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Abstract

The (q, r)-Eulerian polynomials are the (maj−exc,fix, exc) enumerative polyno-
mials of permutations. Using Shareshian and Wachs’ exponential generating func-
tion of these Eulerian polynomials, Chung and Graham proved two symmetrical
q-Eulerian identities and asked for bijective proofs. We provide such proofs using
Foata and Han’s three-variable statistic (inv−lec, pix, lec). We also prove a new
recurrence formula for the (q, r)-Eulerian polynomials and study a q-analogue of
Chung and Graham’s restricted descent polynomials. In particular, we obtain a
generalized symmetrical identity for these restricted q-Eulerian polynomials with a
combinatorial proof.

Keywords: Eulerian numbers; symmetrical Eulerian identities; hook factorization;
descents; admissible inversions; permutation statistics

1 Introduction

The Eulerian polynomials An(t) :=
∑n

k=0 An,kt
k are defined by the exponential generating

function ∑
n>0

An(t)
zn

n!
=

(1− t)ez

ezt − tez
. (1.1)

The coefficients An,k are called Eulerian numbers. The Eulerian numbers arise in a variety
of contexts in mathematics. Let Sn denote the set of permutations of [n] := {1, 2, . . . , n}.
For each π ∈ Sn, a value i, 1 6 i 6 n − 1, is an excedance (resp. descent) of π if
π(i) > i (resp. π(i) > π(i + 1)). Denote by exc(π) and des(π) the number of excedances
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and descents of π, respectively. It is well-known that the Eulerian number An,k counts
permutations in Sn with k descents (or k excedances), that is

An(t) =
∑
π∈Sn

tdesπ =
∑
π∈Sn

texcπ.

The reader is referred to [9, 22] for some leisurely historical introductions of Eulerian
polynomials and Eulerian numbers.

Several q-analogs of Eulerian polynomials with combinatorial meanings have been
studied in the literature (see [3, 7, 23, 28]). Recall that the major index, maj(π), of a
permutation π ∈ Sn is the sum of all the descents of π, i.e., maj(π) :=

∑
π(i)>π(i+1) i. An

element i ∈ [n] is a fixed point of π ∈ Sn if π(i) = i and we denote by fix(π) the number
of fixed points of π. Define the (q, r)-Eulerian polynomials An(t, r, q) by the following
extension of (1.1): ∑

n>0

An(t, r, q)
zn

(q; q)n
=

(1− t)e(rz; q)

e(tz; q)− te(z; q)
, (1.2)

where (q; q)n :=
∏n

i=1(1 − qi) and e(z; q) is the q-exponential function
∑

n>0
zn

(q;q)n
. The

following interpretation for An(t, r, q) was given [23,25]:

An(t, r, q) :=
∑
π∈Sn

texcπrfixπq(maj−exc)π. (1.3)

These polynomials have attracted the attention of several authors (cf. [10–13, 16–18, 20,
24,26]).

Let An(t, q) = An(t, 1, q). Define the q-Eulerian numbers An,k(q) and the fixed point

q-Eulerian numbers A
(j)
n,k(q):

An(t, q) =
∑
k

An,k(q)t
k and An(t, r, q) =

∑
j,k

A
(j)
n,k(q)r

jtk.

By (1.3), we have the following interpretations

An,k(q) =
∑
π∈Sn

excπ=k

q(maj−exc)π and A
(j)
n,k(q) =

∑
π∈Sn

excπ=k
fixπ=j

q(maj−exc)π. (1.4)

Recall that the q-binomial coefficients
[
n
k

]
q

are defined by
[
n
k

]
q

:= (q;q)n
(q;q)n−k(q;q)k

for 0 6 k 6

n, and
[
n
k

]
q

= 0 if k < 0 or k > n.

Answering a question of Chung et al. [6], Han et al. [16] found and proved the following
symmetrical q-Eulerian identity:∑

k>1

[
a+ b

k

]
q

Ak,a−1(q) =
∑
k>1

[
a+ b

k

]
q

Ak,b−1(q), (1.5)
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where a, b are integers with a, b > 1. Besides a generating function proof using (1.2), a
bijective proof of (1.5) was also given in [16]. Recently, through analytical arguments,
Chung and Graham [5] derived from (1.2) the following two further symmetrical q-Eulerian
identities: ∑

k>1

(−1)k
[
a+ b

k

]
q

q(
a+b−k

2 )Ak,a(q) =
∑
k>1

(−1)k
[
a+ b

k

]
q

q(
a+b−k

2 )Ak,b(q), (1.6)

∑
k>1

[
a+ b+ j + 1

k

]
q

A
(j)
k,a(q) =

∑
k>1

[
a+ b+ j + 1

k

]
q

A
(j)
k,b(q), (1.7)

where a, b, j are integers with a, b > 1 and j > 0, and asked for bijective proofs. Our
first aim is to provide such proofs using another interpretation of An(t, r, q) introduced
by Foata and Han [11], which was already shown to be successful in the bijective proof
of (1.5) in [16].

Next, for 1 6 j 6 n, we shall define the restricted q-Eulerian polynomial B
(j)
n (t, q) by

the exponential generating function:∑
n>j

B(j)
n (t, q)

zn−1

(q; q)n−1

=

(
Aj−1(t, q)(qz)j−1

(q; q)j−1

)
e(tz; q)− te(tz; q)

e(tz; q)− te(z; q)
. (1.8)

and the restricted q-Eulerian number B
(j)
n,k(q) by B

(j)
n (t, q) =

∑
k B

(j)
n,k(q)t

k. We find the
following generalized symmetrical identity for the restricted q-Eulerian polynomials.

Theorem 1. Let a, b, j be integers with a, b > 1 and j > 2. Then∑
k>1

[
a+ b+ 1

k − 1

]
q

B
(j)
k,a(q) =

∑
k>1

[
a+ b+ 1

k − 1

]
q

B
(j)
k,b(q). (1.9)

When q = 1, the above identity was proved by Chung and Graham [5], who also asked
for a bijective proof. We shall give a bijective proof and an analytical proof of (1.9), the
latter leads to a new recurrence formula for An(t, r, q).

Theorem 2. The (q, r)-Eulerian polynomials satisfy the following recurrence formula:

An+1(t, r, q) = rAn(t, r, q) + tAn(t, q) + t

n−1∑
j=1

[
n

j

]
q

qjAj(t, r, q)An−j(t, q) (1.10)

for n > 1 and A1(t, r, q) = r.

This paper is organized as follows. In section 2, we review some preliminaries about
the three-variable statistic (inv, pix, lec) and give the bijective proofs of (1.6) and (1.7).
In section 3, we first prove Theorem 2 and then define a new statistic called “rix”, which
together with descents and admissible inversions (a statistic on permutations which ap-
pears in the context of poset topology [23]) gives another interpretation of An(t, r, q). In

section 4, we give two combinatorial interpretations of B
(j)
n,k(q) and two proofs of Theo-

rem 1.
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2 Bijective proofs of (1.6) and (1.7)

2.1 Preliminaries

A word w = w1w2 . . . wm on N is called a hook if w1 > w2 and either m = 2, or m > 3 and
w2 < w3 < . . . < wm. As shown in [14], each permutation π = π1π2 . . . πn admits a unique
factorization, called its hook factorization, pτ1τ2 · · · τr, where p is an increasing word and
each factor τ1, τ2, . . . , τk is a hook. To derive the hook factorization of a permutation,
one can start from the right and factor out each hook step by step. Denote by inv(w) the
numbers of inversions of a word w = w1w2 . . . wm, i.e., the number of pairs (wi, wj) such
that i < j and wi > wj. Then we define

lec(π) :=
∑

16i6k

inv(τi) and pix(π) = |p| := length of the factor p.

For example, the hook factorization of π = 1 3 4 14 12 2 5 11 15 8 6 7 13 9 10 is

1 3 4 14 | 12 2 5 11 15 | 8 6 7 | 13 9 10.

Hence p = 1 3 4 14, τ1 = 12 2 5 11 15, τ2 = 8 6 7, τ3 = 13 9 10, pix(π) = 4 and

lec(π) = inv(12 2 5 11 15) + inv(8 6 7) + inv(13 9 10) = 7.

Let A0,A1, . . . ,Ar be a series of sets on N. Denote by inv(A0,A1, . . . ,Ar) the number
of pairs (k, l) such that k ∈ Ai, l ∈ Aj, k > l and i < j. We usually write cont(A) the set
of all letters in a word A. So we have (inv− lec)π = inv(cont(p), cont(τ1), . . . , cont(τr)) if
pτ1τ2 · · · τr is the hook factorization of π.

From Foata and Han [11, Theorem 1.4], we derive the following combinatorial inter-
pretations of the (q, r)-Eulerian polynomials

An(t, r, q) =
∑
π∈Sn

tlecπrpixπq(inv−lec)π. (2.1)

Therefore
An,k(q) =

∑
π∈Sn
lecπ=k

q(inv−lec)π and A
(j)
n,k(q) =

∑
π∈Sn
lecπ=k
pixπ=j

q(inv−lec)π. (2.2)

It is known [27, Proposition 1.3.17] that the q-binomial coefficient has the interpretation[
n

k

]
q

=
∑
(A,B)

qinv(A,B), (2.3)

where the sum is over all ordered partitions (A,B) of [n] such that |A| = k. We will give
bijective proofs of (1.6) and (1.7) using the interpretations in (2.2) and (2.3).
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Remark 1. In [11], a bijection on Sn that carries the triplet (fix, exc,maj) to (pix, lec, inv)
was constructed without being specified. This bijection consists of two steps. The first
step (see [11, section 6]) uses the word analogue of Kim-Zeng’s decomposition [19] and an
updated version of Gessel-Reutenauer standardization [15] to construct a bijection on Sn

that transforms the triplet (fix, exc,maj) to (pix, lec, imaj), where imaj(π) := maj(π−1) for
each permutation π. The second step (see [11, section 7]) uses Foata’s second fundamental
transformation [8] to carry the triplet (pix, lec, imaj) to (pix, lec, inv). In view of this
bijection, one can construct bijective proofs of (1.5), (1.6) and (1.7) using the original
interpretations in (1.4), through the bijective proof of (1.5) in [16] and our bijective
proofs.

To construct our bijective proofs, we need two elementary transformations from [16]
that we recall now. Let τ be a hook with inv(τ) = k and cont(τ) = {x1, . . . , xm}, where
x1 < . . . < xm. Define

d(τ) = xm−k+1x1 . . . xm−kxm−k+2 . . . xm. (2.4)

Clearly, d(τ) is the unique hook with cont(d(τ)) = cont(τ) and satisfying

inv(d(τ)) = m− k = |cont(τ)| − inv(τ).

Let τ be a hook or an increasing word with inv(τ) = k and cont(τ) = {x1, . . . , xm}, where
x1 < . . . < xm. Define

d′(τ) = xm−kx1 . . . xm−k−1xm−k+1 . . . xm. (2.5)

It is not difficult to see that, d′(τ) is the unique hook (when k < m − 1) or increasing
word (when k = m− 1) with cont(d(τ)) = cont(τ) and satisfying

inv(d(τ)) = m− k − 1 = |cont(τ)| − 1− inv(τ).

2.2 Bijective proof of (1.6)

Let Sn(k) = {π ∈ Sn : pix(π) = k} and Dn = Sn(0). We first notice that the left-hand
side of (1.6) has the following interpretation:∑

π∈Dn
lecπ=a

q(inv−lec)π =
∑
k>1

(−1)n−k
[
n

k

]
q

q(
n−k

2 )Ak,a(q). (2.6)
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This interpretation follows immediately from [25, Corollary 4.4] and (2.1). One can also
give a direct combinatorial proof similarly as in [29]. Actually, by (2.2) and (2.3) we have

An,a(q) =
∑
π∈Sn
lecπ=a

q(inv−lec)π

=
∑
k

∑
π∈Sn(k)
lecπ=a

qinv(cont(p),cont(τ1...τr))+inv(cont(τ1),cont(τ2),...,cont(τr))

=
∑
k

∑
A⊆[n]
|A|=k

qinv(A,[n]\A)
∑

π∈Dn−k
lecπ=a

q(inv−lec)π

=
∑
k

[
n

k

]
q

∑
π∈Dk
lecπ=a

q(inv−lec)π.

Applying Gaussian inversion (or q-binomial inversion) to the above identity gives (2.6).
Now, by (2.6), the symmetrical identity (1.6) is equivalent to the j = 0 case of the

following Lemma.

Lemma 3. For 0 6 j 6 n, there is an involution v 7→ u on Sn(j) satisfying

lec(u) = n− j − lec(v) and (inv− lec)u = (inv− lec)v.

Proof. Let v = pτ1τ2 . . . τr be the hook factorization of v ∈ Sn(j), where p is an increasing
word and each factor τ1, τ2, . . . , τr is a hook. We define u = pd(τ1) . . . d(τr), where d is
defined in (2.4). It is easy to check that this mapping is an involution on Sn(j) with the
desired properties.

By (2.2), Lemma 3 gives a simple bijective proof of the following known [5, 25] sym-
metric property of the fixed point q-Eulerian numbers.

Corollary 4. For n, k, j > 0,

A
(j)
n,k(q) = A

(j)
n,n−j−k(q). (2.7)

2.3 Bijective proof of (1.7)

Recall [16] that, for a fixed positive integer n, a two-pix-permutation of [n] is a sequence
of words

v = (p1, τ1, τ2, . . . , τr−1, τr, p2) (2.8)

satisfying the following conditions:

(C1) p1 and p2 are two increasing words, possibly empty;

(C2) τ1, . . . , τr are hooks for some positive integer r;

(C3) The concatenation p1τ1τ2 . . . τr−1τrp2 of all components of v is a permutation of [n].
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We also extend the two statistics to the two-pix-permutations by

lec(v) =
∑

16i6r

inv(τi) and inv(v) = inv(p1τ1τ2 . . . τr−1τrp2).

It follows that

(inv− lec)v = inv(cont(p1), cont(τ1), cont(τ2), . . . , cont(τr), cont(p2)). (2.9)

Let Wn(j) denote the set of all two-pix-permutations with |p1| = j.

Lemma 5. Let a, j be fixed nonnegative integers. Then∑
v∈Wn(j)
lecv=a

q(inv−lec)v =
∑
k>1

[
n

k

]
q

A
(j)
k,a(q). (2.10)

Proof. By the hook factorization, the two-pix-permutation in (2.8) is in bijection with
the pair (σ, p2), where σ = p1τ1τ2 . . . τr−1τr is a permutation on [n] \ cont(p2) and p2 is an
increasing word. Thus, by (2.2), (2.3) and (2.9), the generating function of all two-pix-
permutations v of [n] with |p1| = j such that lec(v) = a and |p2| = n− k with respect to

the weight q(inv−lec)v is
[
n

n−k

]
q
A

(j)
k,a(q).

Lemma 6. Let j be a fixed nonnegative integer. Then there is an involution v 7→ u on
Wn(j) satisfying

lec(v) = n− j − 1− lec(u), and (inv− lec)v = (inv− lec)u.

Proof. We give an explicit construction of the bijection using the involutions d and d′

defined in (2.4) and (2.5).
Let v = (p1, τ1, τ2, . . . , τr−1, τr, p2) be a two-pix-permutation of [n] with |p1| = j. If

p2 6= ∅, then
u = (p1, d(τ1), d(τ2), . . . , d(τr−1), d(τr), d

′(p2)),

otherwise,
u = (p1, d(τ1), d(τ2), . . . , d(τr−1), d′(τr)).

As d and d′ are involutions, this mapping is an involution on Wn(j).
Since we have lec(d(τi)) = |cont(τi)|−lec(τi) for 1 6 i 6 r and lec(d′(p2)) = |cont(p2)|−

1 in the case p2 6= ∅, it follows that lec(u) =
∑r

i=1 |cont(τi)| + |cont(p2)| − 1 − lec(v) =
n− j − 1− lec(v). The above identity is also valid when p2 = ∅.

Finally it follows from (2.9) that (inv − lec)u = (inv − lec)v. This finishes the proof
of the lemma.

Combining Lemmas 5 and 6 we obtain a bijective proof of (1.7).
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3 A new recurrence formula for the (q, r)-Eulerian

polynomials

The Eulerian differential operator δx used below is defined by

δx(f(x)) :=
f(x)− f(qx)

x
,

for any f(x) ∈ Q[q][[x]] in the ring of formal power series in x over Q[q] (instead of
the traditional (f(x) − f(qx))/((1 − q)x), see [1, 4]). We need the following elementary
properties of δx.

Lemma 7. For any f(x), g(x) ∈ Q[q][[x]],

δx(f(x)g(x)) = f(qx)δ(g(x)) + δ(f(x))g(x)

and

δx

(
1

f(x)

)
=
−δx(f(x))

f(qx)f(x)
(f(x) 6= 0).

Proof of Theorem 2. It is not difficult to show that, for any variable a

δz(e(az; q)) = ae(az; q).

Now, applying δz to both sides of (1.2) and using the above property and Lemma 7, we
obtain∑

n>0

An+1(t, r, q)
zn

(q; q)n

= δz

(
(1− t)e(rz; q)

e(tz; q)− te(z; q)

)
= δz((1− t)e(rz; q))(e(tz; q)− te(z; q))−1 + δz

(
(e(tz; q)− te(z; q))−1

)
(1− t)e(rzq; q)

=
r(1− t)e(rz; q)

e(tz; q)− te(z; q)
+

(1− t)e(rzq; q)(te(z; q)− te(tz; q))

(e(tqz; q)− te(qz; q))(e(tz; q)− te(z; q))

= r
∑
n>0

An(t, r, q)
zn

(q; q)n
+ t

(∑
n>0

An(t, r, q)
(qz)n

(q; q)n

)(∑
n>1

An(t, q)
zn

(q; q)n

)
.

Taking the coefficient of zn

(q;q)n
in both sides of the above equality, we get (1.10).

Remark 2. A different recurrence formula for An(t, r, q) was obtained in [25, Corol-
lary 4.3]. Eq. (1.10) is similar to two recurrence formulas in the literature: one for the
(inv, des)-q-Eulerian polynomials in [21, Corollary 2.22] (see also [4]) and the other one
for the (maj, des)-q-Eulerian polynomials in [21, Corollary 3.6].
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We shall give another interpretation of An(t, r, q) in the following.
Let π ∈ Sn. Recall that an inversion of π is a pair (π(i), π(j)) such that 1 6 i < j 6 n

and π(i) > π(j). An admissible inversion of π is an inversion (π(i), π(j)) that satisfies
either

• 1 < i and π(i− 1) < π(i) or

• there is some l such that i < l < j and π(i) < π(l).

We write ai(π) the number of admissible inversions of π. Define the statistic aid(π) :=
ai(π) + des(π). For example, if π = 42153 then there are 5 inversions, but only (4, 3)
and (5, 3) are admissible. So inv(π) = 5, ai(π) = 2 and aid(π) = 2 + 3 = 5. The
statistics ai and aid were first studied by Shareshian and Wachs [23] in the context of
Poset Topology. Here we follow the definitions in [20]. The curious result that the pairs
(aid, des) and (maj, exc) are equidistributed on Sn was proved in [20] using techniques
from poset topology.

LetW be the set of all the words on N. We define a new statistic, denoted by “rix”, on
W recursively. Let W = w1w2 · · ·wn be a word in W and wi be the rightmost maximum
element of W . We define rix(W ) by (with convention that rix(∅) = 0)

rix(W ) :=


0, if i = 1 6= n,

1 + rix(w1 · · ·wn−1), if i = n,

rix(wi+1wi+2 · · ·wn), if 1 < i < n.

For example, we have rix(1 5 2 4 3 3 5) = 1+rix(1 5 2 4 3 3) = 1+rix(2 4 3 3) = 1+rix(3 3) =
2 + rix(3) = 3. As every permutation can be viewed as a word on N, this statistic is well-
defined on permutations.

We write S
(j)
n the set of permutations π ∈ Sn with π(j) = n. For n > 1 and 1 6 j 6 n,

we define Bn(t, r, q) :=
∑

π∈Sn t
desπrrixπqaiπ and its restricted version by

B(j)
n (t, r, q) :=

∑
π∈S(j)

n

tdesπrrixπqaiπ. (3.1)

We should note here that the restricted q-Eulerian polynomial B
(j)
n (t, q) is not equal to

B
(j)
n (t, 1, q) but some modification of it, as will be shown in the next section.

Theorem 8. We have the following interpretation for (q, r)-Eulerian polynomials:

An(t, r, q) =
∑
π∈Sn

tdesπrrixπqaiπ. (3.2)

Proof. We will show that Bn(t, r, q) satisfies the same recurrence formula and initial con-
dition as An(t, r, q). For n > 1, it is clear from the definition of Bn(t, r, q) that

Bn+1(t, r, q) =
∑

16j6n+1

B
(j)
n+1(t, r, q). (3.3)
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It is easy to see that

B
(1)
n+1(t, r, q) = tBn(t, 1, q) and B

(n+1)
n+1 (t, r, q) = rBn(t, r, q). (3.4)

We then consider B
(j)
n+1(t, r, q) for the case of 1 < j < n+ 1.

For a set X, we denote by
(
X
m

)
the m-element subsets of X and SX the set of per-

mutations of X. Let W(n, j) be the set of all triples (W,π1, π2) such that W ∈
(

[n]
j

)
and

π1 ∈ SW , π2 ∈ S[n]\W . It is not difficult to see that the mapping π 7→ (W,π1, π2) defined
by

• W = {π(i) : 1 6 i 6 j − 1},

• π1 = π(1)π(2) · · · π(j − 1) and π2 = π(j + 1)π(j + 2) · · · π(n)

is a bijection between S
(j)
n and W(n− 1, j − 1) and satisfies

des(π) = des(π1) + des(π2) + 1, rix(π) = rix(π2)

and
ai(π) = ai(π1) + ai(π2) + inv(W, [n− 1] \W ) + n− j.

Thus, for 1 < j < n+ 1, we have

B
(j)
n+1(t, r, q) =

∑
π∈S(j)

n+1

tdesπrrixπqaiπ

= tqn+1−j
∑

(W,π1,π2)∈W(n,j−1)

qinv(W,[n]\W )qai(π1)tdes(π1)rrix(π2)qai(π2)tdes(π2)

= tqn+1−j
∑

W∈( [n]
j−1)

qinv(W,[n]\W )
∑
π∈SW

qai(π1)tdes(π1)
∑

π2∈S[n]\W

rrix(π2)qai(π2)tdes(π2)

= tqn+1−j
[

n

j − 1

]
q

Bj−1(t, 1, q)Bn+1−j(t, r, q), (3.5)

where we apply (2.3) to the last equality. Substituting (3.4) and (3.5) into (3.3) we obtain

Bn+1(t, r, q) = rBn(t, r, q) + tBn(t, 1, q) + t
n−1∑
j=1

[
n

j

]
q

qjBj(t, r, q)Bn−j(t, 1, q).

By Theorem 2, Bn(t, r, q) and An(t, r, q) satisfy the same recurrence formula and initial
condition, thus Bn(t, r, q) = An(t, r, q). This finishes the proof of the theorem.

Corollary 9. The three triplets (rix, des, aid), (fix, exc,maj) and (pix, lec, inv) are equidis-
tributed on Sn.

Remark 3. At the Permutation Patterns 2012 conference, Alexander Burstein [2] gave a
direct bijection on Sn that transforms the triple (rix, des, aid) to (pix, lec, inv). The new
statistic “rix” was introduced independently therein under the name “aix”. Actually, the
definitions of both are slightly different, but they are the same up to an easy transforma-
tion. It would be very interesting to find a similar bijective proof of the equidistribution
of (rix, des, aid) and (fix, exc,maj). See also Remark 1.
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4 A symmetrical identity for restricted q-Eulerian

polynomials

4.1 An interpretation of B
(j)
n,k(q) and a proof of Theorem 1

It follows from (1.2) and (1.8) that B
(1)
1,0(q) = 1 and B

(1)
n,k(q) = An−1,k−1(q) for k > 1. For

j > 2, we have the following interpretation for B
(j)
n,k(q).

Lemma 10. For 2 6 j 6 n, B
(j)
n,k(q) =

∑
π∈S(j)

n
des(π)=k

qai(π)+2j−n−1.

Proof. When j > 2, by the recurrence relation (3.5), one can compute without difficulty

that the exponential generating function
∑

n>j q
2j−n−1B

(j)
n (t, 1, q) zn−1

(q;q)n−1
is exactly the

right side of (1.8) using (1.2) and (3.2), which would finish the proof of the lemma.

Originally, the restricted Eulerian number B
(j)
n,k in [5] was defined to be the number

of permutations π ∈ Sn with des(π) = k and π(j) = n. According to the above lemma,

B
(j)
n,k(q) is really a q-analogue of B

(j)
n,k. This justifies the names restricted q-Eulerian number

and restricted q-Eulerian polynomials.

Lemma 11. For 1 < j < n, we have

B
(j)
n,k(q) = B

(j)
n,n−1−k(q).

Proof. We first construct an involution f : π 7→ π′ on Sn satisfying

ai(π) = ai(π′) and des(π) = n− 1− des(π′). (4.1)

For n = 1, define f(id) = id. For n > 2, suppose that π = π1 · · · πn is a permutation of
{π1, · · · , πn} and πj is the maximum element in {π1, · · · , πn}. We construct f recursively
as follows

f(π) =


f(π2π3 · · · πn) π1, if j = 1,

πn f(π1π2 · · · πn−1), if j = n,

f(π1π2 · · · πj−1) πj f(πj+1πj+2 · · · πn), otherwise.

For example, if π = 3 2 5 7 6 4 1, then

f(π) = f(3 2 5) 7 f(6 4 1) = 5 f(3 2)7 f(4 1) 6 = 5 2 3 7 1 4 6.

Clearly, ai(π) = 7 = ai(π′) and des(π) = 4 = 7− 1− des(π′). It is not difficult to see that
f is an involution. We can show that f satisfies (4.1) by induction on n, which is routine
and left to the reader.

For each π = π1 · · · πj−1 nπj+1 · · · πn in S
(j)
n , we then define

g(π) = f(π1 · · · πj−1)n f(πj+1 · · · πn).

As f is an involution, g is an involution on S
(j)
n . It follows from (4.1) that ai(g(π)) = ai(π)

and des(π) = n− 1− des(g(π)), which completes the proof in view of Lemma 10.
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Remark 4. A bijective proof of Lemma 11 when q = 1 was given in [5]. But their
bijection does not preserve the admissible inversions. Supposing that π = π1 · · · πn is a
permutation of {π1, · · · , πn} and πj is the maximum element in {π1, · · · , πn}, we modify
f defined above to f ′ as follows:

f ′(π) =


f ′(π2π3 · · · πn) π1, if j = 1,

π, if j = n,

f ′(π1π2 · · · πj−1) πj f
′(πj+1πj+2 · · · πn), otherwise.

The reader is invited to check that f ′ would provide another bijective proof of Corollary 4
using (des, rix, ai).

Now we are in position to give a generating function proof of Theorem 1.

Proof of Theorem 1. We start with the generating function given in (1.8). Multiplying
both sides by e(tz; q)− te(z; q), we obtain∑

n,k

B
(j)
n,k(q)t

k zn−1

(q; q)n−1

(e(tz; q)− te(z; q)) =
(qz)j−1Aj−1(t, q)

(q; q)j−1

(e(tz; q)− te(tz; q)).

Expanding the exponential functions, we have∑
n,k,i

B
(j)
n,k(q)

tk+izn+i−1

(q; q)i(q; q)n−1

−
∑
n,k,i

B
(j)
n,k(q)

tk+1zn+i−1

(q; q)i(q; q)n−1

=
(qz)j−1Aj−1(t, q)

(q; q)j−1

∑
n>0

(1− t)tnzn

(q; q)n
.

Identifying the coefficient of tlzm−1 gives

∑
k

B
(j)
m+k−l,k(q)

(q; q)l−k(q; q)m+k−l−1

−
∑
i

B
(j)
m−i,l−1(q)

(q; q)i(q; q)m−i−1

=
qj−1 (Aj−1,l+j−m(q)− Aj−1,l+j−m−1(q))

(q; q)j−1(q; q)m−j
.

Multiplying both sides by (q; q)m−1, we get∑
k

B
(j)
m+k−l,k(q)

[
m− 1

l − k

]
q

−
∑
i

B
(j)
m−i,l−1(q)

[
m− 1

i

]
q

= (Aj−1,l+j−m(q)− Aj−1,l+j−m−1(q))qj−1

[
m− 1

j − 1

]
q

.
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Changing the variables of the two summations on the left side gives∑
k

B
(j)
k,k+l−m(q)

[
m− 1

k − 1

]
q

−
∑
k

B
(j)
k,l−1(q)

[
m− 1

k − 1

]
q

= (Aj−1,l+j−m(q)− Aj−1,l+j−m−1(q))qj−1

[
m− 1

j − 1

]
q

. (4.2)

We apply the symmetric property in Lemma 11 to the first summation on the left side
of (4.2) and we have∑

k

B
(j)
k,k+l−m(q)

[
m− 1

k − 1

]
q

= B
(j)
j,j+l−m(q)

[
m− 1

j − 1

]
q

+
∑
k 6=j

B
(j)
k,m−1−l(q)

[
m− 1

k − 1

]
q

. (4.3)

It follows from Lemma 10 and Theorem 8 that

B
(n)
n,k(q) =

∑
π∈S(n)

n
des(π)=k

qai(π)+n−1 = qn−1An−1,k(q).

Using the symmetric property of An,k(q), that is An,k(q) = An,n−1−k(q), and the above
property, the right side of (4.2) can be treated as follows:

(Aj−1,l+j−m(q)− Aj−1,l+j−m−1(q))qj−1

[
m− 1

j − 1

]
q

= B
(j)
j,j+l−m(q)

[
m− 1

j − 1

]
q

− Aj−1,m−1−l(q)q
j−1

[
m− 1

j − 1

]
q

= B
(j)
j,j+l−m(q)

[
m− 1

j − 1

]
q

−B(j)
j,m−1−l(q)

[
m− 1

j − 1

]
q

. (4.4)

Now we substitute (4.3), (4.4) into (4.2) and obtain∑
k

B
(j)
k,m−1−l(q)

[
m− 1

k − 1

]
q

=
∑
k

B
(j)
k,l−1(q)

[
m− 1

k − 1

]
q

,

which becomes (1.9) after setting m = a+ b+ 2 and l − 1 = b.

Remark 5. The only case that is left out in Theorem 1 is the case of j = 1. However, as
B

(1)
n,k(q) = An−1,k−1(q), the corresponding symmetrical identity for this case is (1.5).
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4.2 Another interpretation of B
(j)
n,k(q) and a bijective proof of

Theorem 1

Let

S̄(j)
n := {π ∈ Sn : π(j + 1) = 1} for 1 6 j < n and S̄(n)

n := {π′�1 : π′ ∈ S[n]\{1}}.

The “�” in π = π1π2 · · · πn−1�1 ∈ S̄
(n)
n means that the n-th position of π is empty

and the hook factorization of π is defined to be pτ1 · · · τr�1, where pτ1 · · · τr is the hook
factorization of π1 · · · πn−1 and “�1” is viewed as a hook. We also define the statistics

lec(π1π2 · · · πn−1�1) =
r∑
i=1

lec(τi) and inv(π1π2 · · · πn−1�1) = inv(π1π2 · · · πn−11).

For example, S̄
(3)
3 = {32�1, 23�1} with lec(32�1) = 1, lec(23�1) = 0, inv(32�1) = 3,

and inv(23�1) = 2.

Lemma 12. For 1 6 j 6 n, B
(j)
n,k(q) =

∑
π∈S̄(j)

n
lec(π)=k

q(inv−lec)π.

Proof. Let B̄
(j)
n (t, q) :=

∑
π∈S̄(j)

n
q(inv−lec)πtlecπ. We recall that, to derive the hook fac-

torization of a permutation, one can start from the right and factor out each hook step
by step. Therefore, the hook factorization of π = π1 · · · πj−1πj1πj+2 · · · πn in π ∈ S̄

(j)
n

is pτ1 · · · τsτ ′1 · · · τ ′r, where pτ1 · · · τs and τ ′1 · · · τ ′r are hook factorizations of π1 · · · πj−1 and
πj1πj+2 · · · πn, respectively. When n > j, it is not difficult to see that

lec(πj1πj+2 · · · πn) = 1 + lec(πjπj+2 · · · πn)

and
(inv− lec)(πj1πj+2 · · · πn) = (inv− lec)(πjπj+2 · · · πn).

Thus by (2.3), we have

B̄(j)
n (t, q) = Aj−1(t, q)qj−1

[
n− 1

j − 1

]
q

tAn−j(t, q) (4.5)

for n > j. Clearly, B̄
(j)
j (t, q) = Aj−1(t, q)qj−1. So, by (1.2), the exponential generating

function
∑

n>j B̄
(j)
n (t, q) zn−1

(q;q)n−1
is the right side of (1.8). This finishes the proof of the

lemma.

Remark 6. This interpretation can also be deduced directly from the interpretation in
Lemma 10 using Burstein’s bijection [2].

For X ⊂ [n] with |X| = m and 1 ∈ X, we can define S̄
(j)
X for 1 6 j 6 m similarly as

S̄
(j)
m like this:

S̄
(j)
X := {π ∈ SX : π(j + 1) = 1} for 1 6 j < m and S̄

(m)
X := {π′�1 : π′ ∈ SX\{1}}.

For 1 6 j 6 n, we define a j-restricted two-pix-permutation of [n] to be a pair v = (π, p2)
satisfying:
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• p2 (possibly empty) is an increasing word on [n] and

• π ∈ S̄
(j)
X with X = [n] \ cont(p2).

Similarly, we define lec(v) = lec(π) and inv(v) = inv(π) + inv(cont(π), cont(p2)). Let

W(j)
n denote the set of all j-restricted two-pix-permutations of [n].

Lemma 13. Let a, j be positive integers. Then∑
v∈W(j)

n
lecv=a

q(inv−lec)v =
∑
k>1

[
n− 1

k − 1

]
q

B
(j)
k,a(q). (4.6)

Proof. It follows from Lemma 12 and some similar arguments as in the proof of Lemma 5.

Lemma 14. Let 2 6 j 6 n. Then there is an involution v 7→ u on W(j)
n satisfying

lec(v) = n− 2− lec(u), and (inv− lec)v = (inv− lec)u. (4.7)

Proof. Suppose v = (π, p2) ∈ W(j)
n and π = τ0τ1 · · · τr is the hook factorization of π such

that τ0 is a hook or an increasing word and τi (1 6 i 6 r) are hooks. We also assume
that p2 = x1 · · ·xl if p2 is not empty. Note that 1 /∈ cont(τ0) since j 6= 1. We will use the
involutions d and d′ defined in (2.4) and (2.5). There are several cases to be considered:

(i) τr = �1. Then

u =

{
(d′(τ0)d(τ1) · · · d(τr−1)xl1x1x2 · · ·xl−1, ∅), if p2 6= ∅;
(d′(τ0)d(τ1) · · · d(τr−1)�1, ∅), otherwise.

(ii) τr = ys1y1 · · · ys−1. Then

u =


(d′(τ0)d(τ1) · · · d(τr−1)d(τr)d

′(p2), ∅), if p2 6= ∅;
(d′(τ0)d(τ1) · · · d(τr−1)�1, y1 · · · ys), if p2 = ∅ and ys > ys−1;

(d′(τ0)d(τ1) · · · d(τr−1)d′(τr), ∅), otherwise.

(iii) 1 /∈ cont(τr). Then

u =


(d′(τ0)d(τ1) · · · d(τr−1)d(τr)d

′(p2), ∅), if p2 6= ∅;
(d′(τ0)d(τ1) · · · d(τr−1), d′(τr)), if p2 = ∅ and lec(τr) = |τr| − 1;

(d′(τ0)d(τ1) · · · d(τr−1)d′(τr), ∅), otherwise.

First of all, one can check that u ∈ W(j)
n . Secondly, as d, d′ are involutions, the

above mapping is an involution. Finally, this involution satisfies (4.7) in all cases. This
completes the proof of the lemma.

Combining Lemmas 13 and 14 we obtain a bijective proof of Theorem 1.
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