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Abstract

We say that a graph G has a perfect H-packing if there exists a set of vertex-
disjoint copies of H which cover all the vertices in G. We consider various problems
concerning perfect H-packings: Given n,r, D € N, we characterise the edge density
threshold that ensures a perfect K,-packing in any graph G on n vertices and
with minimum degree 6(G) > D. We also give two conjectures concerning degree
sequence conditions which force a graph to contain a perfect H-packing. Other
related embedding problems are also considered. Indeed, we give a structural result
concerning K,-free graphs that satisfy a certain degree sequence condition.

1 Introduction

Given two graphs H and G, a perfect H-packing in G is a collection of vertex-disjoint
copies of H which cover all the vertices in G. Perfect H-packings are also referred to as
H-factors or perfect H-tilings. Hell and Kirkpatrick [8] showed that the decision problem
whether a graph G has a perfect H-packing is NP-complete precisely when H has a
component consisting of at least 3 vertices. So for such graphs H, it is unlikely that there
is a complete characterisation of those graphs containing a perfect H-packing. Thus, there
has been significant attention on obtaining sufficient conditions that ensure a graph G
contains a perfect H-packing.

A seminal result in the area is the Hajnal-Szemerédi theorem [7] which states that a
graph G whose order n is divisible by r has a perfect K,-packing provided that §(G) >
(r — 1)n/r. Kihn and Osthus [12, 13] characterised, up to an additive constant, the
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minimum degree which ensures a graph G contains a perfect H-packing for an arbitrary
graph H.

It is easy to see that the minimum degree condition in the Hajnal-Szemerédi theorem
cannot be lowered. Of course, this does not mean that one cannot strengthen this result.
Ore-type degree conditions consider the sum of the degrees of non-adjacent vertices in a
graph. The following Ore-type result of Kierstead and Kostochka [10] implies the Hajnal-
Szemerédi theorem.

Theorem 1 (Kierstead and Kostochka [10]). Let n,r € N such that r divides n. Suppose
that G is a graph on n vertices such that for all non-adjacent x # y € V(G),

dz)+d(y) > 2(1 —1/r)n — 1.
Then G contains a perfect K,.-packing.

Kiihn, Osthus and Treglown [14] characterised, asymptotically, the Ore-type degree
condition which ensures a graph G contains a perfect H-packing for an arbitrary graph
H.

1.1 Perfect packings in dense graphs of low minimum degree

It is easy to characterise the edge density that forces a graph G to contain a perfect
K,-packing when there are no other restrictions. Indeed, given n,r € N such that r > 2
divides n, if G is a graph on n vertices and e(G) > () — n+r then G contains a perfect
K,-packing. Moreover, if G is a copy K of K, 1 together with a vertex which sends
precisely r — 2 edges to K, then e(G) = (") —n—+r—1 and G does not contain a perfect

2
K,-packing. The following result of Akiyama and Frankl [1] refines this observation.

Theorem 2 (Akiyama and Frankl [1]). Let n,r € N such that r divides n. Suppose G is a
graph on n vertices and e(G) < min{ ("/gﬂ),n —r+1}. Then G has a perfect K,-packing
unless G is isomorphic to one of the following graphs:

(i) A copy of K, )ri1 together with (1 —1/r)n — 1 isolated vertices;

(1) The disjoint union of Ky ,_,_j11, j edges and r — j — 2 isolated vertices, for some
1<j<<r—2.

When (for example) n > r3, (”/ g“) > n —r + 1. Hence, in this case Theorem 2 is
equivalent to the following: If G is a graph on n vertices and e(G) > (}) —n+r — 1 then
either G contains a perfect K,-packing or G is isomorphic to a graph as in (ii).

In Sections 2 and 3 we consider the following natural problem: Let n,r € N such that
r divides n. Given some D € N, what edge density condition ensures that any graph G
on n vertices and of minimum degree §(G) > D contains a perfect K,-packing?

We fully resolve the problem, and our answers for r = 2 and r > 3 differ.
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Theorem 3. For an even positive n and integer 1 < d < n/2, let h(n,d) = ("3 ') +

d(d + 1) and let f(2,n,d) denote the mazximum integer ¢ such that some n-vertex graph
with minimum degree at least d and at least ¢ edges has no perfect matching. Then

f(2,n,d) = max{h(n,d), h(n,0.5n — 1)}.

Theorem 4. Let n,r € N such that r > 3 and r divides n. Given any D € N such that
r—1<D<(r—1)n/r—1 define

g(n,r, D) := max{(g) - ("/r; 1),D(n—D) + (”_ 12_ D) +e(T(D, 7 — 2))}.

Suppose that G is a graph on n vertices with 6(G) > D and e(G) > g(n,r,D). Then
G contains a perfect K,-packing. Moreover, there exists a graph G’ on n vertices with
3G") = D and e(G") = g(n,r, D) but such that G' does not contain a perfect K,-packing.

Clearly a graph G of minimum degree §(G) < r — 1 cannot contain a perfect K-
packing. Further, regardless of edge density, every graph G whose order n is divisible by
r and with 6(G) > (r — 1)n/r contains a perfect K,-packing. Thus, Theorem 4 covers all
values of D where our problem was not solved previously.

An equitable k-colouring of a graph G is a proper k-colouring of G such that any two
colour classes differ in size by at most one. Let n,r € N such that r divides n. Notice
that a graph G on n vertices has a perfect K,-packing if and only if the complement G
of G has an equitable n/r-colouring. So, for example, the Hajnal-Szemerédi theorem can
be stated in terms of equitable colourings: Let GG be a graph on n vertices such that r
divides n. If A(G) < n/r — 1 then G has an equitable n/r-colouring.

It is often easier to work in the language of equitable colourings compared to perfect
packings. Indeed, rather than prove Theorem 1 directly, Kierstead and Kostochka proved
the equivalent statement for equitable colourings. Here we also find it more convenient
to work with equitable colourings. Thus, instead of proving Theorem 4 directly we prove
the following equivalent result.

Theorem 5. Let n,r € N such that v > 3 and r divides n. Recall that T'(n,r) denotes
the Turan graph. Given any D € N such that n/r < D < n —r define
n/r+1

f(n,r, D) :zmin{( , >,D—|—e(T(n—D—1,r—2))}.

Suppose that G is a graph on n vertices with A(G) < D and e(G) < f(n,r,D). Then
G has an equitable n/r-colouring. Moreover, there exists a graph G' on n vertices with
A(G") < D and e(G') = f(n,r,D) but such that G' does not have an equitable n/r-
colouring.

We prove Theorem 3 and describe extremal constructions for Theorems 4 and 5 in
Section 2. That is, we show that the edge density condition in Theorem 4 is best possible
for all values of D such that r — 1 < D < (r — 1)n/r — 1. Section 3 contains a proof of
Theorem 5.
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1.2 Degree sequence conditions forcing a perfect packing

Chvatal [3] gave a condition on the degree sequence of a graph which ensures Hamil-
tonicity: Suppose that G is a graph on n vertices and that the degrees of the graph are
d < ...<d,. f n >3andd; 2i+1ord,; >n—iforall i <n/2then G is
Hamiltonian. The following is a simple consequence of Chvatal’s theorem.

Theorem 6 (Chvatal [3]). Suppose that G is a graph on n > 2 vertices and the degrees
of the graph are dy < ... <d,. If

di =i or dy_iyn=2n—i forall 1<i<n/2
then G contains a Hamilton path.

We propose the following conjecture on the degree sequence of a graph which forces a
perfect K,-packing.

Conjecture 7. Letn,r € N such that r divides n. Suppose that G is a graph on n vertices
with degree sequence d; < ... < d, such that:

(a) di = (r—2)n/r+i for alli < n/r;

(B) dnjrs1 = (r—1)n/r.
Then G contains a perfect K,-packing.

Note that Conjecture 7, if true, is much stronger than the Hajnal-Szemerédi theorem
since the degree condition allows for n/r vertices to have degree less than (r — 1)n/r.
Further, Proposition 17 in Section 4 shows that the condition on the degree sequence
in Conjecture 7 is essentially “best possible”. It is easy to see that Theorem 6 implies
Conjecture 7 in the case when » = 2. We prove the conjecture in the case when G is
additionally K, ;-free (see Section 5).

If one can prove Conjecture 7, it seems likely it can be used to prove the next conjec-
ture.

Conjecture 8. Suppose v > 0 and H is a graph with x(H) = r. Then there ezists an
integer ng = no(y, H) such that the following holds. If G is a graph whose order n = ng
is divisible by |H|, and whose degree sequence di < ... < d,, satisfies

o d; > (r—2)n/r+i+~n foralli <n/r,
then G contains a perfect H-packing.

Since first submitting this paper, the third author and Knox [11] have proven Con-
jecture 8 in the case when r = 2. (In fact, they have proven a much more general result
concerning embedding spanning bipartite graphs of small bandwidth.)

The following result of Erdés [6] characterises those degree sequences which force a
copy of K, in a graph G.
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Theorem 9 (Erdés [6]). Let G be a graph on n vertices with degree sequence dy < ... < d,.
If G is K, 1-free then there is an r-partite graph G' on n vertices whose degree sequence
dy < ... < d), satisfies

d; < d. forall i <n.

In Section 6 we prove the following related structural theorem.

Theorem 10. Suppose that n,r € N such that n > r and so that r divides n. Let G
be a K,yi1-free graph on n wvertices whose degree sequence diy < ... < d, is such that
dnjr = (r—1)n/r. Then G C T(n,r), where T'(n,r) is the complete r-partite Turan
graph on n vertices; so each vertex class has size [n/r| or |n/r|.

2 The case r =2 and extremal examples for r > 3

2.1 Perfect matchings in dense graphs

In this section we establish the density threshold that ensures every graph G on an even
number n of vertices and of minimum degree §(G) > d contains a perfect matching. Note
that we only consider values of d such that 1 < d < n/2, since if §(G) > n/2 then G has
a perfect matching, regardless of the edge density.

Recall that h(n,d) := ("7371) +d(d+1). Note that for a fixed even n, h(n, d) decreases
with d in the interval [0,n/3 — 5/6] and increases with d in [n/3 — 5/6,0.5n — 1].

For a positive even n and an integer 0 < d < n/2, let A, B and C' be disjoint sets with
|A|=d+1,|B|=d, |C] =n—-2d—1. Let H= H(n,d) be the graph with the vertex set
AUBUC such that H BUC] = K,,_4_1, and each vertex in A is adjacent to each vertex
in B and to no vertex in C'. So H does not contain a perfect matching and has exactly
h(n,d) edges.

The examples of H(n,d) show that f(2,n,d) > max{h(n,d),h(n,0.5n — 1)}. Thus
to derive Theorem 3, it suffices to prove that an n-vertex graph G with §(G) > d and
e(G) > max{h(n,d), h(n,0.5n — 1)} has a perfect matching.

Consider such a graph G. Let d; < ... < d, denote the degree sequence of G. If d; > ¢
for all 1 <7 < n/2 then Theorem 6 implies that G contains a perfect matching. Suppose
for a contradiction that dy < ¢’ — 1 for some 1 < i’ < n/2. Note that i’ > d as §(G) > d.

Let A denote the set of ¢’ vertices in G that correspond to the first ¢’ terms dy, ..., dy
of the degree sequence. Set B := V(G)\A. Then

e(G[B]) = e(G) —i'(i' = 1) > max{h(n,d), h(n,0.5n — 1)} —i'(/' — 1)

since d(z) < i’ — 1 for all x € A. Note that max{h(n,d), h(n,0.5n — 1)} > h(n,i' — 1)
since d < 7' < n/2. Therefore,

e(G[B)) > max{h(n,d), h(n,0.5n — 1)} —i'(i' = 1) = h(n,i’ — 1) —i'(i' — 1>:<n ; i’))

a contradiction as |B| = n — 4. Thus, d; > i for all 1 <1i < n/2, as desired.
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2.2 Examples for r > 3

We will give the extremal examples for Theorem 5. Since Theorems 4 and 5 are equiva-
lent, the complements of the extremal graphs for Theorem 5 are the extremal graphs for
Theorem 4.

Proposition 11. Suppose that n,r € N such that r > 3 and r divides n. Then there
exists a graph G1 on n vertices such that A(Gy) =n/r,

(G = (n/r2+ 1)’

but such that Gy does not have an equitable n/r-colouring.

Proof. Let GG denote the disjoint union of a clique V' on n/r + 1 vertices and an indepen-
dent set W of (1 — 1/r)n — 1 vertices. So every independent set in (G; contains at most
one vertex from V. But since |V| = n/r+1, G; does not have an equitable n/r-colouring.
Further, A(G1) = n/r and e(Gy) = (”/7;1). O

Proposition 12. Suppose that n,r € N such that r > 3 and n = kr for some k > 2.
Further, let D € N such that n/(r —1) < D < n —r. Then there exists a graph Gy on n
vertices such that A(Gq) = D,

e(Go) =D +e(T(n—D—1,r —2)),
but such that Gy does not have an equitable n/r-colouring.

Proof. Let Gy denote the disjoint union of a copy K of K; p and a copy of T(n—D—1,7r—
2). So |G| = n. Let v denote the vertex of degree D in K. The largest independent set
in G5 that contains v is of size r — 1. Thus, G5 does not have an equitable n/r-colouring.
Further, e(Gy) = D+ e(T(n — D — 1,7 — 2)).

Since n/(r — 1) < D we have that n — 1 < (r — 1)D. Thus, every vertex in the copy
of T(n — D — 1,7 — 2) has degree at most

n—D—1 _1<n—D—1<D.
r—2 r— 2

This implies that A(Gs) = D. O

Clearly Propositions 11 and 12 show that one cannot lower the edge density condition
in Theorem 5 in the case when n/(r — 1) < D < n —r. The following result, together
with Proposition 11, shows that Theorem 5 is best possible in the case when n/r < D <

n/(r—1).
Proposition 13. Let n,r € N such that r > 3 and r divides n > 2r. Suppose that D € N
such that n/r < D <n/(r —1). Then

f(nor. D) = (n/r + 1)'

2
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The following simple consequence of Turan’s theorem will be used in the proof of
Theorem 5.

Fact 14. Let n,r € N such that r < n. Then

1\ n? n?* n
< e >
e(T'(n,r)) < (1 7“) 5 and thus e(T(n,r)) > 5 3

We will also require the following easy result.

Lemma 15. Let n,r € N such that r > 4 and r divides n > 3r. Suppose that D € N
such that n/r < D < (n+r)/(r—1). Then

1

o) = (")

3 Proof of Theorem 5

3.1 Preliminaries

Suppose for a contradiction that the result is false. Let G be a counterexample with the
fewest vertices. That is, n = |V(G)| = rk for some k € N, A(G) < D for some D € N
such that n/r < D <n—r, e(G) < f(n,r,D) and G has no equitable n/r-colouring. By
the Hajnal-Szemerédi theorem, A(G) > n/r. Notice that given fixed n and r, f(n,r, D)
is non-increasing with respect to D. Thus, we may assume that A(G) = D.

We first show that k& > 4. Indeed, if n = 2r then f(n,r, D) < (3) = 3. But it is
easy to see that every graph G on 2r vertices and with e(G1) < 2 has an equitable 2-
colouring. If n = 3r then f(n,r, D) < (3) = 6. Consider any graph (G; on 3r vertices with
e(G1) < b5 and 3 < A(Gy) < 5. Let x denote the vertex in Gy where dg, () = A(G1).
Since 3 < dg, (x) < 5, z lies in an independent set I in Gy of size r. But then G; — [
contains 2r vertices and at most 2 edges. So GGy — I has an equitable 2-colouring and
hence G has an equitable 3-colouring.

Let v € V(G) such that dg(v) = D. Set G* := G — (Ng(v) U {v}). Since f(n,r, D) <
D+e(T(n—D—1,r—2)) we have that e(G*) < e(T(n— D — 1,7 —2)). Thus, by Turan’s
theorem, G* contains an independent set of size r — 1. Hence, v lies in an independent
set in G of size r. Amongst all such independent sets of size r that contain v, choose a
set I ={v,21,...,2,_1} such that dg(z1) + -+ + dg(x,—1) is maximised.

Set G =G —1,n :=|V(G")|=n—rand D' := A(G’") < D. Notice that D" > n'/r.
(Indeed, if not, then by the Hajnal-Szemerédi theorem G’ contains an equitable n'/r-
colouring. Thus, as I is an independent set in G this gives us an equitable n/r-colouring

of G, a contradiction.) Furthermore, D’ < n’ — r. If not then

e(G)=D+D >2D >2(n' —r+1)=2n—4r+2
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and further,

e(G) < f(n,r, D) < f(n,r,n—2r+1) < (n—2r+1) +e(T(2r — 2,7 — 2))
<SMm=2r+1)+(r+3)=n—1r+4
Therefore, 2n — 4r +2 <n —r 4+ 4 and so n < 3r 4+ 2 a contradiction since n = kr > 4r.

Since n'/r < D' < n' —r, if e(G') < f(n/,r,D’) then the minimality of G implies
that G’ has an equitable n’/r-colouring. This then implies that G has an equitable n/r-
colouring, a contradiction. Thus,

e(G") = f(n',r,D"). (1)

We now split our argument into three cases.

3.2 Case 1: f(n',r,D’) = (n'/;”rl).

By (1), e(G") > (”,/;H) = (”éT) Since dg(v) =D > n/r,

oGy > " (”ér) _ (”/ ot 1) > f(n,r, D),

a contradiction, as desired.

3.3 Case2: D'<D-1andf(n,r,D') =D +e(T(n'-D'—1,r-2)).
The following claim will be useful.

Claim 16. D' < 3=hn — (b,

Proof. Note that

D+ D +e(T(n' —D —1,r—2)) ge(G) < fn,r,D) < D+e(T(n—D—1,r —2)).
(2)

Since D' < D — 1, clearly e(T(n' — D,r —2)) < e(T(n' — D' — 1,7 —2)). Thus, (2) implies
that

D +e(T(n' —D,r—2)) <e(T(n—D—1,r—2)). (3)

One can obtain T'(n — D — 1,7 — 2) from T'(n' — D,r — 2) by adding  — 1 vertices and
at most

, n—D-—2

(n"— D)+ — edges. (4)
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Hence (3) and (4) give
n—D—2

r—2
Rearranging, and using that D' < D — 1 and n’ = n — r we get that

1 1 (r*—r+1)
2 D 1 _
(+7“—2) <(+T—2>n r—2

D - r—ln_(r2—7“—|—1)
2r — 3 2r—3

as desired. O

D <n—D+

Thus,

Since we are in Case 2 we have that

Dt eTn—r—D—1,r-2)< (”//7"; 1) - (”ér) (5)

Notice that for fixed n and r, D’ + e(T(n —r — D' — 1,7 — 2)) is non-increasing as D’
increases. Hence, (5) and Claim 16 imply that

n? n

D"+e(T(n—7’—D"—1,r—2))<ﬁ—g (6)

where D" := |(r — 1)n/(2r — 3) — (r* —r +1)/(2r — 3)]. Note that

r—1 (r*—=r+1) r—2 4 —r?
n—r— n -+ —1= n + :
2r — 3 2r—3 2r —3 2r—3

So Fact 14 and (6) imply that
r—1 (r*—r+1) (2r—4) N 1 r—2 +4—7“2 2
n— — n
2r — 3 2r — 3 2r—3 2(r—2) \2r —3 2r — 3
1/ r—2 4 —r? n? n
— = n+ < -
2 \2r—3 2r — 3 2r2  2r

Next we will move all terms from the previous equation to the left hand side and
simplify. The coefficient of n? is

r—2 1 r—6r2+12r—9

Sr—37 27 3P (7)

The coefficient of n is

r—1 (r—2) 1 4=y r—4r+9
- o - . 8)
2r—3 22r—3) 2r (2r—3)2 2r(2r—3)2
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The constant term is

(r? +r —3) (r? —4)? (r*—4)  —r"43r® 4 4r* — 26r + 28
w3 Tar—o@—3p 2@m—8  wWwr-pa—3z ~

Since n > 4r, (7)—(9) imply that

8(r3 — 6r2 +12r — 9) N 2(r% —4r +9) N —r% 4+ 3r% + 4r? — 26r + 28
(2r — 3)? (2r — 3)? 2(r —2)(2r — 3)?

<0.  (10)

Multiplying (10) by 2(r — 2)(2r — 3)? we get

157" — 1217° + 364r® — 4867 + 244 < 0
This yields a contradiction, since it is easy to check that

157" — 121r° + 3647* — 486r + 244 > 0
for all r € N such that r > 3.

3.4 Case 3: D'=D and f(n/,r,D’) =D'+e(T(n' - D' —1,r — 2)).
By (1) we have that

e(G = f(n',r,D') =D +e(T(n' — D —1,r—2)). (11)
Consider any vertex x € V(G') such that dg:(z) = D' = D. Since A(G) = D, z is
not adjacent to any vertex in I = {v,zy,...,2,_1}. Further, I was chosen such that
dg(x1) + -+ + dg(x,_1) is maximised. Thus, dg(z1) = -+ = dg(z,_1) = D. Together

with (11) this implies that

e(G) = (r+1)D+e(T(n'—D—1,7r—2)). (12)
Since e(G) < f(n,7,D) < D+ e(T(n — D — 1,7 — 2)), (12) implies that
rD+e(T(n' —D—1,r—2)) <e(T(n—D —1,7—2)). (13)

One can obtain T'(n — D — 1,7 — 2) from T(n’ — D — 1,7 — 2) by adding r vertices and
at most

2(n—D —
(n—=D—-1)+ % + 1 edges. (14)
Thus, (13) and (14) imply that
2(n— D —3)

rD<n—r—D+
r—2
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and so

2 2 (—r? 4+ 2r — 6) 2
1 D 1 1 . 1
(7“+ +r—2) <<+r_2)n+ — <(—|—T_2)n (15)

If » = 3 then (15) implies that

n
D < —.
2

Since f(n',3,D) = min{ (”’/SH),D + ("/_QD_I)} it is easy to see that if f(n',3,D) =

D+ (N’—f—l) then D > 2n'/3+1 =2n/3—1. Thus, 2n/3—1 < D < n/2, a contradiction

since n = 4r = 12.
If r > 4 then (15) implies that

Since n’ > 3r, Lemma 15 implies that f(n',r, D") = ("//;H) and so we are in Case 1,
which we have already dealt with.

4 The extremal examples for Conjecture 7

Proposition 17. Suppose that n,r,k € N such that r > 2 divides n and 1 < k < n/r.
Then there exists a graph G on n vertices whose degree sequence d; < ... < d,, satisfies

e di=(r—2n/r+k—1forall<i<k;
o di=(r—Un/r forallk+1<i<(r—2)n/r+k;
edi=n—k—1foral(r—2)n/r+k+1<i<n—k+1;
e di=n—1foralln—k+2<i<n,

but such that G does not contain a perfect K,-packing.

Proof. Let G’ denote the complete (r — 2)-partite graph whose vertex classes Vi,...,V,_
each have size n/r. Obtain G from G’ by adding the following vertices and edges: Add
a set V,_y of 2n/r — 2k + 1 vertices to G’, a set V,. of k — 1 vertices and a set Vj of k
vertices. Add all edges from VoUV,_ UV, to Vi U---UV,_ 5. Further, add all edges with
both endpoints in V,,_; U V,. Add all possible edges between V; and V.

So V4 is an independent set, and there are no edges between V{, and V,._;. This implies
that any copy of K, in G containing a vertex from V[, must also contain at least one vertex
from V.. But since |Vy| > |V;| this implies that G does not contain a perfect K,-packing.
Furthermore, G has our desired degree sequence. [
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Notice that the graphs G considered in Proposition 17 satisfy (5) from Conjecture 7
and only fail to satisfy («) in the case when i = k (and in this case d, = (r—2)n/r+k—1).

Let n,r € N such that r divides n. Denote by T*(n, r) the complete r-partite graph on
n vertices with r—2 vertex classes of size n/r, one vertex class of size n/r—1 and one vertex
class of size n/r + 1. Then T*(n,r) does not contain a perfect K,-packing. Furthermore,
T*(n,r) satisfies (o) but condition (3) fails; we have that d,,/,.1 = (r — 1)n/r — 1 here.
Thus, together T*(n, r) and Proposition 17 show that, if true, Conjecture 7 is essentially
best possible.

5 A special case of Conjecture 7

We now give a simple proof of Conjecture 7 in the case when G is K, -free.

Theorem 18. Let n,r € N such that r > 2 divides n. Suppose that G is a graph on n
vertices with degree sequence d; < ... < d, such that:

o d; > (r—2)n/r+i foralli <n/r;
o dpjpi1 = (r—1)n/r.

Further suppose that no vertex x € V(G) of degree less than (r — 1)n/r lies in a copy of
K,11. Then G contains a perfect K,.-packing.

Proof. We prove the theorem by induction on n. In the case when n = r then d, /.1 =
dy = (r — 1)r/r = r — 1. This implies that every vertex in G has degree r — 1. Hence
G = K, as desired. So suppose that n > r and the result holds for smaller values of
n. Let 1 € V(G) such that dg(z1) = di = (r —2)n/r + 1. If dg(z1) = (r — )n/r
then §(G) > (r — 1)n/r. Thus G contains a perfect K,-packing by the Hajnal-Szemerédi
theorem. So we may assume that (r — 2)n/r + 1 < dg(x1) < (r — 1)n/r. In particular,
x1 does not lie in a copy of K, 1. We first find a copy of K, containing z,. If r = 2,
has a neighbour and so we have our desired copy of K5. So assume that r > 3. Certainly
Ng(z1) contains a vertex xo such that dg(z2) = (r — 1)n/r. Thus, |[Ng(x1) N Ng(z2)| >
(r—3)n/r+1 > 0. Soif r = 3 we obtain our desired copy of K,. Otherwise, we can
find a vertex x3 € Ng(z1) N Ng(z2) such that dg(zs) > (r — 1)n/r. We can repeat this
argument until we have obtained vertices x1, ..., z, that together form a copy K/ of K,.
Let G’ := G — V(K]) and set n' :=n —r = |V(G")]. Since G does not contain a copy
of K,4; containing z;, every vertex x € V(G)\V(K]) sends at most r — 1 edges to K
in G. Thus, de(z) > dg(z) — (r — 1) for all x € V(G'). So if dg(x) > (r — 1)n/r then
de(z) = (r—Un/r—(r—1)=(r—1)n'/r for all x € V(G"). If a vertex y € V(G’) does
not lie in a copy of K,;; in G then clearly y does not lie in a copy of K,,; in G'. This
means that no vertex y € V(G’) of degree less than (r — 1)n’/r lies in a copy of K.
Let d] < ... < d, denote the degree sequence of G'. It is easy to check that d >

(r—2)n'/r 41 for all i <n'/r and that d,, ., 2 (r — 1)n'/r. Indeed, since z1 € V(K7)
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where dg(x1) = di, we have that d, > d;x1 — (r — 1) for all 1 < ¢ < n/. Thus, for all
I1<i<n/r=n/r—1,d, > d2+1—(7“— )= (r=2)n/r+(+1)—(r—1) = (r—2)n'/r+i.
Similarly, d,, .., = d,,, = dpjri1—(r—1) 2 (r=1)n/r—(r—1) = (r—1)n’/r. Hence, by
induction G’ contains a perfect K,-packing. Together with K/ this gives us our desired

perfect K,-packing in G. O]

6 Proof of Theorem 10

Consider any z; € V(G) such that dg(z1) > (r — 1)n/r. Since d,,;, > (r — 1)n/r we can
greedily select vertices g, ..., x,_1 such that

® zy,...,x,_1 induce a copy of K,_; in G,
o do(x;)) = (r—1Un/rforall 1 <i<r—1.

Note that since G is ,,+1 free, N;_ Ng<l’i) is an independent set. The choice of zq, ...,
x,—1 implies that | N} NG(:U,)| > n/r. Let V; denote a subset of N[~} Ng(x;) of size n/r.
Thus V; contains a vertex z} of degree at least (r — 1)n/r.

As before we can find vertices z3,...,z! | such that
e z},...,z! | induce a copy of K,_; in G;
o do(zl) = (r—1)n/rforall 1 <i<r—1.

So N;_ NG( 1) is an independent set of size at least n/r Let V5 denote a subset of
NG( 1) of size n/r. Note that Ng(z1)NV; = 0 since 2} € V4 and V] is an independent
set Thus as Vo C Ng(z1), VNV, = 0.

Our aim is to find disjoint sets Vi,...,V, C V(G) of size n/r and vertices z},...,z}_,,
.22, .2t L 2’ with the following properties:

e ([V;] is an independent set for all 1 < j < 7y

° Givenany1<j<r—1,xi€kaoreach1<k; VE

e do(x)) = (r—Dn/rforall 1<j<r—land 1 <k<r—1;

ol ... ,xf;_l induce a copy of K, 1 inGforall 1 <j<r—1.
Clearly finding such a partition Vi, ..., V, of V(G) implies that G C T'(n,r).

Suppose that for some 1 < j < r we have defined sets Vi, ...,V and vertices
zlo ool o a7t o 227 with our desired properties. Since dn/r > (r — 1)n/r and
Vi,..., Vj are independent sets of size n/r we can choose vertices x7, . .. x such that for

all 1 < k < j,

e 2} € Vi and dg(x)) > (r — 1)n/r.
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This degree condition, together with the fact that :L‘{, e w; lie in different vertex classes,
implies that these vertices form a copy of K in G. We now greedily select further vertices
Ti, s+, 75— such that

J

J
® Iy,..., T 4

induce a copy of K, 1 in G}
o do(x]) > (r—1n/rforall j+1<k<r—1.

So ﬂ;’;llNG(x{ ) is an independent set of size at least n/r. Let Vji; denote a subset of
Mi—} Ng(x) of size n/r. Note that, for each 1 < k < j, Ne(zy) N'Vj, = 0 since z;, € V
and Vj, is an independent set. Thus as Vj;1 C Ng(x7,) for each 1 < k < j, Vj4q is disjoint

from VyU---UVj.

Repeating this argument we obtain our desired sets Vi,...,V, C V(G) and vertices
1 1 2 2 -1 -1
Tiyeeey Ty gy TYy ey T gy ey T e, Ty g
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Appendix

Here we give proofs of Proposition 13 and Lemma 15. The following fact will be used in
both of these proofs.

Fact 19. Fix n,r € N such that r > 3 and r divides n > 2r. Define

(n—z—1)72 1

h(l’) ::x—i-w—é(

n—x—1).

Then h(x) is a decreasing function for x € [0,n/(r — 1)]. Moreover, if n > 3r then h(x)
is a decreasing function for x € [0,(n +1)/(r —1)].

Proof. Notice that

3 (n—x-1) x l—-n 3
/ — — _ =
o) = Tr2 T = 2
So for x < n/(r—1),
1 - 3 1 3
W(z) < & T O L + =

(r—0)(r-2) r—2 2 r—1 r—2 2
Note that 3(r —1)/2+ (r —1)/(r —2) < n since n > 2r and r > 3. Thus,

n + L +3<0
r—1 r—2 2 '

If e < (n+7)/(r—1) then

n—+r 1—n

oS =y T2

3
+5=- + + —
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If n>3r thenn >3r/2+4. Son>3(r—1)/2+ (2r —1)/(r — 2). Thus,

, n 1 r 3
< — Z
Mo s A 2 =y T2~ °

as desired. ]

Proof of Proposition 13. We need to show that, for all D € N such that n/r < D <
n/(r - 1)7
n* n_ (n/r+1
2r2 " 2r 2
Since D < n/(r — 1), Facts 14 and 19 imply that

)<D+B(T(n—D—1,r—2)).

— (n—D-1)2 (n—D-1)
D+e(T(n—D—-1,r—2)>D+ =2 5

>7«21+2(7«1—2) [(::?"_1]2_%[(::?"_1}

(r—=2) , (r—2)
Z o =1 T o))"

Notice that

r—2 I (r=2r—(r—172 r?=3r+2r—1 (17)
2r—1)2 272 2r%(r —1)? 22 (r —1)2
and
r—2 n 1 r?P—r—1
2r—1) 2r  2r(r—1)°
Since n > 2r, (16) implies that it suffices to show that
3 o2 _ 2 _ .
r’—=3r*+2r—1 r*—r 120' (18)

r(r—1) 2 (r—1)

Note that r® > 4r> —4r + 3 asr > 3. Thus, 2(r> = 3r2 +2r — 1) > (r* —r — 1)(r — 1).
So indeed (18) is satisfied, as desired.

Proof of Lemma 15. We need to show that, for all D € N such that n/r < D <
(n+7)/(r=1),

n?> n _(n/r—l—l
2

< T(n—D — —2)).
52 5, )\D—l—e(T(n D—1,r—2))
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Since D < (n+71)/(r—1) we have that D < n/(r —1)+ 1. So Facts 14 and 19 imply that

(n—D-1)?% (n—D-1)

D+e(T(n—D—1,r—2))>D+

20r—2) 2
n 1 (r—2) 2 1[(r—-2)
> 1 -2 —= —2
—1 +2(r—2){r—1n } 2[r—1”
> (r—2) a2 (7’—2)n_ n_
2(r—1)2 2(r—1) r—1
Thus, it suffices to show that
(r—2) (r—2) 1 n 1
= = >4 19
2r— 12" 2(r—1) r—1- 272 2 (19)
Notice that
r—2 . 1 n 1 _7"2—1—7“—1
2r—1) r—1 2r  2r(r—1)°
Since n > 3r, (17) and (19) imply that it suffices to show that
3 o2 _ 2 _
3(r°=3r*+2r—1) r*+r 120. (20)

2r(r—1)2 C2r(r—1)

Note that 273 —9r2+8r—4 > 0 asr > 4. Thus, 3(r® —3r2+2r—1) > (r +r—1)(r —1).
So indeed (20) is satisfied, as desired.
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