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Abstract

A regular nonempty graph Γ is called edge regular, whenever there exists a
nonegative integer λΓ, such that any two adjacent vertices of Γ have precisely λΓ

common neighbours. An edge regular graph Γ with at least one pair of vertices
at distance 2 is called amply regular, whenever there exists a nonegative integer
µΓ, such that any two vertices at distance 2 have precisely µΓ common neighbours.
In this paper we classify edge regular graphs, which can be obtained as a strong
product, or a lexicographic product, or a deleted lexicographic product, or a co-
normal product of two graphs. As a corollary we determine which of these graphs
are amply regular. Keywords: edge regular graph; strong product; lexicographic

product; deleted lexicographic product; co-normal product

1 Introductory remarks

In this paper, the interplay between the concept of graph products and the concept
of regularity of graphs is studied (see Section 2 for formal definitions). Both concepts
recieved considerable attention in the mathematical literature. The interplay between
these two concepts was studied, for example, in [1, 4, 5], where distance-regular graphs,
which can be obtained as a cartesian, tensor or strong product, were classified. In this
paper we turn our attention to a larger class of graphs, namely edge regular and amply
regular graphs. A regular nonempty graph Γ is called edge regular, whenever there exists a
nonegative integer λΓ, such that any two adjacent vertices of Γ have precisely λΓ common
neighbours. An edge regular graph Γ with at least one pair of vertices at distance 2 is
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called amply regular, whenever there exists a nonegative integer µΓ, such that any two
vertices at distance 2 have precisely µΓ common neighbours. Note that distance-regular
graphs are also amply regular (provided that their diameter is at least 2).

It is quite easy to see, that the cartesian or tensor product is edge regular if and
only if both factors are. Therefore, in this paper we turn our attention to other graph
products. We classify edge regular graphs, which can be obtained as a strong product,
a lexicographic product, a deleted lexicographic product or a co-normal product of two
graphs. As a corollary we determine which of these graphs are amply regular.

After some preliminaries in Section 2, we consider the case of strong product in Section
3, the case of lexicographic product in Section 4, the case of deleted lexicographic product
in Section 5, and the case of co-normal product in Section 6.

2 Preliminaries

In this section we review basic definitions and facts about edge regular graphs and
graph products that we will need latter. Throughout this paper all graphs are assumed
to be finite, undirected and without loops or multiple edges. For a graph Γ we let V (Γ),
E(Γ) and ∂Γ denote the vertex set, the edge set and the path length distance function,
respectively. The diameter max{∂Γ(x, y)|x, y ∈ V (Γ)} of Γ will be denoted by DΓ.

For a positive integer n we denote by Kn (En, respectively) the complete (empty,
respectively) graph on n vertices. We will denote a disjoint union of t copies of Kn by
t ×Kn. A complete multipartite graph with t partite sets each with n vertices (that is,
the complement of t×Kn) will be denoted by Kt×n.

For a vertex x of a graph Γ, let NΓ(x) denote a set of vertices adjacent to x. If the
number |NΓ(x)| is independent of the choice of a vertex x ∈ Γ, then we call this number
the valency of Γ and we denote it by kΓ. In this case we say that Γ is regular with valency
kΓ. Further degrees of regularity of Γ, namely edge regularity and amply regularity, can
be defined as follows. Assume Γ is nonempty. If |NΓ(x) ∩ NΓ(y)| is constant for every
pair of adjacent vertices x, y ∈ V (Γ), then we denote this common value with λΓ and
we say that the parameter λΓ exists in Γ. Assume now that there is at least one pair
of vertices of Γ which are at distance 2. If |NΓ(x) ∩ NΓ(y)| is constant for every pair of
vertices x, y ∈ V (Γ) with ∂Γ(x, y) = 2, then we denote this common value with µΓ and
we say that the parameter µΓ exists in Γ. A regular nonempty graph Γ is called edge
regular if the parameter λΓ exists in Γ. An edge regular graph Γ is called amply regular
if it contains a pair of vertices at distance 2, and if the parameter µΓ exists in Γ. The
following are well-known facts (see, for example, [2, page 3]).

Proposition 1. (i) Assume that Γ is edge regular graph with kΓ = λΓ + 1. Then Γ is
t×Kn for some t > 1 and n > 2.

(ii) Assume that Γ is a regular graph, such that any two nonadjacen vertices have no
common neighbours. Then Γ is t×Kn for some positive integers t, n.
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(iii) Assume that Γ is a regular graph, such that any two nonadjacen vertices have exactly
kΓ common neighbours. Then Γ is Kt×n for some positive integers t, n.

We now define a strong product, a lexicographic product, a deleted lexicographic
product, and a co-normal product of graphs G and H. In all four cases, the vertex set
of the product is V (G) × V (H). Pick vertices (g1, h1) and (g2, h2) in V (G) × V (H). In
the strong product of G and H, denoted by G � H, (g1, h1) and (g2, h2) are adjacent if
and only if g1 = g2 and h1, h2 are adjacent in H, or h1 = h2 and g1, g2 are adjacent in
G, or g1, g2 are adjacent in G and h1, h2 are adjacent in H. Note that strong product is
commutative.

In the lexicographic product of G and H, denoted by G[H], (g1, h1) and (g2, h2) are
adjacent if and only if g1 = g2 and h1, h2 are adjacent in H, or g1, g2 are adjacent in G.

Let n = |V (H)|. In the deleted lexicographic product of G and H, denoted by G[H]−
nG, (g1, h1) and (g2, h2) are adjacent if and only if g1 = g2 and h1, h2 are adjacent in H,
or g1, g2 are adjacent in G and h1 6= h2.

In the co-normal product of G and H, (g1, h1) and (g2, h2) are adjacent if and only
if g1, g2 are adjacent in G, or h1, h2 are adjacent in H. Note that co-normal product is
commutative.

3 Strong product

Throughout this section let G and H be graphs and let Γ = G � H be the strong
product of G and H. We will classify graphs G and H for which Γ is connected edge
regular graph. Note that Γ is connected if and only if G and H are connected. For
the rest of this section we will assume that Γ is connected (and thus also G and H are
connected). To avoid trivialities we also assume that |V (G)| > 2 and |V (H)| > 2.

Lemma 2. Γ is regular if and only if both G and H are regular. In this case the valency
kΓ = kG + kH + kGkH .

Proof. Assume Γ is regular graph of valency kΓ. For an arbitrary vertex g ∈ V (G) take
vertices (g, h1), (g, h2) ∈ V (Γ). By the definition of Γ we have

kΓ = |NΓ((g, h1))| = |NG(g)|+ |NH(h1)|+ |NG(g)||NH(h1)|,

and
kΓ = |NΓ((g, h2))| = |NG(g)|+ |NH(h2)|+ |NG(g)||NH(h2)|.

It follows that |NH(h1)| = |NH(h2)|, so H is regular. The proof that G is regular is
analogous.

Conversely, if both G and H are regular, then Γ is obviously a regular graph, as

|NΓ((g, h))| = |NG(g)|+ |NH(h)|+ |NG(g)||NH(h)| = kG + kH + kGkH

for every (g, h) ∈ V (Γ).
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Lemma 3. Assume that Γ is edge regular. Then G and H are also edge regular.

Proof. Recall that G and H are regular by Lemma 2. Pick adjacent vertices g1, g2 of G.
For an arbitrary vertex h ∈ V (H) consider u = (g1, h), v = (g2, h) ∈ V (Γ). Note that, by
the definition of Γ, ∂Γ(u, v) = 1. We now count the number of common neighbours of u
and v. Note that we have

NΓ(u) ∩NΓ(v) = {(g, h) | g ∈ NG(g1) ∩NG(g2)} ∪
{(g1, h1), (g2, h2) | h1, h2 ∈ NH(h)} ∪
{(g3, h3) | g3 ∈ NG(g1) ∩NG(g2), h3 ∈ NH(h)}.

Therefore

|NΓ(u) ∩NΓ(v)| = |NG(g1) ∩NG(g2)|+ 2kH + kH |NG(g1) ∩NG(g2)|. (1)

Since λΓ = |NΓ(u) ∩NΓ(v)|, it follows that

|NG(g1) ∩NG(g2)| = λΓ − 2kH
kH + 1

.

Therefore, the number of common neighbours of two adjacent vertices of G is independent
of the choice of these vertices, and thus λG exists. The commutativity of the strong
product implies the proof for H.

Corollary 4. If Γ is edge regular, then

λΓ = 2kH + (kH + 1)λG = 2kG + (kG + 1)λH = λHλG + 2λG + 2λH + 2.

Proof. Observe thet by Lemma 2 and Lemma 3, G and H are both edge regular, so λG
and λH exist. The first equality now follows from (1). The second equality is obtained by
reversing the roles of G and H. To prove the third equality, pick adjacent vertices g1, g2

of G and adjacent vertices h1, h2 of H. Consider vertices u = (g1, h1), v = (g2, h2) ∈ V (Γ).
Note that, by the definition of Γ, ∂Γ(u, v) = 1. We now count the number of common
neighbours of u and v.

Two of them are (g1, h2) and (g2, h1). There is 2λG common neighbours whose second
coordinate is h1 (and first coordinate is not g2) or h2 (and first coordinate is not g1), namely
vertices of the form (x, h1) and (x, h2), where x ∈ NG(g1)∩NG(g2). Similarly, there is 2λH
common neighbours whose first coordinate is g1 (and second coordinate is not h2) or g2

(and second coordinate is not h1). Finaly, there is λGλH common neighbours whose first
coordinate is not g1 or g2, and whose second coordinate is not h1 or h2. These vertices
are vertices of the form (x, y), where x ∈ NG(g1)∩NG(g2) and y ∈ NH(h1)∩NH(h2). The
result follows.

Theorem 5. Γ = G � H is edge regular if and only if G = Kn and H = Km for some
n,m > 2.
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Proof. Assume that Γ is edge regular. By Corollary 4 we have 2kG + (kG + 1)λH =
λHλG + 2λG + 2λH + 2, implying that

(kG − λG)(λH + 2) = λH + 2.

It follows that kG = λG + 1. By Proposition 1(i) and since G is connected, G = Kn for
some n > 2. Similarly we prove that H = Km for some m > 2.

Assume now that G = Kn and H = Km for some n,m > 2. Note that in this case Γ
is Kmn, which is clearly edge regular.

Corollary 6. Γ = G�H is never amply regular.

Proof. Assume that Γ is amply regular. Since in this case Γ is also edge regular, G = Kn

and H = Km for some n,m > 2 by Theorem 5. But then Γ is Kmn, which is not amply
regular (since no two vertices are at distance 2), a contradiction.

4 Lexicographic product

Throughout this section let G and H be graphs and let Γ = G[H] be the lexicographic
product of G and H. We will classify graphs G and H for which Γ is connected edge
regular graph. Note that Γ is connected if and only if G is connected. For the rest of
this section we will assume that Γ is connected (and thus G is also connected). To avoid
trivialities we also assume that |V (G)| > 2 and |V (H)| > 2.

Lemma 7. Γ is regular if and only if both G and H are regular. In this case the valency
kΓ = kH + kG|V (H)|.

Proof. Assume Γ is regular graph of valency kΓ. For an arbitrary vertex g ∈ V (G) take
vertices (g, h1), (g, h2) ∈ V (Γ). By the definition of Γ we have

kΓ = |NΓ((g, h1))| = |NH(h1)|+ |NG(g)||V (H)|,

and
kΓ = |NΓ((g, h2))| = |NH(h2)|+ |NG(g)||V (H)|.

It follows that |NH(h1)| = |NH(h2)|, so H is regular. Now we also have that

kΓ = |NΓ((g, h1))| = |NG(g)||V (H)|+ kH .

It follows that |NG(g)| = (kΓ − kH)/|V (H)|, so G is regular.
Conversely, if both G and H are regular, then Γ is obviously regular, as

|NΓ((g, h))| = |NH(h)|+ |NG(g)||V (H)| = kH + kG|V (H)|

for every (g, h) ∈ V (Γ).

Lemma 8. Assume that Γ is edge regular. Then the following (i), (ii) hold.
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(i) G is edge regular.

(ii) Either H = Em for some positive integer m, or H is edge regular.

Proof. Recall that G and H are regular by Lemma 7.
(i) Pick a pair of adjacent vertices g1, g2 of G. For an arbitrary vertex h ∈ V (H) consider
u = (g1, h), v = (g2, h) ∈ V (Γ). Note that, by the definition of Γ, ∂Γ(u, v) = 1. We now
count the number of common neighbours of u and v. Observe that

NΓ(u) ∩NΓ(v) = {(g1, h
′), (g2, h

′) | h′ ∈ NH(h)} ∪
{(g′, h′) | g′ ∈ NG(g1) ∩NG(g2), h′ ∈ V (H)}.

Therefore
|NΓ(u) ∩NΓ(v)| = 2|NH(h)|+ |NG(g1) ∩NG(g2)||V (H)|. (2)

Since λΓ = |NΓ(u) ∩NΓ(v)|, it follows that

|NG(g1) ∩NG(g2)| = λΓ − 2kH
|V (H)|

.

Therefore, the number of common neighbours of two adjacent vertices of G is independent
of the choice of these vertices, and thus λG exists. The result follows.

(ii) Assume that H is nonempty. Pick a pair of adjacent vertices h1, h2 of H. For an
arbitrary vertex g ∈ V (G) consider vertices u = (g, h1), v = (g, h2) ∈ V (Γ). Note that,
by the definition of Γ, ∂Γ(u, v) = 1. We now count the number of common neighbours of
u and v in Γ. Observe that

NΓ(u) ∩NΓ(v) = {(g, h) | h ∈ NH(h1) ∩NH(h2)} ∪ {(g′, h′) | g′ ∈ NG(g), h′ ∈ V (H)}.

Therefore
|NΓ(u) ∩NΓ(v)| = |NH(h1) ∩NH(h2)|+ |NG(g)||V (H)|. (3)

Since λΓ = |NΓ(u) ∩NΓ(v)|, it follows that

|NH(h1) ∩NH(h2)| = λΓ − kG|V (H)|.

Therefore, the number of common neighbours of two adjacent vertices in H is independent
of the choice of these two vertices, and thus λH exists. The result follows.

Corollary 9. If Γ is edge regular and H is nonempty, then

λΓ = 2kH + λG|V (H)| = kG|V (H)|+ λH .

Proof. Observe that by Lemma 7, G and H are both regular. By Lemma 8, λG and λH
exist. The result now follows from equalities (2) and (3).

Theorem 10. Γ = G[H] is edge regular if and only if one of the following holds:
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(i) H = Em for some m > 2 and G is edge regular.

(ii) G = Kn and H = Kt×m for some n, t > 2 and m > 1.

Proof. Assume that Γ is edge regular. By Lemma 7 and Lemma 8, G is edge regular and
H is regular. If H is an empty graph Em for some m > 2, then we are done. Assume now
that H is nonempty. By Corollary 9, kG|V (H)|+ λH = 2kH + λG|V (H)|. It follows that

|V (H)|(kG − λG) = 2kH − λH .
Since obviously λG < kG and kH < |V (H)| we have that kG − λG = 1 and that 2kH −
λH = |V (H)|. By Proposition 1(i) and since G is connected, G is a complete graph.
Furthermore, note that in the complement of H, every two nonadjacent vertices have
exactly |V (H)| − 2kH + λH = 0 common neighbours. Since the complement of H is also
regular, Proposition 1(ii) implies that the complement of H is isomorphic to t ×Km for
some t,m > 1. It follows that H = Kt×m for some t,m > 1. Since H is nonempty, we
also have that t > 2.

Assume now that (i) or (ii) of the Theorem holds. Then Γ is regular by Lemma 7. It
is now an easy exercise to show that if (i) holds, then λΓ = λG|V (H)|, and that if (ii)
holds, then Γ = Ktn×m, which is clearly edge regular with λΓ = tnm− 2m.

Corollary 11. Γ = G[H] is amply regular if and only if one of the following holds:

(i) H = Em for some m > 2 and G = Kt×n for some t > 2, n > 1.

(ii) G = Kn and H = Kt×m for some n,m, t > 2.

Proof. Assume that Γ is amply regular. Let first consider case (i) of Theorem 10, that is
the case when H = Em for some m > 2 and G is edge regular. If G is a complete graph,
then (i) above holds. Therefore assume that G is not a complete graph. Pick g ∈ V (G)
and h1, h2 ∈ V (H). Abbreviate u = (g, h1), v = (g, h2) and note that ∂Γ(u, v) = 2. It is
also clear that

|NΓ(u) ∩NΓ(v)| = kG|V (H)|.
Next pick arbitrary g1, g2 ∈ V (G) with ∂G(g1, g2) = 2, and arbitrary h ∈ V (H). Abbrevi-
ate w = (g1, h), z = (g2, h) and note that ∂Γ(w, z) = 2. In this case we have

|NΓ(w) ∩NΓ(z)| = |NG(g1) ∩NG(g2)||V (H)|.
If Γ is amply regular, then we clearly have

kG|V (H)| = |NG(g1) ∩NG(g2)||V (H)|,
which implies kG = |NG(g1)∩NG(g2)|. Therefore, µG exists and is equal to kG. Note that
this implies that for x, y ∈ V (G) we have ∂G(x, y) 6 2 (since in G there is no induced
path of length 3), and so by Proposition 1(iii), G is Kt×n for some positive integers t, n.
As G is connected, we clearly have that t > 2.

Let us now consider case (ii) of Theorem 10, that is G = Kn and H = Kt×m for some
n, t > 2 and m > 1. Since Γ is not a complete graph, we have m > 2.

Conversely, if (i) above holds, then Γ = Kt×mn, and if (ii) above holds, then Γ = Ktn×m.
In both cases Γ is an amply graph.
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5 Deleted lexicographic product

Throughout this section let G and H be graphs and let Γ = G[H]−nG be the deleted
lexicographic product of G and H, where n = |V (H)|. We will classify graphs G and H for
which Γ is connected edge regular graph. To avoid trivialities we assume that |V (G)| > 2
and |V (H)| > 2.

Lemma 12. (i) If H = E2, then Γ is connected if and only if G is connected and
nonbipartite.

(ii) If H 6= E2, then Γ is connected if and only if G is connected.

Proof. (i) Note that, if H = E2, then Γ is isomorphic to the tensor product G×K2 (for
the definition of tensor product see [3, Section 5.3]). The result now follows from [3,
Theorem 5.29].

(ii) Assume now that H 6= E2. If G is not connected, then Γ is obviously not connected.
Conversely, assume that G is connected. Pick two arbitrary vertices (g1, h1), (g2, h2) of
Γ. We claim that there exist a path in Γ between (g1, h1), (g2, h2). Since G is connected,
there exists a path between g1 and g2 in G. It follows that there exists a path between
(g1, h1) and (g2, h) for some vertex h ∈ H. If h = h2 or if h, h2 are adjacent in H, then
we are done. Now if h 6= h2 and h, h2 are not adjacent in H, then H is not K2. Since
H is also not E2, this shows that |V (H)| > 3. Now pick a neighbour g of g2 in G and
h′ ∈ V (H) \ {h2, h}. Note that (g, h′) is a common neighbour of (g2, h2) and (g2, h) in Γ.
This verifies the claim and thus Γ is connected.

Lemma 13. Γ is regular if and only if both H and G are regular. In this case the valency
kΓ = kH + kG(|V (H)| − 1).

Proof. Assume Γ is regular graph of valency kΓ. For an arbitrary vertex g ∈ V (G) take
vertices (g, h1), (g, h2) ∈ V (Γ). By the definition of Γ we have

kΓ = |NΓ((g, h1))| = |NH(h1)|+ |NG(g)|(|V (H)| − 1)

and
kΓ = |NΓ((g, h2))| = |NH(h2)|+ |NG(g)|(|V (H)| − 1).

It follows that |NH(h1)| = |NH(h2)|, so H is regular. We now also have

kΓ = |NΓ((g, h1))| = kH + |NG(g)|(|V (H)| − 1).

It follows that |NG(g)| = (kΓ − kH)/(|V (H)| − 1), so G is regular.
Conversely, if both G and H are regular, then Γ is obviously a regular graph, as

|NΓ((g, h))| = |NH(h)|+ |NG(g)|(|V (H)| − 1) = kH + kG(|V (H)| − 1)

for every (g, h) ∈ V (Γ).

For the rest of this section we will assume that Γ is connected (and thus G is also
connected).
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5.1 The case |V (H)| = 2

Recall that Γ = G[H] − nG is the deleted lexicographic product of G and H, where
n = |V (H)|. In this subsection we consider the case |V (H)| = 2.

Theorem 14. Assume that |V (H)| = 2. Then Γ is edge regular if and only if one of the
the following (i), (ii) holds.

(i) H = E2 and G is regular and nonbipartite.

(ii) H = K2 and G is regular.

Proof. Observe that since |V (H)| = 2, Γ is bipartite. Therefore, if Γ is edge regular, then
λΓ = 0.

Assume Γ is edge regular. In particular, Γ is regular and connected. If H = E2, then
G is nonbipartite by Lemma 12(i) and regular by Lemma 13. If H = K2, then G is regular
by Lemma 13.

Conversely, if (i) or (ii) holds, then Γ is regular by Lemma 13. Since Γ is bipartite, we
have λΓ = 0.

Let us now determine in which cases of Theorem 14 the graph Γ is amply regular.
Assume first that H = E2. As already mentioned in the proof of Lemma 12, in this case
Γ is isomorphic to the tensor product G ×K2, and it is also called a bipartite double of
G, see [2, Section 1.11]. Recall also that λΓ = 0. By [2, Theorem 1.11.1 (ii)], Γ is amply
regular if and only if G is regular nonbipartite graph, in which any two distinct vertices
have either 0 or µΓ common neighbours. Let us now turn our attention to the case when
H = K2.

Lemma 15. Assume that H = K2 and that Γ is amply regular. Then the following (i)-(iii)
hold.

(i) G is edge regular.

(ii) Either G is a complete graph or G is amply regular.

(iii) If G is not a complete graph, then λG + 2 = µG = µΓ.

Proof. Set V (H) = {h1, h2}.
(i) Pick adjacent vertices g1, g2 of G. Consider vertices u = (g1, h1) and v = (g2, h1)

of Γ. Note that ∂Γ(u, v) = 2. Let us count the number of common neighbours of u and v.
Note that z = (g, h) is a common neighbour of u and v if and only if h = h2, and either
g ∈ {g1, g2} or g is a common neighbor of g1, g2 in G. Therefore,

µΓ = |NΓ(u) ∩NΓ(v)| = 2 + |NG(g1) ∩NG(g2)|. (4)

It follows that the number of common neighbours of two adjacent vertices in G is inde-
pendent of the choice of these two vertices, and thus λG exists.
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(ii) Assume that G is not a complete graph, and pick vertices g1, g2 of G such that
∂G(g1, g2) = 2. Consider vertices u = (g1, h1) and v = (g2, h1) of Γ. Note that ∂Γ(u, v) = 2.
Let us count the number of common neighbours of u and v. Note that z = (g, h) is a
common neighbour of u and v if and only if h = h2 and g is a common neighbor of g1, g2

in G. Therefore,
µΓ = |NΓ(u) ∩NΓ(v)| = |NG(g1) ∩NG(g2)|. (5)

It follows that the number of common neighbours of two vertices of G which are at distance
2 is independent of the choice of these two vertices, and thus µG exists.

(iii) This follows from (4) and (5).

Theorem 16. Assume that H = K2. Then Γ = G[H]− nG is amply regular if and only
if either G is a complete graph, or G is an amply regular graph with λG + 2 = µG.

Proof. Assume first that Γ is an amply regular graph and that G is not a complete graph.
Then G is amply regular with λG + 2 = µG by Lemma 15(iii).

Conversly, assume first that G is a complete graph Km. Then Γ is isomorphic to the
complete bipartite graph Km,m, which is clearly amply regular. Assume now that G is
an amply regular graph with λG + 2 = µG. Since Γ is bipartite, Γ is edge regular with
λΓ = 0. Now pick vertices u = (g1, h1), v = (g2, h2) of Γ such that ∂Γ(u, v) = 2. Note that
we have two possibilities:

(i) h1 = h2 and g1, g2 are adjacent in G. In this case u and v have 2 + λG common
neighbours.

(ii) h1 = h2 and ∂G(g1, g2) = 2. In this case u and v have µG common neighbours.

As λG + 2 = µG, the number of common neighbours of u and v is independent on the
choice of these two vertices. This shows that µΓ exists and so Γ is amply regular.

5.2 Case |V (H)| > 3

Let us now turn our attention to the case |V (H)| > 3.

Lemma 17. If Γ is edge regular, then either H = En or H = Kn for some n > 3.

Proof. Assume that Γ is edge regular and that H 6= En, H 6= Kn. Then there exist
(distinct) vertices h1, h2, h3 ∈ V (H), such that ∂H(h1, h2) = 1 and ∂H(h1, h3) 6= 1. Pick
adjacent vertices g1, g2 ∈ V (G) and consider vertices u = (g1, h1), v = (g2, h2) and
z = (g2, h3) ∈ V (Γ). Note that, by the definition of Γ, ∂Γ(u, v) = 1 and ∂Γ(u, z) = 1. Now
count the number of common neighbours of adjacent vertices u, v and u, z of Γ. Observe
that we have

NΓ(u) ∩NΓ(v) = {(g1, h) | h ∈ NH(h1) \ {h2}} ∪
{(g2, h) | h ∈ NH(h2) \ {h1}} ∪
{(g, h) | g ∈ NG(g1) ∩NG(g2), h ∈ V (H) \ {h1, h2}}
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and

NΓ(u) ∩NΓ(z) = {(g1, h) | h ∈ NH(h1)} ∪
{(g2, h) | h ∈ NH(h3)} ∪
{(g, h) | g ∈ NG(g1) ∩NG(g2), h ∈ V (H) \ {h1, h3}}.

Therefore

|NΓ(u) ∩NΓ(v)| = 2(kH − 1) + |NG(g1) ∩NG(g2)|(|V (H)| − 2),

and
|NΓ(u) ∩NΓ(z)| = 2kH + |NG(g1) ∩NG(g2)|(|V (H)| − 2).

Obviously
|NΓ(u) ∩NΓ(v)| 6= |NΓ(w) ∩NΓ(z)|,

a contradiction with assumption that λΓ exists. It follows that either H = En or H =
Kn.

Lemma 18. Assume that Γ is edge regular. Then G is edge regular.

Proof. Recall that G is regular by Lemma 13. Recall also that either H = En or H = Kn

by Lemma 17, where n = |V (H)|. Pick a pair of adjacent vertices g1, g2 of G. For arbitrary
vertices h1, h2 ∈ V (H) (h1 6= h2) consider u = (g1, h1), v = (g2, h2) ∈ V (Γ). Note that, by
the definition of Γ, ∂Γ(u, v) = 1. We now count the number of common neighbours of u
and v. Observe that

NΓ(u) ∩NΓ(v) = {(g1, h) | h ∈ NH(h1) \ {h2}} ∪
{(g2, h) | h ∈ NH(h2) \ {h1}} ∪
{(g, h) | g ∈ NG(g1) ∩NG(g2), h ∈ V (H) \ {h1, h2}}.

Therefore
|NΓ(u) ∩NΓ(v)| = 2t+ |NG(g1) ∩NG(g2)|(n− 2), (6)

where t = 0 if H = En and t = n− 2 if H = Kn. Since λΓ = |NΓ(u) ∩NΓ(v)|, it follows
that

|NG(g1) ∩NG(g2)| = λΓ − 2t

n− 2
.

Therefore, the number of common neighbours of two adjacent vertices of G is independent
of the choice of these vertices, and thus λG exists.

Corollary 19. If Γ is edge regular and H = Kn for some n > 3, then

λΓ = (λG + 2)(n− 2) = (kG + 1)(n− 2).
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Proof. Observe that λΓ = (λG + 2)(n − 2) follows from (6). To prove that λΓ = (kG +
1)(n − 2), pick g ∈ V (G) and h1, h2 ∈ V (H), h1 6= h2. Consider vertices u = (g, h1) and
v = (g, h2). Note that ∂Γ(u, v) = 1. Let us now count the number of common neighbours
of u and v. Obviously we have

NΓ(u) ∩NΓ(v) = {(g1, h) | g1 ∈ NG(g) ∪ {g}, h ∈ V (H) \ {h1, h2}}.

It follows
λΓ = |NΓ(u) ∩NΓ(v)| = (kG + 1)(n− 2).

Theorem 20. Γ = G[H]− nG is edge regular if and only if one of the following (i), (ii)
holds:

(i) H = En for some n > 3 and G is edge regular.

(ii) H = Kn for some n > 3 and G = Km for some m > 2.

Proof. Assume that Γ is edge regular. Recall that H = En or H = Kn by Lemma 17.
Furthermore, G is edge regular by Lemma 18. Assume now that H = Kn for some n > 3.
By Corollary 19 we have λG + 1 = kG. By Proposition 1(i) and since we suppose that G
is connected, we have that G = Km for some m > 2.

Conversly, assume first that H = En for some n > 3 and that G is edge regular. Pick
adjacent vertices u = (g1, h1) and v = (g2, h2) of Γ. Note that g1, g2 are adjacent in G
and that h1 6= h2. Moreover,

NΓ(u) ∩NΓ(v) = {(g, h) | g ∈ NG(g1) ∩NG(g2), h ∈ V (H) \ {h1, h2}}.

Therefore
|NΓ(u) ∩NΓ(v)| = λG(n− 2),

so Γ is edge regular.

Assume now that H = Kn for some n > 3 and G = Km for some m > 2. Observe that Γ
is isomorphic to Kn×m, which is clearly edge regular.

Lemma 21. If Γ is amply regular, then G = Km for some m > 2.

Proof. Assume Γ is amply regular and that G 6= Km. By Theorem 20, H = En (n > 3),
where n = |V (H)|. Pick g1, g2 ∈ V (G) such that ∂G(g1, g2) = 2. Pick h1, h2 ∈ H (h1 6= h2)
and consider vertices u = (g1, h1), v = (g2, h1), z = (g2, h2) ∈ V (Γ). Note that, by the
definition of Γ, ∂Γ(u, v) = ∂Γ(u, z) = 2. Now count the number of common neighbours of
vertices u, v and u, z in Γ. Note that

NΓ(u) ∩NΓ(v) = {(g, h) | g ∈ NG(g1) ∩NG(g2), h ∈ V (H) \ {h1}},

and that

NΓ(u) ∩NΓ(z) = {(g, h) | g ∈ NG(g1) ∩NG(g2), h ∈ V (H) \ {h1, h2}}.
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Therefore we have

|NΓ(u) ∩NΓ(v)| = |NG(g1) ∩NG(g2)|(|V (H)| − 1)

and
|NΓ(u) ∩NΓ(z)| = |NG(g1) ∩NG(g2)|(|V (H)| − 2)

Since Γ is amply regular and NG(g1)∩NG(g2) 6= ∅, it follows that |V (H)|−1 = |V (H)|−2,
a contradiction. Therefore, G = Km for some m > 2.

Theorem 22. Γ = G[H]−nG is amply regular if and only if one of the following (i), (ii)
holds:

(i) H = En for some n > 3 and either G = K2 or G = Kn.

(ii) H = Kn for some n > 3 and G = Km for some m > 2.

Proof. Assume that Γ is amply regular. By Lemma 17, H = En or H = Kn for some
n > 3. By Lemma 21, G = Km for some m > 2. It remains to show that if H = En

and G = Km with m > 3, then m = n. Pick g1, g2 ∈ V (G) (g1 6= g2) and h1, h2 ∈
V (H) (h1 6= h2). Consider vertices u = (g1, h1), v = (g2, h1) and z = (g1, h2) of Γ.
Since n,m > 3 we have ∂Γ(u, v) = ∂Γ(u, z) = 2. Furthermore, it is easy to see that
|NΓ(u) ∩NΓ(v)| = (m− 2)(n− 1) and that |NΓ(u) ∩NΓ(z)| = (m− 1)(n− 2). It follows
that m = n.

Conversly, assume that H = En for some n > 3 and G = Km for m ∈ {2, n}. If m = 2,
then Γ is isomorphic to Kn,n−nK2, a complete bipartite graph minus 1-matching, which
is clearly amply regular. If m = n, then it is easy to see that Γ is amply regular with
λΓ = (n−2)2 and µΓ = (n−2)(n−1). Note that this graph is isomorphic to a complement
of the n × n Rook’s graph, the Cartesian product Kn�Kn. Finally, if H = Kn for some
n > 3 and G = Km for some m > 2, then Γ is isomorphic to the complete multipartite
graph Kn×m, which is clearly amply regular.

6 Co-normal product

Throughout this section let G and H be graphs and let Γ be the co-normal product of
G and H. We will classify graphs G and H for which Γ is connected edge regular graph.
To avoid trivialities we assume that |V (G)| > 2 and |V (H)| > 2.

Lemma 23. Γ is connected if and only one of the following holds:

(i) H = En for some n > 2 and G is connected.

(ii) G = En for some n > 2 and H is connected.

(iii) G and H are nonempty and at least one of G or H is without isolated vertices.
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Proof. Assume that one of (i), (ii), (iii) above holds and pick vertices (g1, h1) and (g2, h2)
of Γ. We will show that Γ is connected by displaying a walk between (g1, h1) and (g2, h2).
Assume first that (i) above holds. If g1 = g2 then pick a neighbour g of g1 in G, and
observe that ((g1, h1), (g, h2), (g1, h2)) is a walk between (g1, h1) and (g2, h2). If g1 6= g2

then pick a path (g1, z1, z2, . . . , zi, g2) between g1 and g2 in G. Note that in this case
((g1, h1), (z1, h1), (z2, h1), . . . , (zi, h1), (g2, h2)) is a walk between (g1, h1) and (g2, h2).

If (ii) above holds then clearly Γ is connected since co-normal product is commutative.

Assume now that (iii) above holds. Since co-normal product is commutative, we could
assume that G is without isolated vertices. As H is nonempty, it contains adjacent
vertices c, d. Pick z ∈ NG(g1) and w ∈ NG(g2). Then ((g1, h1), (z, c), (w, d), (g2, h2)) is a
walk between (g1, h1) and (g2, h2).

We will now show that if Γ is connected, then one of (i), (ii), (iii) above holds. If H is
empty, then clearly G is connected. Indeed, if G is not connected, then pick g1, g2 ∈ V (G)
which are in different components and pick h ∈ V (H). Note that there is no path
between (g1, h) and (g2, h), so Γ is not connected, a contradiction. If G is empty, then H
is connected from the commutativity of the co-normal product.

Finally, assume that none of G,H is empty. Assume also that g ∈ V (G) and h ∈ V (H)
are isolated vertices. Then (g, h) is an isolated vertex of Γ, a contradiction. Therefore, at
least one of G, H is without isolated vertices, and so (iii) above holds.

Lemma 24. Γ is regular if and only if both G and H are regular. In this case the valency
kΓ = kG|V (H)|+ kH |V (G)| − kGkH .

Proof. Assume Γ is regular graph of valency kΓ. For an arbitrary vertex g ∈ V (G) take
vertices (g, h1), (g, h2) ∈ V (Γ). By the definition of Γ we have

kΓ = |NΓ((g, h1))| = |NG(g)||V (H)|+ |NH(h1)||V (G)| − |NG(g)||NH(h1)|,

and

kΓ = |NΓ((g, h2))| = |NG(g)||V (H)|+ |NH(h2)||V (G)| − |NG(g)||NH(h2)|.

It follows that |NH(h1)| = |NH(h2)|, so H is regular. G is regular for the commutativity
of the co-normal product.

Conversely, if both G and H are regular, then Γ is obviously a regular graph, as

|NΓ((g, h))| = |NG(g)||V (H)|+ |NH(h)||V (G)| − |NG(g)||NH(h)|,

so
|NΓ((g, h))| = kG|V (H)|+ kH |V (G)| − kGkH

for every (g, h) ∈ V (Γ).

Lemma 25. Assume that Γ is edge regular. Then the following (i), (ii) hold.

(i) Either G = Em for some positive integer m, or G is edge regular.
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(ii) Either H = Em for some positive integer m, or H is edge regular.

Proof. Recall that G and H are regular by Lemma 24.
(i) Assume that G is nonempty. Pick a pair of adjacent vertices g1, g2 of G. For an
arbitrary vertex h ∈ V (H) consider u = (g1, h), v = (g2, h) ∈ V (Γ). Note that, by the
definition of Γ, ∂Γ(u, v) = 1. We now count the number of common neighbours of u and
v. Observe that

NΓ(u) ∩NΓ(v) = {(g′, h′) | g′ ∈ NG(g1) ∩NG(g2), h′ ∈ V (H)} ∪
{(g′, h′) | g′ ∈ V (G), h′ ∈ NH(h)}.

Therefore

|NΓ(u)∩NΓ(v)| = |NG(g1)∩NG(g2)||V (H)|+ |NH(h)||V (G)|− |NG(g1)∩NG(g2)||NH(h)|.
(7)

Since λΓ = |NΓ(u) ∩NΓ(v)|, it follows that

|NG(g1) ∩NG(g2)| = λΓ − kH |V (G)|
|V (H)| − kH

.

Therefore, the number of common neighbours of two adjacent vertices of G is independent
of the choice of these vertices, and thus λG exists. The result follows.

(ii) This follows from the commutativity of the co-normal product.

Corollary 26. If Γ is edge regular and G,H are nonempty, then

λΓ = λG|V (H)|+ kH |V (G)| − λGkH
= λH |V (G)|+ kG|V (H)| − λHkG
= λG|V (H)|+ 2kH(kG − λG) + λH(|V (G)| − 2kG + λG)

= λH |V (G)|+ 2kG(kH − λH) + λG(|V (H)| − 2kH + λH).

Proof. Observe that by Lemma 24 and Lemma 25, G and H are both edge regular, so
λG and λH exist. The first equality now follows from (7). To prove the third equality,
pick adjacent vertices g1, g2 of G and adjacent vertices h1, h2 of H. Consider vertices
u = (g1, h1), v = (g2, h2) ∈ V (Γ). Note that, by the definition of Γ, ∂Γ(u, v) = 1. We now
count the number of common neighbours of u and v. Note that we have

NΓ(u) ∩NΓ(v) = {(g, h) | g ∈ NG(g1) ∩NG(g2), h ∈ V (H)} ∪
{(g, h), | g ∈ NG(g1) \NG(g2), h ∈ NH(h2)} ∪
{(g, h), | g ∈ NG(g2) \NG(g1), h ∈ NH(h1)} ∪
{(g, h), | g ∈ V (G) \ (NG(g1) ∪NG(g2)), h ∈ NH(h1) ∩NH(h2)}.

Therefore

|NΓ(u) ∩NΓ(v)| = |NG(g1) ∩NG(g2)||V (H)|+
(|NG(g1)| − |NG(g1) ∩NG(g2)|)|NH(h2)|+
(|NG(g2)| − |NG(g1) ∩NG(g2)|)|NH(h1)|+
(|V (G)| − |NG(g1) ∪NG(g2)|)|NH(h1) ∩NH(h2)|.
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The result follows.
The second and the fourth equality are obtained by reversing the roles of G and H.

Theorem 27. Γ is edge regular if and only if one of the following (i)–(iii) holds:

(i) H = Em for some m > 2 and G is edge regular.

(ii) G = Em for some m > 2 and H is edge regular.

(iii) H = Ks×m and G = Kt×n for some s, t > 2 and m,n > 1.

Proof. Assume that Γ is edge regular. If H = Em (G = Em, respectively) for some m > 2
then we are done, since G (H, respectively) is edge regular by Lemma 25. Assume now
that G,H are nonempty. By Corollary 26,

λG|V (H)|+ kH |V (G)| − λGkH = λG|V (H)|+ 2kH(kG − λG) + λH(|V (G)| − 2kG + λG).

It follows that
kH(|V (G)| − 2kG + λG) = λH(|V (G)| − 2kG + λG).

Since obviously kH 6= λH we have 2kG−λG = |V (G)|. Note that in the complement of G,
every two nonadjacent vertices have exactly |V (G)| − 2kG + λG = 0 common neighbours.
Since the complement of G is also regular, Proposition 1(ii) implies that the complement
of G is isomorphic to t×Kn for some t, n > 1. It follows that G = Kt×n for some t, n > 1.
Since G is nonempty, we also have that t > 2. The proof that H = Ks×m for some s > 2
and m > 1 follows from commutativity of the co-normal product.

Assume now that (i), (ii) or (iii) of the Theorem holds. Then Γ is regular by Lemma 24.
It is now an easy exercise to show that if (i) ((ii), respectively) holds, then λΓ = λG|V (H)|
(λΓ = λH |V (G)|, respectively), and so Γ is edge regular. If (iii) holds, then Γ = Kst×mn,
which is also edge regular.

Corollary 28. Γ is amply regular if and only if one of the following (i)–(iii) holds:

(i) H = Em for some m > 2 and G = Kt×n for some t > 2, n > 1.

(ii) G = Em for some m > 2 and H = Kt×n for some t > 2, n > 1.

(iii) H = Ks×m and G = Kt×n for some s, t > 2, and either m > 2 or n > 2.

Proof. Assume that Γ is amply regular. Let first consider case (i) of Theorem 27, that is
the case when H = Em for some m > 2 and G is edge regular. If G is a complete graph,
then (i) above holds. Therefore assume that G is not a complete graph. Pick g ∈ V (G)
and h1, h2 ∈ V (H). Abbreviate u = (g, h1), v = (g, h2) and note that ∂Γ(u, v) = 2. It is
also clear that

|NΓ(u) ∩NΓ(v)| = kG|V (H)|.
Next pick arbitrary g1, g2 ∈ V (G) with ∂G(g1, g2) = 2, and arbitrary h ∈ V (H). Abbrevi-
ate w = (g1, h), z = (g2, h) and note that ∂Γ(w, z) = 2. In this case we have

|NΓ(w) ∩NΓ(z)| = |NG(g1) ∩NG(g2)||V (H)|.
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Since Γ is amply regular, we clearly have

kG|V (H)| = |NG(g1) ∩NG(g2)||V (H)|,

which implies kG = |NG(g1)∩NG(g2)|. Therefore, µG exists and is equal to kG. Note that
this implies that for x, y ∈ V (G) we have ∂G(x, y) 6 2 (since in G there is no induced
path of length 3), and so by Proposition 1(iii), G is Kt×n for some positive integers t, n.
As G is connected, we clearly have that t > 2.

Part (ii) follows from the commutativity of the co-normal product.

Let us now consider case (iii) of Theorem 27, that is H = Ks×m and G = Kt×n for some
s, t > 2 and m,n > 1. Since Γ is not a complete graph, we have either m > 2 or n > 2.

Conversely, if (i) or (ii) above holds, then Γ = Kt×mn, and if (iii) above holds, then
Γ = Kst×mn. In both cases Γ is an amply graph.
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