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Abstract

The Alladi-Gordon identity
∑j

k=0(q
i−k+1; q)k

[
j
k

]
q(i−k)(j−k) = 1 plays an impor-

tant role for the Alladi-Gordon generalization of Schur’s partition theorem. By using
Joichi-Stanton’s insertion algorithm, we present an overpartition interpretation for
the Alladi-Gordon key identity. Based on this interpretation, we further obtain a
combinatorial proof of the Alladi-Gordon key identity by establishing an involution
on the underlying set of overpartitions.

Keywords: the Alladi-Gordon key identity; Joichi-Stanton’s insertion algorithm;
Schur’s celebrated partition theorem; overpartitions

1 Introduction

Let N be the set of nonnegative integers. Let

(a)k = (a; q)k =

{
(1− a)(1− aq) · · · (1− aqk−1), if k > 0,
1, if k = 0,

denote the common notation of q-shifted factorials [14]. Given j, k ∈ N, let[
j

k

]
=

(q; q)j
(q; q)k(q; q)j−k

,
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denote the Gaussian coefficients, which are also called the q-binomial coefficients, or the
Gaussian polynomials [6]. The main objective of this paper is to give a combinatorial
proof of the following identity:

j∑
k=0

(qi−k+1; q)k

[
j

k

]
q(i−k)(j−k) = 1, (1)

which we call the Alladi-Gordon key identity, since it was first introduced by Alladi and
Gordon [4] in an equivalent form for the study of some generalization of Schur’s celebrated
partition theorem of 1926.

Schur [18] proved that the number of partitions of m into parts with minimal difference
3 and with no consecutive multiples of 3 is equal to the number of partitions of m into
distinct parts ≡ 1, 2 ( mod 3). This significant result is now known as Schur’s celebrated
partition theorem of 1926. There are many proofs, refinements, and generalizations of
Schur’s partition theorem, see [5, 7, 12, 15] and references therein.

From the viewpoint of generating functions, each partition theorem implies a corre-
sponding q-identity. The Alladi-Gordon key identity (1) is essentially equivalent to the
following q-identity [4, Lemma 2] corresponding to Alladi and Gordon’s notable general-
ization of Schur’s partition theorem,∑

06m6min{i,j}

qTi+j−m+Tm

(q)i−m(q)j−m(q)m
=

qTi+Tj

(q)i(q)j
, (2)

where i and j are given nonnegative integers and Ti = i(i + 1)/2 is the i-th triangle
number.

The Alladi-Gordon key identity turned out to have many interesting applications in
the theory of partitions. Alladi and Berkovich [3, Eq. (2.1)]) obtained a double bounded
version of Schur’s partition theorem by generalizing an equivalent form of (2). Alladi,
Andrews and Gordon [2, Lemma 2] introduced a three parameter generalization of (2)
and obtained a generalization of the Göllnitz theorem [15], a higher level extension of
Schur’s partition theorem. Alladi, Andrews and Berkovich [1, Eq. (1.7)] further obtained
a remarkable four parameter extension of the identity (2), which implies a four parameter
partition theorem and thereby extends the Göllnitz theorem.

Due to its significance, the Alladi-Gordon key identity certainly deserves to be further
studied. Alladi and Gordon [4] gave two proofs of (2), one combinatorial and the other
algebraic. Alladi, Andrews and Berkovich [1] also pointed out that (2) is a special case of
q-Chu-Vandermonde summation formula. In this paper we will present an overpartition
interpretation of the left-hand side of (1) and then give another combinatorial proof of
the Alladi-Gordon key identity.

This paper is organized as follows. In Section 2 we will review Joichi-Stanton’s inser-
tion algorithm for partitions and then give an overpartition interpretation of the Alladi-
Gordon key identity. In Section 3, based on this interpretation, we will give an involution
proof of the Alladi-Gordon key identity.
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2 An overpartition interpretation of the key identity

The aim of this section is to give a combinatorial interpretation of the left-hand side of
(1) in terms of overpartitions. This is achieved by applying Joichi-Stanton’s insertion
algorithm for partitions.

Let us first review some definitions and notations about partitions. Recall that a
partition λ of n ∈ N with k parts is denoted by a vector λ = (λ1, λ2, . . . , λk), where
λ1 > λ2 > · · · > λk > 0 and

∑k
i=1 λi = n. The number n is called the size of λ, denoted

by |λ|. For convenience, the length of λ is defined to be the number k of nonnegative parts
of λ, denoted by `(λ). (Note that `(λ) usually enumerates the number of positive parts.)
An overpartition is a partition in which the first occurrence of a number may be overlined.
For example, λ = (9, 7, 6, 5, 5, 2, 2, 1) is an overpartition with three overlined parts. An
ordinary partition can also be treated as an overpartition with no overlined parts. The
concept of overpartition was first proposed by Corteel and Lovejoy [11] while studying
basic hypergeometric series. For deeper research on overpartitons, see for instance [8, 9,
13, 17].

An overpartition can also be understood as a pair of partitions (α, β), where α is a
partition with distinct parts and β is an ordinary partition. Joichi and Stanton [16] found
the following fundamental bijection which can be restated in terms of overpartitions.

Theorem 1. There is a one-to-one correspondence between overpartitions with n non-
negative parts, and pairs of partitions (α, β), where α is a partition with distinct parts
from the set {0, 1, 2, . . . , n− 1} and β is a partition with n nonnegative parts.

The above correspondence can be described as an insertion algorithm [16, Algorithm
Φ]. Given an ordinary partition β, we may insert a part m into β, by adding 1 to the first
m parts of β, and putting an overline above the (m + 1)-th part. Moreover, we can add
other distinct parts in the same way.

Example 2. If α = (5, 3, 0) and β = (9, 6, 5, 2, 2, 0), then we get an overpartition
(11, 8, 7, 3, 3, 0).

To give a combinatorial interpretation of (1), we shall assign a weight to each overlined
part of an overpartition. As in [10], each overlined part of an overpartition has the same
weight. For example, λ = (9, 7, 6, 5, 5, 2, 2, 1, 0) with a weight 3 endowed in each overline
is displayed in Figure 1, where each overline of λ is represented by a row of three hollow
dots, and the part zero is represented by the symbol ∅.

Given 0 6 k 6 j 6 i, let A(i, k) denote the set of partitions into distinct parts from
the set {i − k + 1, i − k + 2, . . . , i} plus the empty partition, and let B(j, k) denote the
set of partitions into k nonnegative parts with each part not exceeding j − k. It is easy
to see ∑

λ∈A(i,k)

(−1)`(λ)q|λ| = (qi−k+1; q)k, (3)
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Figure 1: An overpartition λ = (9, 7, 6, 5, 5, 2, 2, 1, 0) with a weight 3 in each overline.

and it is well known [6, Theorem 3.1] that∑
λ∈B(j,k)

q|λ| =

[
j

k

]
. (4)

We now come to the main result of this section. For a weighted overpartition λ, let
ol(λ) denote the number of overlined parts of λ, and let w(λ) denote the weight assigned
to each overlined part of λ. Given 0 6 k 6 j 6 i, let O(i, j, k) denote the set of weighted
overpartitions into k nonnegative parts, which satisfy the following three conditions:

(1) each part is less than or equal to j − 1;

(2) for k > 2 and each 1 6 s 6 k− 1 there are at least k− s overlined parts to the right
of j − s if it occurs as a part;

(3) and, each overline is endowed with a weight i− k + 1.

Note that the empty partition is the sole element of O(i, j, 0). For fixed i, j satisfying
0 6 j 6 i, let

O(i, j) =

j⊎
k=0

O(i, j, k). (5)

The main result of this section is as follows.

Theorem 3. Given 0 6 j 6 i, we have

j∑
k=0

(qi−k+1; q)k

[
j

k

]
q(i−k)(j−k) =

∑
λ∈O(i,j)

(−1)ol(λ)q|λ|+ol(λ)w(λ)q(i−`(λ))(j−`(λ)). (6)

Proof. By (5), it suffices to prove that

(qi−k+1; q)k

[
j

k

]
=

∑
λ∈O(i,j,k)

(−1)ol(λ)q|λ|+ol(λ)(i−k+1),

since for each λ ∈ O(i, j, k) we have `(λ) = k and w(λ) = i − k + 1. It is clearly true
for k = 0. In the following we may assume that k > 1. In view of (3) and (4), we only
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need to give a weight-preserving bijection Φ between the set A(i, k)×B(j, k) and the set
O(i, j, k). Actually, we can obtain Φ by using Joichi-Stanton’s insertion algorithm.

For any given pair (γ, β) ∈ A(i, k) × B(j, k), define Φ(γ, β) to be the partition λ
obtained as follows.

(i) If γ is the empty partition, then let λ = β. By Property (2) of the definition
of O(i, j, k), it is clear that B(j, k) ⊆ O(i, j, k). Therefore, in this case we have
λ ∈ O(i, j, k).

(ii) If γ is not the empty partition, then let γ denote the partition obtained from γ by
decreasing each part by i − k + 1. Therefore, γ is a partition into distinct parts
from the set {0, 1, . . . , k − 1}. Now we insert γ into β by applying Joichi-Stanton’s
insertion algorithm, and obtain an overpartition λ with at least one overlined part.
If each overline is endowed with a weight i− k + 1, then it is routine to verify that
the weighted overpartition λ lies in O(i, j, k). Note that the number of parts of γ is
equal to the number of overlined parts of λ. Thus

(−1)`(γ)q|γ|q|β| = (−1)ol(λ)q|λ|+ol(λ)(i−k+1).

It remains to show that Φ is reversible. There are two cases to consider.

(i’) If λ ∈ O(i, j, k) and there are no overlined parts in λ, then again by Property (2)

of the definition of O(i, j, k), we must have λ ∈ B(j, k). In this case, let Φ
−1

(λ) =
(γ, β), where γ is the empty partition and β = λ.

(ii’) If λ ∈ O(i, j, k) and there is at least one overlined part in λ, then by reversing the
insertion algorithm, we will obtain a pair of partitions (γ, β). Clearly, γ is a partition
into distinct parts from the set {0, 1, . . . , k − 1} since there are k parts in λ. It is
also clear that β has only k parts. We further need to show that each part of β is
not exceeding j−k. Suppose that there are t overlined parts to the right of λ1, then
β1 = λ1− t. Assume that λ1 = j− s for some 1 6 s 6 k− 1. By Property (2) of the
definition of O(i, j, k) we have t > k− s. Therefore, β1 = λ1− t = j− s− t 6 j− k.

This completes the proof.

The following example gives an illustration of the map Φ of the above proof.

Example 4. For i = 9, j = 6, k = 3, γ = (8, 7) ∈ A(9, 3), β = (3, 3, 2) ∈ B(6, 3). We
shall transform (γ, β) into λ ∈ O(9, 6, 3) in two steps.

(1) Change γ = (8, 7) into γ = (1, 0) by decreasing each part by 7.

(2) Insert γ = (1, 0) into β = (3, 3, 2) to obtain an overpartition λ = (4, 3, 2) ∈ O(9, 6, 3),
where each overline contains a weight 7. See Figure 2.

By reversing the procedure it is easy to obtain (γ, β) from λ.
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λ

Figure 2: Insertion of γ = (1, 0) into β = (3, 3, 2) leads to λ = (4, 3, 2), where γ is
represented as the overpartition (1, 0) and each overline has a weight 7 endowed.

3 Combinatorial proof of the Alladi-Gordon key iden-

tity

The aim of this section is to prove the following result by constructing an involution on
the set O(i, j).

Theorem 5. Given 0 6 j 6 i, we have∑
λ∈O(i,j)

(−1)ol(λ)q|λ|+ol(λ)w(λ)q(i−`(λ))(j−`(λ)) = 1, (7)

where O(i, j) is as defined in (5).

Combining Theorem 3, this provides a combinatorial proof of the the Alladi-Gordon
key identity.

To prove Theorem 5, we first give a decomposition of O(i, j). For λ ∈ O(i, j) let λt
denote the largest overlined part of λ. Let

O1(i, j) = {λ ∈ O(i, j) | ol(λ) > 1, λt = j − `(λ) + ol(λ)− 1} ,

O2(i, j) = {λ ∈ O(i, j) | ol(λ) > 1, λt < j − `(λ) + ol(λ)− 1} ,

O3(i, j) = {λ ∈ O(i, j) | ol(λ) = 0} .

For the convenience, let the empty partition belong to O3(i, j).

Lemma 6. For 0 6 j 6 i, we have

O(i, j) = O1(i, j) ]O2(i, j) ]O3(i, j).

Proof. It is clear that O1(i, j), O2(i, j) and O3(i, j) are disjoint from each other. It suffices
to show that for each λ ∈ O(i, j) with ol(λ) > 1, we have λt 6 j − `(λ) + ol(λ) − 1.
Otherwise, suppose that λt = j − s and s < `(λ) − ol(λ) + 1. By Property (2) of the
definition of O(i, j, k), there are at least `(λ) − s > ol(λ) overlined parts to the right of
λt, contradicting the definition of ol(λ). This completes the proof.

With the above decomposition of O(i, j), we can now give a bijective proof of Theorem
5.
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Proof of Theorem 5. For λ ∈ O(i, j), let

f(λ) = (−1)ol(λ)q|λ|+ol(λ)w(λ)q(i−`(λ))(j−`(λ)).

To give a bijective proof, we define an involution, denoted Ψ, acting on O(i, j) as follows:

(1) If λ ∈ O1(i, j), then let Ψ(λ) denote the overpartition obtained from λ by removing
the largest overlined part λt. In this case, we have

`(Ψ(λ)) = `(λ)− 1

ol(Ψ(λ)) = ol(λ)− 1

|Ψ(λ)| = |λ| − λt
= |λ| − (j − `(λ) + ol(λ)− 1).

By Property 3 of the definition of O(i, j, k), we have

w(Ψ(λ)) = i− `(Ψ(λ)) + 1 = (i− `(λ) + 1) + 1 = w(λ) + 1.

It is routine to verify that f(Ψ(λ)) + f(λ) = 0. Note that if ol(λ) = 1, then clearly
Ψ(λ) ∈ O3(i, j). If ol(λ) > 1, then we must have Ψ(λ) ∈ O2(i, j) since

Ψ(λ)t < λt = j − `(λ) + ol(λ)− 1 = j − `(Ψ(λ)) + ol(Ψ(λ))− 1.

(The inequality Ψ(λ)t < λt follows from the definition of overpartitions.) In both
cases, we have `(Ψ(λ)) = `(λ)− 1 6 j − 1.

(2) If λ ∈ O2(i, j), then we must have j > `(λ). Otherwise, if j = `(λ), then λt <
ol(λ) − 1, contradicting the fact that the overlined parts of an overpartition are
distinct nonnegative integers. Then let Ψ(λ) denote the overpartition obtained
from λ by inserting an overlined part j − `(λ) + ol(λ)− 1. Clearly, Ψ(λ) ∈ O1(i, j)
and Ψ(Ψ(λ)) = λ.

(3) If λ ∈ O3(i, j), then we define Ψ(λ) as follows according to whether j > `(λ).
If j > `(λ), then let Ψ(λ) denote the overpartition obtained from λ by inserting
an overlined part j − `(λ) − 1. In this case, it is clear that Ψ(λ) ∈ O1(i, j) and
Ψ(Ψ(λ)) = λ. If j = `(λ), then λ must be the partition (0, 0, . . . , 0︸ ︷︷ ︸

j′s

). Otherwise, we

will have λ1 > 0, and by Property 2 of O(i, j, j) there must be at least one overlined
part in λ contradicting ol(λ) = 0. In this case let Ψ(λ) = λ.

By the involution Ψ of O(i, j), we have∑
λ∈O(i,j)

f(λ) =
∑

λ=(0, 0, . . . , 0︸ ︷︷ ︸
j′s

)

f(λ) = 1.

This completes the proof.
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In fact, there is a graphical representation of the involution Ψ of O(i, j) in the above
proof, which seems more convenient and intuitive. Since each λ ∈ O(i, j) contributes a
term

f(λ) = (−1)ol(λ)q|λ|+ol(λ)w(λ)q(i−`(λ))(j−`(λ)),

we may consider λ as a pair of partitions (λ, λ̂), where λ̂ is the unique rectangular partition
(i− `(λ), . . . , i− `(λ)︸ ︷︷ ︸

(j−`(λ))′s

).

Example 7. Take i = 9, j = 6 and let λ = (4, 3, 2). In this case, we have λ̂ = (6, 6, 6),
ol(λ) = 2, `(λ) = 3, w(λ) = i − `(λ) + 1 = 7, and hence λ ∈ O1(i, j). Thus, Ψ(λ) =

(3, 2) ∈ O2(i, j) and Ψ̂(λ) = (7, 7, 7, 7). Geometrically, Ψ acts on λ (or equivalently (λ, λ̂))
as illustrated in Figure 3: remove a row of dots representing the largest overlined part, add
a hollow dot to the rightmost of each overlined part, and append a hook to the top-left
of the diagram of λ̂.

λ λ̂

−→
←−

Ψ(λ) Ψ̂(λ)

Figure 3: The involution Ψ.
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[15] H. Göllnitz. Partitionen mit Differenzenbedingungen. J. Reine Angew. Math.,
225:154–190, 1967.

[16] J.T. Joichi and D. Stanton. Bijective proof of basic hypergeometric series identities.
Pacific J. Math., 127(1):103–120, 1987.

[17] J. Lovejoy and O. Mallet. Overpartition pairs and two classes of basic hypergeometric
series. Adv. Math., 217(1):386–418, 2008.

[18] I.J. Schur. Zur Additiven Zahlentheorie. S.-B. Preuss. Akad. Wiss. Phys.-Math.
Kl., 1926, pp. 488–495. (Reprinted in I. Schur, Gesammelte Abhandlungen, vol. 2,
Springer Verlag, Berlin, 1973, pp. 43–50.)

the electronic journal of combinatorics 20(1) (2013), #P63 9


	Introduction
	An overpartition interpretation of the key identity
	Combinatorial proof of the Alladi-Gordon key identity

