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Abstract

We construct an infinite family of half-transitive graphs, which contains infinitely
many Cayley graphs, and infinitely many non-Cayley graphs.
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1 Introduction

Let I' = (V, E) be a graph with vertex set V' and edge set E. A permutation of V' which
preserves the adjacency of I' is an automorphism of the graph, and all automorphisms
form the automorphism group Autl’. If a subgroup G < Autl’ is transitive on V or E,
then I is called G-vertex-transitive or G-edge-transitive, respectively. An ordered pair of
adjacent vertices is called an arc, and [ is called arc-transitive if Autl’ is transitive on
the set of arcs. An arc-transitive graph is vertex-transitive and edge-transitive, but the
converse statement is not true. A graph which is vertex-transitive and edge-transitive but
not arc-transitive is called half-transitive.

The study of half-transitive graphs was initiated with a question of Tutte [20, p. 60]
regarding their existence, and he proved that a vertex-transitive and edge-transitive graph
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with odd valency must be arc-transitive. Bouwer [4] in 1970 constructed the first family of
half-transitive graphs. Since then, constructing and characterizing half-transitive graphs
has been an active topic in algebraic graph theory, refer to [1, 2, 10, 13, 16, 22] and a
survey [12] for the work during 1990’s, and [14, 16, 17, 18, 19] for more recent work.

In this paper, we present an infinite family of half-transitive graphs. These graphs
were originated from Johnson graphs J(n,i) where i = 1, 2 or 3, the vertex set of which
consists of the i-element subsets of an n-element set such that two vertices are adjacent
when they meet in (i — 1)-elements. It is known that the automorphism group of J(n, 1)
is S, see [9] or [15, Theorem 1].

As usual, we denote by [n] the set {1,2,3,...,n}. Let

Vo ={{{i, 5} k) 14,5,k € [n]}-

For convenience, we simply write the vertex {{i,j},k} as (ij, k). Then (ij, k) = (ji, k),
and a 3-subset {i,j,k} corresponds to exactly three vertices (ij, k), (ik,7) and (jk,7).
Thus, the cardinality is

V| = 3(3) = n(n—1)(n - 2)/2.

Definition 1. For an integer n > 3, let [, be the graph with vertex set V,, such that two
vertices (ij, k) and (i'j', k') € V,, are adjacent if and only if

{27]} = {i/’k/} or {j/’ k/}
and {i,j, k} # {i,vjla k,}‘

The graph I, is regular and has valency 4(n — 3). For example, the vertex (12, 3) has
neighborhood

which has size 4(n — 3).

Let I' = (V, E) be a graph, and let B be a partition of the vertex set V. Then the
quotient graph I's induced on B is the graph with vertex set I3 such that B, B" are adjacent
if and only if there is an edge which lies between B and B’. In this case, I is also said to
be homomorphic to I'g.

A graph I' = (V| E) is called a Cayley graph if there is a group R and a self-inversed
subset S C R such that V = R and u,v € S are adjacent if and only if vu™! € S. Cayley
graphs are vertex-transitive, but a vertex-transitive graph is not necessarily a Cayley
graph. For example, the Petersen graph is the smallest vertex-transitive graph which is
not a Cayley graph. The family of graphs I, contains infinitely many non-Cayley graphs.

Theorem 2. Let I, be a graph defined above. Then the following statements hold:
(i) T, is of order w, valency 4(n — 3), girth 3, and diameter 3;

(ii) I, is homomorphic to K,,, J(n,2) and J(n,3);
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(11i) T'y and I's are arc-transitive, and for n > 6, Autl,, = Sym([n]), and I}, is half-
transitive;

(i) I, is a Cayley graph if and only if n =8, orn = ¢+ 1 with q a prime-power, and
q =3 (mod 4).

2 Edge-transitivity

Let o € Sym([n]). For convenience, we simply denote V,, by V, and denote I3, by I
Then o induces a permutation on the vertex set V. Since G = Sym([n]) is 3-transitive on
[n], G is transitive on V.

Take an edge {(i171, k1), (9272, k2) } of I". Then {iy, j1} = {i2, ka} or {Ja, k2}, and hence
{i9,49} = {49, k3} or {55, kS }. Thus, (i757,k7) and (1559, k3) are adjacent, that is, o maps
edges to edges. Similarly, o maps non-edges to non-edges. So o is an automorphism of
I', and G = Sym([n]) is a vertex-transitive automorphism group of I".

Lemma 3. The graph I' = I, is G-vertex-transitive and G-edge-transitive, but not G-
arc-transitive.

Proof. We consider the edges incident with the vertex a = (12,3). The stabilizer G, =
Sym({1,2}) x Sym({4,5,...,n}) = Sy x S,,_3, and G, acting on the neighborhood I'(«)
has two orbits {(14,2),(2i,1) | ¢ > 3} and {(13,4),(23,i) | ¢ > 3}. Thus, G is not
transitive on the arcs of I'. Further, the element g = (23i) maps (1,2) to (12,3), and
(12,3) to (13,4), so g maps the edge {(14,2),(12,3)} to the edge {(12,3),(13,7)}. Since
I is G-vertex-transitive, we conclude that I" is G-edge-transitive. O

Let H be a subgroup of G, and S be a subset of G. Define the coset graph of G with
respect to H and S to be the directed graph with vertex set [G : H] and such that, for any
Hx, Hy € V, Hx is connected to Hy if and only if yo=! € HSH and denote the digraph
by Cos(G,H, HSH). With the vertex v = (12,3) € V}, and element g = (234) € G, the
graph I' = I, can be described as a coset graph Cos(G,Gq,Go{g,9 '}Gs), which has
vertex set [G : G,] = {G,z | € G} such that G,z and G,y are adjacent if and only if
yr~!' € Go{g,97'}G4. The right multiplication of each element g € G

g: Gur— Guxg, forall x € G

induces an automorphism of I'.

Lemma 4. If an automorphism 7 € Aut(G) normalizes G, and (Go{g,97'}Go)” =
Gof{g,9711G., then T is an automorphism of I

Proof. Since T normalizes G,, it induces a permutation on the vertex set [G : G,
For any two vertices G,z and G,y, we have

Gor ~Goy < yr ' e Gu{g,g7'}G,
= (yr7 ') € (Galg, 97 ' }Ga)"
— Y (27) e Gulg, g7 }G,
<~ (Gax)T = GaxT ~ GayT = (Gay)T'
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Thus, 7 is an automorphism of the graph I'. O]

Lemma 5. Both I'y and I'5s are arc-transitive.

Proof. Let a = (12,3), and g = (234). Consider first the case G = S4. Then G, =
Sym({1,2}), and I = Cos(G, Gy, Gaf{g,9 '}G.). Let T be the inner-automorphism in-
duced by the element (34) € G. Then 7 normalizes G, and g" = g~'. By Lemma 4, 7 is
an automorphism of the graph. Further, for the edge {G,.,G.g}, we have

(Gaa Gag)Tg = (Gaa Gagil)g = (Gag7 Ga)7

and so [ is arc-transitive.

Next, consider the case G = S5. Again let o = (12,3) and g = (234). Then G, =
Sym({1,2}) x Sym({4,5}), and I' = Cos(G, Gy, Gu{g,97'}G,). Let 7 be the inner-
automorphism of G induced by the element (15)(24) € G. Then 7 normalizes G, and
reverses g. Arguing as above shows that I' is arc-transitive. O]

However, we will show that I, for n > 6 are all half-transitive.

3 The parameters

Denote the graph I, simply by I" in the following. For vertices a = (i1j1,k1) and 8 =
(inQ,k’Q), we denote {7:17j17k1} N {ig,jg,kg} by an ﬁ Then |Oé N ﬁ| = 2 if a and ,6 are
adjacent.

Lemma 6. The graph I' = I, is of order w

diameter 3.

, valency 4(n — 3), girth 3, and

Proof. As noticed above, each 3-subset {i,j,k} corresponds to exactly three vertices
(ij,k), (jk,i) and (ik,j). Thus, the order V| of I' equals 3(}) = "("%)("_2) By
the definition of the graph I', the neighborhood of the vertex a = (ij,k) is I'(a) =
{(ik,m), (jk,m), (im, ), (jm,i)|m # i, j,k}. Thus, I' is of valency 4(n — 3). Moreover,
since (jk,m) and (jm,1) are adjacent, I" is of girth 3.

We next compute the distance d(«, 3) between two vertices « and . As I' is a
vertex-transitive graph, we take a = (12,3). We first consider a small case that n = 4.
Then |V| = 12, and the neighborhood I'(«) = {(14,2), (24, 1), (13,4),(23,4)}. For other
vertices except (12,4), we have

({(23,4)}, if 8= (13,2),
{<1374)}7 if 8= (2371)7
{<24>1)}7 if 8= (1473)7
PN TB) =9 f(14,2), (23,4)}, it 8 = (34 1),
{(1472)}7 if = (2473)7
\ {(2471)7(13a4)}7 1fﬂ: (3472>7
and so d(a, ) = 2. For 8 = (12,4), I'(a) N I'(8) = 0. Furthermore, the sequence

a = (12,3), (14,2), (24,3), B = (12,4)
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is a path between o and [ of length 3. Hence, d(«, 5) = 3, and thus, the graph I is of
diameter 3.
Now we treat the cases where n > 5. Take v = (12, 3), and let 5 = (ij, k).

Case 1. Assume first that 4,7, k > 4. If a vertex v = (¢/j/, k') is adjacent to both « and
B, then |y Nal =2 and |y N S| = 2, which is not possible. Thus, d(«, 3) is at least 3. On
the other hand, the sequence

= (12,3), (14,2), (ik, 1), B = (i, k)
is a path between o and (5 of length 3. Hence, d(«, §) = 3.

Case 2. Next, consider the case where |a N | = 1.
Suppose that § = (ij,3), where i, > 4. Then the sequence «, (14,2), (i3,1), B is a
path between o and 3, and hence d(«, 5) < 3. As mentioned above,

I'(a) ={(14,2),(27,1),(13,7),(23,7) | i' > 3},
and similarly,
r'(8) =A{(ij",7), (435", 4), (34, 5"), (34,5") [ " & {3,4, 7} }-

Thus, I'(a) N I'(B) = 0, and so d(«, ) = 3.
Assume now that £ # 3. Then 8 = (14, k), (2i,k), (3i,k), (ij,1) or (ij,2), where

i,7,k > 4. In each of these cases, d(«, f) = 2 because
{(1k,2),(13,4), (23, 1)}, if 8= (1i,k),
{(2k,1),(23,1), (14,2)}, if 8= (2i,k),
I'(e)NT'(B) =4 {(3L,1),(32,4)}, if B = (3, k),
{(14,2),(15,2)}, if 8= (i, 1),
{(227 1) (237 )}7 if 6 - (Zja 2)'

Case 3. We then treat the case where |a N 3] = 2.

Assume that £ = 3. Then g = (14,3) or (2i,3), where ¢ > 4. If § = (1¢,3), then
I'la)NnI(B) ={(13,m),(2i,1) | 4 < m < n,m # i}, and thus d(«, 8) = 2. Similarly, if
B = (2i,3), there exists n — 3 paths of length 2 between « and 3, and so d(«a, §) = 2.

Suppose that k # 3. Then 5 = (12,k), (14,2), (2i,1), (13, k), (23,k), (3i,1), (3i,2),
where i,k > 4. If § = (12, k), then I'(a) N I'(B) = {(1m,2), (2m, 1) | 4 < m < n,m # k},
and so d(a, 3) = 2. For these vertices 5 = (14,2), (2i,1), (13,k), or (23,k), we have
p € I'(a), and thus d(a, f) = 1. If B = (3i,1), I'(a) N I'(B) = {(13,m), (23,1), (17,2)]4 <
m < n,m # i}, and hence d(a, ) = 2. Similarly, if 5 = (3i,2), I'(a) N I'(B) =
{(23,m), (13,14), (2i,1)|4 < m < n,m # i}, and so d(a, §) = 2.

Case 4. Let |anNB] =3. Then 5= (23,1) or (13,2).

For g = (23,1), we have d(a, f) = 2 as (13, m) is adjacent to both a and 3, and thus,
there are exactly n — 3 paths of length 2 between a and 3, where m # 1,2, 3. Similarly,
if B =(13,2), d(a, ) = 2 because there exist exactly n — 3 paths «a, (23,m), 8 of length
2 between « and (3, where m #£ 1,2, 3.

Thus, I' = I, is of diameter 3. O
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4 Quotients

The action of G = Sym([n]) on V,, has three types of blocks as below

By = {(ij,k) | 4,5 € [n]\ {k}}, size ("),

Bij =A{(ij, k) | k € [n]\ {3,5}}, size n —2,

Biji = {(i4, k), (jk, 1), (ki, j)}, size 3.
Let By = BY, By = Bf, and B; = BS,. Then |Bi| = n, |Bo| = (3), and |Bs| = (5).
Lemma 7. If n > 7, then V =V, has exactly three non-trivial G-invariant partitions:
Bl; BQ and 83.

Proof. For the vertex 8 = (23,1), the stabilizer Gy = Sym({2,3}) x Sym([n] \ {1, 2,3}),
and G is contained in G'p,, Gg,, and G'p,,,. Moreover, these three subgroups are maximal
in G and are the only proper subgroups of G which properly contain Gg. Thus, B;, B,
and Bs are the only block systems of G acting on V,. m

By Lemma 7, we have three block systems B; with ¢ = 1, 2 or 3, and we have three
quotient graph I'z,. Clearly, the induced action of G on B; is equivalent to the action of
G on [n]{, where i = 1, 2 or 3. We thus identify B; with [n], By with [n]{#, and B; with
[n]{3}. The quotient graph I's, = K,, = J(n,1). For Is,, two vertices B;; and By are
adjacent if and only if |{i,j} N {¢,j'}| = 1, and so Iz, = J(n,2). For Iz, two vertices
Biji and By are adjacent if and only if {7, 7,k} N {¢, 5, k'}| = 2. Thus, we have the
following lemma.

Lemma 8. The quotient graph I'g, is the Johnson graph J(n,i), where i =1, 2 or 3.

For a quotient graph Iz, let B, B’ € B be adjacent in I'sz. The induced subgraph
[BUB'] of I over BU B’ is the graph with vertex set BU B’ and edge set Ey = {{u,v} €
E |u,v € BUB'}. Then [BU B'] is a bipartite graph with biparts B and B’; denoted by
[B, B']. We next determine the induced subgraph [B, B’| for the quotient graph Is,.

For a graph X = (V| E), the vertex-edge incidence graph is the bipartite graph with
biparts V' and E such that two vertices v € V and w € E are adjacent if and only if v, w
are incident in . This incidence graph is also called the subdivision of .

Lemma 9. Let B, B’ € By be adjacent in I's,. Then the induced subgraph [B, B'| consists
of 2 copies of the subdivision of K, _».

Proof. Since (23,1) € By is adjacent to (34,2) € Bs, the vertices By and B, are adjacent
in the quotient I'z,. The edges of the induced subgraph [Bj, Bs] are

{(20,1), (17,2} |3<i<n, j#0,1,2) U{{(14,2), (i, D} | 3<i<n, j#i,1,2).

which form two copies of the subdivision of K,,_». O
A star K ,, is a bipartite graph with m 4 1 vertices, in which there is one vertex that
is adjacent to all other m vertices. In particular, K; 5 is a path of length 2.
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Lemma 10. Let B, B’ € By be adjacent in I's,. Then the induced subgraph [B, B'] consists
of 2 copies of the star Ky ,,_3.

Proof. Since (12,3) € Bis is adjacent to (23,4) € Bas, the vertices By and Bz are
adjacent in the quotient I'z,. The edges of the induced subgraph [Big, Bas] are {{(12,3),
(23,49)} |1 >4} U{{(23,1),(12,5)} | 7 = 4}, which form two stars K; ,,_s. O

Lemma 11. Let B, B’ € Bs be adjacent in I'g,. Then the induced subgraph B, B'| consists
of 2 paths of length 2.

Proof. For the blocks B = {(12,3),(23,1),(31,2)} and B’ = {(12,4), (24,1), (41,2)}, the
induced subgraph [B, B’] has 4 edges

{(12,3), (14,2)}, {(12,3), (24, 1)}, {(12.4), (13,2)}, {(12,4), (32, 1)}

These edges form two paths of length 2:
(23,1),(12,4),(13,2), and (24,1),(12,3), (14, 2).

Thus, [B, B'] = 2K ». m

5 The automorphism group

In this section, we determine the automorphism group Autl".

Lemma 12. Let n > 7, and let X be a subgroup such that G < X < Autl’. Then X is
almost simple, and if X # G, then X is primitive on V.

Proof. Let M be a minimal normal subgroup of X. Suppose that M is intransitive on V.
Let B be the set of M-orbits on V. Then B is X-invariant and G-invariant. By Lemma 7,
B = B; with i =1, 2 or 3. For B; € B;, we have that Ggi =S,.1, ng =S, 9, and
G5 =S;. Thus, G is primitive, and so is X7,

Let K = X(p), the kernel of X acting on B. Suppose that K # 1. Then 1 # K® <X§,
and so K is transitive as XZ is primitive. Let B’ € B be adjacent in I's to B. Then K
is transitive on B’, and since |B| = |B’|, we conclude that the induced subgraph [B, B’]
is regular, which is a contradiction by Lemmas 9-11. Thus, K = 1, and so M = 1, which
is a contradiction. So M is transitive on V', and X is quasiprimitive on V. Further, M is
non-abelian since |V| = 3(5).

Now let M =17 x Ty X ... x T}, where [ > 1, and T} =T, = ... = T} are non-abelian
simple groups. Then M NG <G, and so MNG =1, A, or S,,.

Suppose that M NG = 1. Let Z = MG = M:G. If Z is imprimitive on V, then a
block system B = By, By or Bs. Hence Z = 78 < GP = S,,, which is not possible. Thus,
Z is primitive on V', and G does not centralize M. By O’Nan-Scott’s theorem (see [7]), we
have that [ > n, and w = |V| = m! or m!~! where m > 5, which is not possible.

Therefore, M NG = A, or S,,, and letting L = soc(G) = A,,, we have L < M. Since L
is non-abelian simple, L is contained in a simple group T;, say T7. Hence, T} is transitive
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on V. If [ > 2, then as T5 centralizes 17, we have that T, is semiregular on V. Then |V/|
divides | 11|, and |T3| = | 11| divides |V|. So T} is regular on V', and since G is transitive on
V', L < T} is semiregular with at most 2 orbits. Since 77 has no subgroup of index 2 and
G/L = Zs, we have that L = T} is regular on V| which is a contradiction. Thus, M = T}
is simple and L < M. Assume that there exists another minimal normal subgroup N of
X such that N # M. Then M NN = 1; however, the above argument with N in the
place of M shows that L < N. So M NN > L, which is a contradiction. Therefore, M is
simple and the unique minimal normal subgroup of X, and hence X is almost simple.

Suppose that X > G and X is imprimitive on V. Let B be a block system for X
on V. Then B is a block system for G on V. By Lemma 7, B = B; where i« = 1, 2 or
3, and by Lemma 8, I's = J(n,7). As noticed in the Introduction, Autl’z = S,, and so
S, 2 G < X = XB < Autl'g =2 S,,, which is not possible. Hence either X = G, or X is
primitive on V| as claimed. [

A transitive permutation group G on {2 is called k-homogeneous if G is transitive on
the set of k-subsets of 2, where k is a positive integer.

Lemma 13. Ifn > 8, then Autl’ = G = Sym([n]).

Proof. Let n > 8. Suppose that G < Autl’. Let L < Autl’ be such that GG is a maximal
subgroup of L. Since G is transitive on V', the almost simple group L has a factorization
L = GL,. Further, since L is primitive on V| the factorization L = G L, is a maximal
factorization. Thus, the triple (L, G, L,) is classified in [11], see the MAIN THEOREM
on page 1. An inspection of the candidates with one factor being G = S,,, we conclude
that one of the following holds:

(i) n < 12, or
(ii) L = Sy41, or
(iii) L =S, or A,,, and G is k-homogenous of degree m, where 1 < k < 5.

Consider the small groups where n < 12. We note that as I" is not a complete group,
L < Sym(V).

Let n = 12 first. Then |V| = w = 660, and L is a primitive group of degree
660. Hence L lies in Appendix B of [7], which shows that soc(L) = PSL(2,659) or
PSL(2,11) x PSL(2,11). So L does not contains S;», which is a contradiction. Similarly,
the cases where n = 8, 9 and 10 are excluded.

Suppose that n = 11. Then |V| =495, and I is of valency 32. By Appendix B of [7],
as Sy < L, we conclude that (L, L,) = (Si2,Sg x Sy4) or (07,(2),2%:04 (2)). The former is
not possible since Sia # S11(Ss X S4), and the latter is not possible since Og (2) does not
have a transitive representation of degree at most 32.

Next, let L = S, 41, with n > 13. Since L = GL,, the stabilizer L, is a transitive
permutation group of degree m + 1 such that |L : L,| = |V| = "("%)("_2) Assume
that L, is primitive of degree n + 1. By Bochert’s theorem (see [21, Theorem 14.2]),
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|L: Lo| > [*£2]!. Computation shows that n < 10, which is a contradiction. Thus, L, is
imprimitive of degree n + 1. Then L, = S;1S,,, where bm = n + 1, and thus,

n(n —1)(n — 2)

|
=
|
=
=
|

which is not possible.

Finally, assume that G = S,, is k-homogenous of degree m, and L = S,, or A,,,
and L, = Sp X S,,_r, where k£ < 5. Since L is not 2-transitive on V', we have k > 2.
Thus, by the classification of 2-homogeneous groups, we conclude that n < 8, which is a
contradiction.

Therefore, Autl” = G = Sym([n]), as claimed. O

6 Proof of Theorem 2

In this section, we prove the main theorem.

By Lemma 6, part (i) of Theorem 2 is true. By Lemma 8, Theorem 2 (ii) holds.

For n =4 or 5, Theorem 2 is proved by Lemma 5. Thus, we next assume n > 6.

For n = 6 or 7, a computation using Gap shows that Autl, = S,, and for n > §,
Lemma 13 shows that Aut/” = G. Then, by Lemma 3, I' is half-transitive, as in part (iii).

Finally, assume that I' is a Cayley graph of a group R. Then R is regular on V
(see [3, Proposition 16.3]), and hence R is 3-homogeneous but not 3-transitive on [n].
Further, as |R| = [V| = 3(3), R is not sharply 3-homogencous on [n]. Inspecting 3-
homogeneous groups which are not 3-transitive, refer to [7, Theorem 9.4B], we conclude
that R = AT'L(1,8) or PSL(2,q) where ¢ = 3 (mod 4). So n = 8 or ¢ + 1, respectively.
This proves part (iv) of Theorem 2. O

Acknowledgements

The authors are grateful to the referee for the valuable comments.

References

[1] B. Alspach, D. Marusi¢, and L. Nowitz. Constructing graphs which are 1/2-transitive.
J. Austral. Math. Soc. Ser. A, 56:391-402, 1994.

[2] B. Alspach and M. Y. Xu. 1/2-transitive graphs of order 3p. J. Algebraic Combin.,
3:347-355, 1994.

[3] N. Biggs. Algebraic Graph Theory. Cambridge University Press, New York, 1992.

[4] 1. Z. Bouwer. Vertex and edge-transitive but not 1-transitive graphs. Canad. Math.
Bull., 13:231-237, 1970.

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(1) (2013), #P56 9



[5]

A. E. Brouwer, A. M. Cohen and A. Neumaier. Distance-Regular Graphs. Ergeb.
Math. Grenzgeb. (Results in Mathematics and Related Areas (3)), vol. 18, Springer-
Verlag, Berlin, 1989.

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of
Finite Groups. Oxford Univ. Press, London/New York, 1985.

J. D. Dixon and B. Mortimer. Permutation Groups. Springer, 1991.

Y. Q. Feng, K. S. Wang and C. X. Zhou. Tetravalent half-transitive graphs of order
4dp. Europ. J. Combin., 28:726-733, 2007.

G. A. Jones. Automorphisms and regular embeddings of merged Johnson graphs.
FEuropean J. Combin., 26(3-4):417-435, 2005.

C. H. Li and H. S. Sim. On half-transitive metacirculant graphs of prime-power
order. J. Combin. Theory Ser. B, 81:45-57, 2001.

M. Liebeck, C. E. Praeger and J. Saxl. The maximal factorizations of the finite
simple groups and their automorphism groups. Mem. Amer. Math. Soc., 86(432),
1990.

D. Marusic. Recent developments in half-transitive graphs. Discrete Math., 182:219-
231, 1998.

D. Marusi¢ and C. E. Praeger. Tetravalent graphs admitting half-transitive groups
actions: alternating cycles. J. Combin. Theory Ser. B, 75:185-205, 1999.

D. Marusi¢ and P. Sparl. On quartic half-arc-transitive metacirculants. J. Algebraic
Combin., 28:365-395, 2008.

Mark Ramras and Elizabeth Donovan. The Automorphism Group of a Johnson
Graph. Siam J. Discrete Math., 25:267-270, 2011.

M. Sajna. Half-transitivity of some metacirculants. Discrete Math., 185:117-136,
1998.

Shu-Jiao Song, C. H. Li, and Dian-Jun Wang. Classifying a family of edge-transitive
metacirculant graphs. J. Algebraic Combin., 35:497-513, 2012.

Primoz Sparl. A classification of tightly attached half-arc-transitive graphs of valency
4. J. Combin. Theory Ser. B, 98, 2008.

Primoz Sparl. Almost all quartic half-arc-transitive weak metacirculants of Class II
are of Class IV. Discrete Math., 310:1737-1742, 2010.

W. T. Tutte. Connectivity in Graphs. University of Toronto Press, Toronto, 1966.
H. Wielandt. Finite Permutations Groups. Academic Press Inc, 1964.

M. Y. Xu. Half-transitive graphs of prime-cube order. J. Algebraic Combin., 1:275-
282, 1992.

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(1) (2013), #P56 10



	Introduction
	Edge-transitivity
	The parameters
	Quotients
	The automorphism group
	Proof of Theorem 2

