 2i+ j)(n+ 3− 2i− j)γn,i−1,j
+ (j + 1)(2n+ 2− j)γn,i−1,j+1 + (j + 1)(j + 2)γn,i−1,j+2,

(7)

with γ1,1,0 = 1, γ1,i,j = 0 (unless i = 1 and j = 0) and γn,i,j = 0 if i < 1 or j < 0.

Proof. Denote the basis elements by B
(n)
i,j = (stxy)i(st+ xy)j(tx+ sy)n+1−2i−j for conve-

nience, and recall the definition of Tn given in (6).
A quick calculation shows that

n(s− x)(t− y)B
(n)
i,j = n

(
B

(n+1)
i,j+1 −B

(n+1)
i,j

)
. (8)

To calculate the action of the differential operators on the basis elements, we use the
product rule. After some calculations, this gives the following:

stxy

(
∂2

∂s∂t
+

∂2

∂x∂y

)
B

(n)
i,j = i(n+ 1− i− j)B(n+1)

i,j+1 + j(2n+ 3− j)B(n+1)
i+1,j−1

+ (n+ 1− 2i− j)(n− 2i− j)B(n+1)
i+1,j+1 .

(9)
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stxy

(
∂2

∂s∂y
+

∂2

∂t∂x

)
B

(n)
i,j = i(i+ j)B

(n+1)
i,j + j(j − 1)B

(n+1)
i+1,j−2

+ (n+ 1− 2i− j)(n+ 2 + 2i+ j)B
(n+1)
i+1,j .

(10)

Summing (8), (9) and (10) we arrive at the following expression.

Tn[B
(n)
i,j ] = (n+ i(n+ 1− i− j))B(n+1)

i,j+1 + (i(i+ j)− n)B
(n+1)
i,j

+ (n+ 1− 2i− j)(n− 2i− j)B(n+1)
i+1,j+1

+ (n+ 2 + 2i+ j)(n+ 1− 2i− j)B(n+1)
i+1,j

+ j(2n+ 3− j)B(n+1)
i+1,j−1 + j(j − 1)B

(n+1)
i+1,j−2 .

Finally, collecting together all terms Tn[B
(n)
k,` ] which contribute to B

(n+1)
i,j we obtain (7).

Remark 11. If we sum up both sides of (7) for all possible j then we get (4) back.

One could study the generating function

G(u, v, w) =
∑
i,j

γn,i,ju
nviwj

with coefficients satisfying the above recurrence. Gessel’s conjecture is equivalent to
saying that its coefficients are nonnegative integers. Unfortunately, these properties are
not immediate from the recurrence (7): note that the left-hand side has a multiplicative
factor of (n+ 1) and the coefficient (i(i+ j)− n) may assume negative values.

4 Generalizations of the conjecture

Gessel [10] noted that the following equality of Carlitz, Roselle, and Scovelle [5]

∞∑
i,j=0

(
ij + n− 1

n

)
sitj =

An(s, t)

(1− s)n+1(1− t)n+1

can be generalized as follows.
Let τ ∈ Sn with des(τ) = k − 1. Define A

(k)
n (s, t) by

∞∑
i,j=0

(
ij + n− k

n

)
sitj =

A
(k)
n (s, t)

(1− s)n+1(1− t)n+1
.

The coefficient of sitj in A
(k)
n (s, t) is the number of pairs of permutations (π, σ) such that

πσ = τ , des(π) = i and des(σ) = j. Gessel [10] also pointed out that these generalized
polynomials arise implicitly in [14]; compare (11.10) there with the above equation.

This suggests that Conjecture 1 holds in a more general form (this version of the
conjecture appeared as Conjecture 10.2 in [2]).
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Conjecture 12 (Gessel). Let τ ∈ Sn. Then∑
π∈Sn

sdes(π)+1tdes(π
−1τ)+1 =

∑
i,j

γτn,i,j(st)
i(s+ t)j(1 + st)n+1−j−2i ,

where γτn,i,j are nonnegative integers for all i, j ∈ N. Furthermore, the coefficients γτn,i,j do
not depend on the actual permutation τ , only on the number of descents in τ .

In the special case when τ = n(n − 1) · · · 21 (and hence des(τ) = n − 1) the roles of
descents and ascents interchange.

Theorem 13. For n > 2,

nA(n)
n (s, t;x, y) =(n− 1)(x− s)(t− y)A

(n−1)
n−1 (s, t;x, y)

+ stxy

(
∂

∂s
+

∂

∂x

)(
∂

∂t
+

∂

∂y

)
A

(n−1)
n−1 (s, t;x, y)

(11)

with initial value A
(1)
1 (s, t;x, y) = stxy.

In particular, we have the following identity.

Corollary 14.
A(n)
n (s, t;x, y) = An(s, y;x, t).

4.1 A type B analog

Gessel [10] also noted that there is an analogous definition for the hyperoctahedral group
Bn. The elements of Bn can be thought of as signed permutations of {1, . . . , n}, and
the type B descent statistic is defined as desB(σ) = |{i ∈ {0, 1, . . . , n} : σi > σi+1}| with
σ0 := 0 for σ = σ1 · · ·σn ∈ Bn. Letting

B(k)
n (s, t) =

∑
σ∈Bn

sdesB(σ)tdesB(σ−1τ) ,

with τ ∈ Bn such that desB(τ) = k − 1, we have that

∞∑
i,j=0

(
2ij + i+ j + 1 + n− k

n

)
sitj =

B
(k)
n (s, t)

(1− s)n+1(1− t)n+1
.

Therefore, mimicking the proof of Theorem 4 given by Petersen, we get an analog of
Theorem 4 for the type B two-sided Eulerian polynomials, Bn(s, t) = B

(1)
n (s, t).

Theorem 15. For n > 2,

nBn(s, t) =(2n2st− nst+ n)Bn−1(s, t)

+ (2nst(1− s) + s(1− s)(1− t)) ∂
∂s
Bn−1(s, t)

+ (2nst(1− t) + t(1− s)(1− t)) ∂
∂t
Bn−1(s, t)

+ 2st(1− s)(1− t) ∂2

∂s∂t
Bn−1(s, t) .

(12)
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with initial value B1(s, t) = 1 + st.

Proof. As in the case of the symmetric group in [15, eq. (9)], we start with the corre-
sponding identity of binomial coefficients:

n

(
2ij + i+ j + n

n

)
= (2ij + i+ j)

(
2ij + i+ j + n− 1

n− 1

)
+ n

(
2ij + i+ j + n− 1

n− 1

)
.

Multiplying both sides by the monomial sitj and summing over all integers i, j we get

∞∑
i,j=0

n

(
2ij + i+ j + n

n

)
sitj =

∞∑
i,j=0

(2ij + i+ j)

(
2ij + i+ j + n− 1

n− 1

)
sitj +

∞∑
i,j=0

n

(
2ij + i+ j + n− 1

n− 1

)
sitj ,

from which we obtain the following recurrence for Fn(s, t) = Bn(s, t)/(1− s)n+1(1− t)n+1:

nFn(s, t) = 2st
∂2

∂s∂t
Fn−1(s, t) + s

∂

∂s
Fn−1(s, t) + t

∂

∂t
Fn−1(s, t) + nFn−1(s, t) .

Substitute back the expression for Fn(s, t), multiply both sides with (1− s)n+1(1− t)n+1

and with a little work we get that

nBn(s, t) =(2n2st+ nt(1− s) + ns(1− t) + n(1− s)(1− t))Bn−1(s, t)

+ (2nst(1− s) + s(1− s)(1− t)) ∂
∂s
Bn−1(s, t)

+ (2nst(1− t) + t(1− s)(1− t)) ∂
∂t
Bn−1(s, t)

+ 2st(1− s)(1− t) ∂2

∂s∂t
Bn−1(s, t) .

It would be of interest to find a homogeneous version of this theorem (an analogue of
Theorem 6) and a recurrence for the corresponding γn,i,j coefficients for type B.

4.2 Cyclic descents

One can also consider two-sided Eulerian-like polynomials using cyclic descents. A cyclic
descent of a permutation π in Sn is defined as

cdes(π) = |{i : πi > π(i+1) mod n}| = des(π) + χ(πn > π1) ,

where

χ(a > b) =

{
1, if a > b, and

0, otherwise.

The following theorem refines a (univariate) result of Fulman [8, Corollary 1].
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Theorem 16. For n > 1,

(n+ 1)An(s, t) =
∑

π∈Sn+1

scdes(π
−1)tcdes(π) .

Lemma 17. Let σ = 23 · · ·n1 denote the cyclic rotation in Sn (for n > 2). Then

(cdes(π), cdes(π−1)) = (cdes(πσ), cdes((πσ)−1)).

In other words, the cyclic rotation simultaneously preserves the cyclic descent and the
cyclic inverse descent stastics.

Remark 18. Lemma 17 is essentially the same as Theorem 6.5 in [11]. We give an ele-
mentary proof of it, for the sake of completeness.

Proof. The part that cdes(π) = cdes(πσ) is obvious since cyclical rotation does not ef-
fect the cyclic descent set. For the other part, it is equivalent to show that cdes(π) =
cdes(σ−1π). In other words, the cyclic descent statistic is invariant under the opera-
tion when we cyclically shift the values of a permutation, i.e., add 1 to each entry
modulo n. For π = π1 · · · πn an arbitrary permutation in Sn denote the entry pre-
ceding n and following n by a and b, respectively. Then π = π1 · · · anb · · · πn and
σ−1π = (π1 + 1) · · · (a+ 1)1(b+ 1) · · · (πn + 1). Clearly, in all but one position the cyclic
descents are preserved, and the same is true for the cyclic ascents. The a ↗ n cyclic
ascent is replaced by the (a+ 1)↘ 1 cyclic descent and similarly, n↘ b gets replaced by
1↗ (b+ 1). Thus, the total number of cyclic descents remains the same.

Proof of Theorem 16. Using Lemma 17 we can apply the cyclic rotation to any permuta-
tion in Sn+1 until πn+1 = n + 1. This will map exactly n + 1 permutations in Sn+1 to
the same permutation π1 · · · πn(n+ 1). Clearly, cdes(π1 · · · πn(n+ 1)) = des(π1 · · · πn) + 1
and cdes((π1 · · · πn(n+ 1))−1) = des((π1 · · · πn)−1) + 1 and the theorem follows.

5 Connection to inversion sequences

We conclude by proposing a combinatorial model for the joint distribution of descents
and inverse descents.

A permutation π ∈ Sn can be encoded as its inversion sequence e = (e1, . . . , en),
where

ej = |{i : i < j, πi > πj}|.

Let In = {(e1, . . . , en) ∈ Zn : 0 6 ei 6 i− 1} denote the set of inversion sequences for Sn.
Recently, Savage and Schuster [16] studied the ascent statistic

ascI(e) = |{i : ei < ei+1}|

for inversion sequences (and their generalizations) and showed that this statistic is Eule-
rian, i.e., it is equidistributed with the descent statistic over permutations. We use the
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subscript I to emphasize that this is a statistic for inversion sequences which is different
from the ascent statistic for permutations used earlier in the paper.

Mantaci and Rakotondrajao [12] also studied this representation of permutations under
the name “subexceedant functions”. They considered the statistic

dst(e) = |{ei : 1 6 i 6 n}|

that counts the distinct entries in e ∈ In, and gave multiple proofs of the following
observation (which they attributed to Dumont) that this statistic is also Eulerian.

Proposition 19 (Dumont).

An(x) =
∑
e∈In

xdst(e) .

In fact, the joint distribution (ascI , dst − 1) over inversion sequences seems to agree
with the joint distribution (des, ides) of descents and inverse descents over permutations.

Conjecture 20.

An(s, t) =
∑
e∈In

sdst(e)tascI(e)+1 .

This observation clearly deserves a bijective proof. Such a proof might shed light on
a combinatorial proof of recurrence (5). Note that it is not even clear to begin with why
the right-hand side should be a symmetric polynomial in variables s and t.
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