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Abstract

We discovered a dual behaviour of two tree indices, the Wiener index and the num-
ber of subtrees, for a number of extremal problems [Discrete Appl. Math. 155 (3) 2006,
374–385; Adv. Appl. Math. 34 (2005), 138–155]. We introduced the concept of subtree
core : the subtree core of a tree consists of one or two adjacent vertices of a tree that
are contained in the largest number of subtrees. Barefoot, Entringer and Székely [Discrete
Appl. Math. 80(1997), 37–56] determined extremal values of σT (w)/σT (u), σT (w)/σT (v),
σ(T )/σT (v), and σ(T )/σT (w), where T is a tree on n vertices, v is in the centroid of the
tree T , and u,w are leaves in T . In Part I of this paper we tested how far the negative
correlation between distances and subtrees go if we look for (and characterize) the extremal
values of FT (w)/FT (u), FT (w)/FT (v). In this paper we characterize the extremal values of
F (T )/FT (v), and F (T )/FT (w), where T is a tree on n vertices, v is in the subtree core of the
tree T , and w is a leaf in T—completing the analogy, changing distances to the number of
subtrees.

AMS Subject Classification (2010): 05C05; 05C12; 05C35; 92E10
Keywords: Wiener index; tree; star tree; distances in trees; subtrees of trees; extremal
problems; center; centroid; subtree core
∗This author acknowledges financial support from the grant #FA9550-12-1-0405 from the U.S. Air Force Office

of Scientific Research (AFOSR) and the Defense Advanced Research Projects Agency (DARPA) and from the grant
1000475 of the NSF DMS.
†This author acknowledges financial support from the grant 245307 from the Simons Foundation.

1



1 Introduction

For a tree T , let F (T ) denote the number of subtrees of T and FT (v) denote the number of subtrees
of T containing the vertex v ∈ V (T ). We [5] introduced a new centrality concept for trees: the set
of vertices that maximize FT (v) among all vertices of T . This is called the subtree core of T and
will be denoted by Core(T ). The concept of subtree core is the natural subtree analogue of the
well-known concepts of center [3] and centroid [3, 9] of a tree.

Theorem 1 [5] The function FT (.) is strictly concave along any path of T , and hence the subtree
core of any tree T contains one or two vertices. If the subtree core contains two vertices, then they
must be adjacent.

In a tree T , for vertices u, v ∈ V (T ) let dT (u, v) denote the distance of the vertices, i.e. the
number of edges in the unique uv path in T . The distance of vertex w, σT (w), is defined as∑

v∈V (T ) dT (w, v), and the Wiener index of the tree T , σ(T ), is defined as 1
2

∑
w σT (w). (For a

survey on the Wiener index of trees, see [2].) We term degree 1 vertices in a tree as leaves. We
use the notation L(T ) for the set of leaves of the tree T .

Knudsen [4] provided a multiple parsimony alignment algorithm, given an affine gap cost and
a phylogenetic tree. In bounding the time complexity of his algorithm, a factor was the number of
so-called “acceptable residue configurations”, which is the number of subtrees of the phylogenetic
tree containing at least one original leaf vertex. Knudsen’s work motivated our earlier papers
[5, 6]. Since the appearance of these papers, extensive work has been done in the study of the
number of subtrees of a tree. In particular, the extremal values of this number are determined for
many different categories of trees. An intriguing fact is that these extremal trees that maximize or
minimize the number of subtrees coincide with the extremal trees that minimize or maximize the
Wiener index of a tree (even though there is no functional relation between the number of subtrees
and the Wiener index of a tree). Wagner [8] made an analysis of correlation the between a number
of pairs of tree indices, and he found the highest (negative) correlation between the Wiener index
and the number of subtrees among the indices that he considered. For a summary of this progress
see [7].

Barefoot, Entringer and Székely [1] determined extremal values of σT (w)/σT (u), σT (w)/σT (v),
σ(T )/σT (v), and σ(T )/σT (w), where T is a tree on n vertices, v is in the centroid C(T ) of the
tree T , and u,w ∈ L(T ) are leaves in T . Note that extremal behaviour of fractions is always more
delicate than that of the numerator and denominator, therefore it is a natural step to see how far
the duality (negative correlation) between the Wiener index and the number of subtrees extend
when we study extreme values of the ratios above.

In [7] we started investigating exactly this problem and we conclude the investigation in the
present paper. [7] characterized the extremal values of FT (w)/FT (u), FT (w)/FT (v), where T is a
tree on n vertices, v is in the subtree core of the tree T , and u,w are leaves in T—the complete
analogue of the first two problems of [1], changing distances to the number of subtrees. In this
paper we characterize the extremal values of F (T )/FT (v), and F (T )/FT (w), where T is a tree on
n vertices, v is in the subtree core of the tree T , and w is a leaf in T—the complete analogue of
the last two problems of [1], changing distances to the number of subtrees.
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2 The results

First note the identity
F (T )

FT (v)
= 1 +

FT (v)

FT (v)
,

where FT (v) denotes the number of subtrees of T not containing v. As it is a useful observation,
we spell out the following immediate consequence of Theorem 1:

Corollary 2 Both F (T )
FT (v)

and FT (v)
FT (v)

are strictly convex, when v runs along along any path of a tree
T . Both ratios are maximized at a leaf vertex and minimized at subtree core vertices.

Theorem 3 For any tree T with |V (T )| = n and any v ∈ Core(T ), we have

(i) FT (v) ≤ 2n−1 with equality if and only if T is a star centered at v.

(ii) F (T ) ≤ 2n−1 + n− 1 with equality if and only if T is a star [5].

(iii) F (T )
FT (v)

≥ 1 + n−1
2n−1 with equality if and only if T is a star centered at v.

Proof. Simply note that
FT (v) ≥ |V (T \ {v})| = n− 1

and
FT (v) ≤ the number of subsets of V (T \ {v}) = 2n−1

with both equalities if and only if T is a star. Hence (i) follows. For (iii), observe

F (T )

FT (v)
= 1 +

FT (v)

FT (v)
≥ 1 +

n− 1

2n−1
.

Now take an arbitrary u ∈ L(T ) and let v be its unique neighbor. Consider Tv = T \ {u}, and
observe

F (T )

FT (u)
= 1 +

FT (u)

FT (u)
= 1 +

F (Tv)

1 + FTv(v)
= 1 +

FTv(v) + FTv(v)

1 + FTv(v)
= 2 +

FTv(v)− 1

1 + FTv(v)
.

As in the proof of Theorem 3, FTv(v)− 1 is minimized and 1 + FTv(v) is maximized when Tv is a
star centered at v. Hence we obtained:

Theorem 4 For a given n = |V (T )| and any u ∈ L(T ),

F (T )

FT (u)
≥ 2n−1 + n− 1

1 + 2n−2

with equality if and only if T is a star.
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Theorem 5 With given |V (T )| = n and for u ∈ L(T ), the maximum value of F (T )
FT (u)

is obtained
when u is an endvertex of a path of length x ≥ x0, and the other endvertex of the path is identified
with the center of a star on n− x vertices. With these parameters, we have

F (T )

FT (u)
=

2n−x−1(x+ 1) + 1
2
x(x− 1) + (n− 1)

2n−x−1 + x
=: f(x).

(In the terminology of [7], this tree is an (x+ 1)-comet.) The maximum of F (T )
FT (u)

is attained when

x = n−2 log2 n− ln ln 2
ln 2

+o(1) is rounded up or down, and the maximum value of F (T )
FT (u)

is n(1+o(1)).

The extremal tree in Theorem 5 seems to be extremely similar as the optimum tree for Theorem
1 in [7]. We attempt to provide some explanation for this coincidence in [7].

Theorem 6 For a given n = |V (T )|, the maximum F (T )
FT (v)

for v ∈ Core(T ), is obtained by a path,
with

F (T )

FT (v)
= 1 +

bn
2
c

bn
2
c+ 1

.

It is easy to verify that for a path Pn on n vertices, we have

F (Pn)

FPn(v)
=

(
n
2

)
+ n

dn
2
e
(
bn

2
c+ 1

) =

{
2n

n+1
, if n odd

2n+2
n+2

, if n even
(2.1)

as in the theorem. The proofs to Theorems 5 and 6 will be given in the next two sections.

3 Proof to Theorem 5: tight upper bound for F (T )
FT (u), u ∈ L(T )

Fix a positive integer n. Let us be given a tree T with |V (T )| = n and an arbitrary u ∈ L(T ). Let
u1 denote the unique neighbor of u and let T1 = T \ {u}. We start with an observation:

Lemma 7 If a tree T and u ∈ L(T ) maximize F (T )
FT (u)

, then

u1 ∈ L(T1),

with u1 and T1 defined above the Lemma.

Proof. As in the proof of Theorem 4, we obtain

F (T )

FT (u)
= 2 +

FT1(u1)− 1

1 + FT1(u1)
. (3.2)

For n ≥ 3, we have FT1(u1) ≥ 1. Suppose (for contradiction) that u1 is not a leaf in T1, and we
will show that (3.2) can be increased.
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A B

v u1

A

B

v
u1

Figure 1: T1 (left) and T ′1 (right).

Focusing now on T1, let v be a neighbor of u1 in T1 and A (resp. B) denote the component
containing v (resp. u1) in T1 \ u1v, i.e. after the deletion of the u1v edge. The assumption that u1

is not a leaf in T1 will be used in the form FB(u1) > 1. Consider now T ′1, which is obtained from
T1 by “moving” B from u1 to v, see Fig. 1. Simple calculations yield

FT1(u1) = (1 + FA(v))FB(u1) > 1 + FA(v)FB(v) = FT ′1
(u1)

and

FT1(u1) = F (A) + F (B)− FB(u1) < F (A)− FA(v) + F (B)− FB(v) + FA∪B(v) = FT ′1
(u1),

where in the right-hand side terms refer to T ′1, in the left-hand terms refer to T1. Note that FB(v)
in T ′1 has the same value as FB(u1) in T1, and the terms F (A) and F (B) are the same in the two
trees. Also, FA∪B(v) > FA(v) in T ′1. Hence (3.2) is increased when T1 is replaced with T ′1.

Now we are going to repeat this argument. Assume that the unique neighbor of u1 in T1 is u2, and
consider T2 = T1 \ {u1}. Repeating our arguments, we obtain

F (T )

FT (u)
= 2 +

FT1(u1)− 1

1 + FT1(u1)
= 2 +

FT2(u2) + FT2(u2)− 1

2 + FT2(u2)
= 3 +

FT2(u2)− 3

2 + FT2(u2)
.

Suppose that in the tree T that maximizes F (T )
FT (u)

we have a path uu1u2 . . . ux where ux is the vertex

Tx

ux−1 uxu1u

Figure 2: Structures of the optimal T and Tx.

closest to u that is of degree > 2, and consider Tx = T \ {u, u1, ..., ux−1}, see Fig. 2. Repeating
this argument yields

F (T )

FT (u)
= x+ 1 +

FTx(ux)− 1
2
x(x+ 1)

x+ FTx(ux)
. (3.3)

Define x0 = x0(n) to be the largest integer satisfying

2n−x−2 + (n− x− 2) ≥ 1

2
x(x+ 1). (3.4)
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Clearly 0 < x0 < n for all n ≥ 3, and every integers in [0, x0] satisfy the inequality (3.4), while no
integer in [x0 + 1, n] satisfy (3.4). The reason is that the left-hand side of (3.4) is decreasing in x,
while the right-hand side of (3.4) is increasing in x. The following lemma describes the structure

of T that maximizes F (T )
FT (u)

without telling the optimal value of the parameter x.

Lemma 8 For a given n = |V (T )|, the tree T and u ∈ L(T ) (see Fig. 2) that obtain the maximum

value of F (T )
FT (u)

satisfy these two properties:

(i) x ≥ x0 + 1; and
(ii) Tx is a star centered at ux.

Proof. First assume x ≤ x0 for contradiction. Recall (3.3)

F (T )

FT (u)
= x+ 1 +

FTx(ux)− 1
2
x(x+ 1)

x+ FTx(ux)

and consider two cases:
(a) If

FTx(ux) ≥ 1

2
x(x+ 1),

then
FTx(ux)− 1

2
x(x+ 1)

x+ FTx(ux)
(3.5)

is nonnegative. Since ux has degree at least 2 in Tx, let a be one of the neighbors (in Tx) of ux and
A, B be the components in Tx \ {uxa} containing a, ux respectively (left of Fig. 3).

A B

a ux

A

B

a
ux

Figure 3: Tx (left) and T ′x (right).

Consider T ′x generated from Tx by moving B from ux to a (right of Fig. 3), we have (by the
same reasoning as Lemma 7)

FTx(ux) = (1 + FA(a))FB(ux) > 1 + FA(a)FB(a) = FT ′x(ux)

and

FTx(ux) = F (A) + F (B)− FB(ux) < F (A)− FA(a) + F (B)− FB(a) + FA∪B(a) = FT ′x(ux).

Thus the numerator of (3.5) increases and the denominator of (3.5) decreases when Tx is replaced
by T ′x. Consequently

F (T )

FT (u)
= x+ 1 +

FTx(ux)− 1
2
x(x+ 1)

x+ FTx(ux)
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increases, a contradiction.
(b) If

FTx(ux) <
1

2
x(x+ 1),

then by (3.3), we have
F (T )

FT (u)
< x+ 1.

Consider T ′ obtained by replacing Tx by a star T ′x on n−x vertices with ux being a leaf of it. Now

F (T ′)

FT ′(u)
= x+ 1 +

FT ′x(ux)− 1
2
x(x+ 1)

x+ FT ′x(ux)

= x+ 1 +
2n−x−2 + (n− x− 2)− 1

2
x(x+ 1)

x+ FT ′x(ux)

≥ x+ 1,

a contradiction. Hence (i) is proved.
If x ≥ x0 + 2, then

F (T )

FT (u)
= x+ 1 +

FTx(ux)− 1
2
x(x+ 1)

x+ FTx(ux)
= x+

F (Tx)− 1
2
x(x− 1)

x+ FTx(ux)
. (3.6)

Note that

F (Tx) ≤ 2n−x−1 + (n− x− 1) <
1

2
x(x− 1),

where the first inequality follows from Theorem 3 (ii), and the second inequality follows from
x− 1 > x0. Also note that the second term in (3.6)

F (Tx)− 1
2
x(x− 1)

x+ FTx(ux)
< 0

independently of what Tx actually is, and to maximize F (T )
FT (u)

, we want to maximize both F (Tx)

and FTx(ux). This is achieved when Tx is a star according to Theorem 3 (i) and (ii).
Finally let us assume (for contradiction) that x = x0 + 1, ux is of degree at least 3 and Tx is

not a star. Then T is represented by Fig. 4. Here a is a neighbor of ux0+1 that is not a leaf in

A
B

ux0 ux0+1u1u

a

Figure 4: Structures of T and Tx when x = x0 + 1.

Tx0+1 (such an a exists, since Tx is not a star) and B contains at least one vertex different from
ux0+1 (since ux0+1 = ux is of degree at least 3). Now

F (T )

FT (u)
= x0 + 1 +

F (Tx0+1)− 1
2
x0(x0 + 1)

(x0 + 1) + FTx0+1(ux0+1)
.
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(a) If F (Tx0+1) <
1
2
x0(x0 + 1), then

F (T )

FT (u)
< x0 + 1.

Consider a T ′ obtained from T by replacing Tx0+1 with a star on n − x0 − 1 vertices centered at
ux0+1. Simple calculation shows that

F (T ′)

FT ′(u)
= x0 + 1 +

2n−x0−2 + n− x0 − 2− 1
2
x0(x0 + 1)

(x0 + 1) + 2n−x0−2
,

which is ≥ x0 + 1 by the definition of x0, a contradiction.
(b) If F (Tx0+1) ≥ 1

2
x0(x0 + 1), then consider T ′x0+1 obtained by “moving” B from ux0+1 to a

but keeping ux0+1 in the tree (see Fig. 5), and the corresponding T ′ obtained from T .

A
B

ux0 ux0+1u1u

a

Figure 5: Structures of T ′ and T ′x0+1.

Then, as FA(a) > 1 and FB(a) > 1, we have

F (T ′x0+1) = 1 + 2FA(a)FB(a) + FA(a) + FB(a)

> (FA(a) + 1)FB(ux0+1) + FA(a) + FA(a) + FB(ux0+1)

= F (Tx0+1);

and, as FB(a) > 1, we have

FT ′x0+1
(ux0+1) = 1 + FA(a)FB(a) < (FA(a) + 1)FB(ux0+1) = FTx0+1(ux0+1).

Hence

F (T ′)

FT ′(u)
= x0 + 1 +

F (T ′x0+1)− 1
2
x0(x0 + 1)

(x0 + 1) + FT ′x0+1
(ux0+1)

> x0 + 1 +
F (Tx0+1)− 1

2
x0(x0 + 1)

(x0 + 1) + FTx0+1(ux0+1)
=
F (T )

FT (u)
,

a contradiction.

Lemma 8 immediately forces the structure required in Theorem 5. At this point we are left
with computing the asymptotics for the optimal x and the corresponding F (T )

FT (u)
value. Relaxing

the optimization problem for real x’s, we obtain

f ′(x) =

22(n−x−1) + 2n−x−1

(
− ln 2

2
x2 + 2−3 ln 2

2
x+ (n− 1) ln 2− 3

2

)
+x2

2
− (n− 1)

(2n−x−1 + x)2
.
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We try to solve f ′(x) = 0 for real x (in terms of n). Considering it as a quadratic equation in
2n−x−1, we obtain

2n−x−1 =
1

2

(
ln 2

2
x2 +

3 ln 2− 2

2
x+

3

2
− (n− 1) ln 2

)
(3.7)

±

√√√√n− 1− x2

2
+

1

4

(
ln 2

2
x2 +

3 ln 2− 2

2
x+

3

2
− (n− 1) ln 2

)2

. (3.8)

As (3.4) is satisfied by x = dn/2e, hence n/2 ≤ x0, and we have to maximize f(x), and hence solve
f ′(x) = 0, on n

2
≤ x ≤ n, unless the optimum occurs at the endpoints. Regarding the endpoints

of the intervals, it is easy to see that

x ∼ n

2
implies f(x) ∼ n

2
; and x ∼ n implies f(x) ∼ n

2
.

Set A(x) = x2

2
− (n− 1) and B(x) = 1

2

(
ln 2
2
x2 + 3 ln 2−2

2
x+ 3

2
− (n− 1) ln 2

)
.

Consider the positive sign in (3.8). As in [n/2, n] the function 2n−x−1 decreases and B(x) +√
B2(x)− A(x) increases; for x = n

2
− O(1) the function 2n−x−1 is exponential while B(x) +√

B2(x)− A(x) is quadratic; and for x = n− O(1) the function 2n−x−1 is bounded while B(x) +√
B2(x)− A(x) is quadratic; we conclude that for n sufficiently large, there is a unique xa in the

interval [n/2, n] that solves the equation

2n−x−1 = B(x) +
√
B2(x)− A(x). (3.9)

Using Newton’s Binomial Theorem for
√

1− x and the fact that a convergent Taylor series of a
function around 0 provides asymptotic expansion of the function at 0, we get

B(x) +
√
B2(x)− A(x) = B(x)

(
1 +

√
1− A(x)

B2(x)

)
= B(x)

(
2 +O

( A(x)

B2(x)

))
= 2B(x)(1 + o(1)) =

ln 2

2
x2(1 + o(1)).

Taking the logarithm of equation (3.9), which is spelled out in (3.7,3.8), we obtain asymptotics for
xa as

n− xa − 1 = log2

(( ln 2

2
x2

a

)
(1 + o(1))

)
= 2 log2 xa +

ln ln 2

ln 2
− 1 + o(1)

and

xa = n− 2 log2 xa −
ln ln 2

ln 2
+ o(1).

Substituting the right-hand side of the previous formula into the place of xa in the same right-hand
side, we obtain

xa = n− 2 log2

(
n− 2 log2 xa −

ln ln 2

ln 2
+ o(1)

)
− ln ln 2

ln 2
+ o(1) = n− 2 log2 n−

ln ln 2

ln 2
+ o(1).
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It is easy to see that f(bxac) ∼ f(dxae) ∼ n.
Turning to the negative squareroot, if it gives an optimum xb with n/2 ≤ xb ≤ b, then with A

and B above we have
2n−xb−1 = B(xb)−

√
B2(xb)− A(xb).

Using again Newton’s Binomial Theorem for
√

1− x and the fact that a convergent Taylor series
of a function around 0 provides asymptotic expansion of the function at 0, we get

B(x)−
√
B2(x)− A(x) = B(x)

(
1−

√
1− A(x)

B2(x)

)

= B(x)
(

1− 1 +
1

2

A(x)

B2(x)
+O

(A2(x)

B4(x)

))
=

A(x)

2B(x)
+O

(A2(x)

B3(x)

)
,

where A(x)
2B(x)

∼ 1
2

x2

2
−(n−1)
ln 2
4

x2 ∼ 1
ln 2

for all n/2 ≤ x ≤ n. Therefore 2n−xb−1 = 1
ln 2

+ o(1), and hence

xb = n − O(1). It is easy to check that f(bxbc) ∼ f(dxbe) ∼ n/2, therefore the maximum place
among real numbers is at xa in the interval [n/2, n].

4 Proof to Theorem 6: tight upper bound on F (T )
FT (v), v ∈

Core(T )

For a given n = |V (T )| and v ∈ Core(T ), by the identity

R(T ) :=
F (T )

FT (v)
= 1 +

FT (v)

FT (v)
,

R(T ) is maximized if and only if

R′(T ) :=
FT (v)

FT (v)

is maximized.
Now let v be of degree k with neighbors vi (i = 1, . . . , k) and Ti (i = 1, . . . , k) be the corre-

sponding branches (see Fig. 6). Then

R′(T ) =

∑k
i=1 F (Ti)∏k

i=1(1 + FTi
(vi))

=

∑k
i=1(FTi

(vi) + FTi
(vi))∏k

i=1(1 + FTi
(vi))

. (4.10)

First we establish a key Lemma that characterizes paths.

Lemma 9

FT (v) ≤
(
FT (v)

2

)
=
FT (v)2 − FT (v)

2

for any T and v ∈ T . Equality is obtained if and only if v is an endvertex of the path.
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Tk−1 TkT2T1

v

v1 v2 vk−1 vk

Figure 6: T and its subtrees.

Proof. For n ≥ 1, this can be proved by establishing an injection from the set of subtrees not
containing v to the set of unordered pairs of subtrees containing v. If T ′ is a subtree in the first
set, we define its image as a pair {T1, T2} in the second set, where T2 is the smallest subtree of T
containing both v and T ′, and T1 is the path connecting v to the closest vertex of T ′ in T . This is
an injection as T ′ can be recovered from its image in the following way: let T1 denote the element
of the image pair that is contained in the other element. T ′ is obtained by removing the vertices
of T1 with the exception of the endpoint different from v from T1. (See Fig. 7.) If T is a path,
then this injection is clearly a surjection as well. If T is not a path, or if T is a path but v is not
an endvertex of the path, then there are a pair subtrees of T , both containing v, such that none
of them is a subtree of the other. Such a pair is not an image under the injection.

=⇒

v

x

v

x

v

x

v

x

v

x

Figure 7: The injection from T ′ (left) to T1 (middle) and T2 (right).

We claim that the maximum of R′(T ) is obtained when k = 2.

Lemma 10 For n ≥ 6, the degree of v ∈ Core(T ) is 2 in any tree that maximizes R′(T ).

Proof. If k = 1, then n = 2. Suppose for contradiction that k ≥ 3, and assume without loss of
generality that

FT1(v1) ≥ FT2(v2) ≥ FTi
(vi)

for any i 6= 1, 2. By Theorem 1 we have v2 /∈ Core(T ). By applying Lemma 9 to each Ti and vi in
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(4.10), we have

R′(T ) ≤

∑k
i=1

((
FTi

(vi)
2

)
+ FTi

(vi)
)

∏k
i=1(1 + FTi

(vi))
(4.11)

=
1

2

k∑
i=1

FTi
(vi)∏

j:j 6=i(FTj
(vj) + 1)

≤ 1

2

FT1(v1)∏
i>1(FTi

(vi) + 1)
+

1

2

∑
i>1 FTi

(vi)

(FT1(v1) + 1)
∏

i>2(FTi
(vi) + 1)

<
1

2

FT1(v1)∏
i>1(FTi

(vi) + 1)
+

1

2

∏
i>1(FTi

(vi) + 1)

(FT1(v1) + 1)
∏

i>2(FTi
(vi) + 1)

≤ 1

2

FT1(v1)∏
i>1(FTi

(vi) + 1)
+

1

2

FT2(v2) + 1

FT1(v1) + 1
. (4.12)

Note that since v is in Core(T ), we must have

FT (v) ≥ FT (vi)

for any i. By comparing the number of subtrees containing v but not vi and the number of subtrees
containing vi but not v, we have ∏

j:j 6=i

(1 + FTj
(vj)) ≥ FTi

(vi)

for any i. Particularly, for i = 1, setting

x = FT1(v1),

y = FT2(v2) + 1,

and
z =

∏
i>2

(FTi
(vi) + 1)

yields
yz = ax with a ≥ 1, z ≥ 2, x ≥ y − 1.

Now from (4.11—4.12),

R′(T ) <
1

2

( y

x+ 1
+

1

a

)
. (4.13)

If x = y − 1, then a = y
x
z > z ≥ 2 and

R′(T ) <
1

2

(
1 +

1

a

)
<

1

2

(
1 +

1

2

)
=

3

4
. (4.14)

Otherwise, x ≥ y and a ≤ z, we have

R′(T ) <
1

2

( y

x+ 1
+

1

a

)
≤ 1

2

(y
x

+
1

a

)
=

1

2

(a
z

+
1

a

)
. (4.15)
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Consider the function f(a) = 1
2
(a

z
+ 1

a
) in 1 ≤ a ≤ z. This function takes its maximum at a = 1

and a = z with the value f(1) = f(z) = 1
2
(1 + 1

z
), and its minimum at a =

√
z with the value

f(
√
z) = 1√

z
.

By (4.14) and (4.15), R′(T ) < 3/4. By (2.1), n ≤ 5.

Therefore in a tree maximizing R′(T ), v ∈ Core(T ) must be of degree 2. Observe that

FT2(v2) ≤ FT1(v1) ≤ 1 + FT2(v2). (4.16)

The reason is the following:

FT (v) = (FT1(v1) + 1)(FT2(v2) + 1) = 1 + FT1(v1) + FT2(v2) + FT1(v1)FT2(v2)

and
FT (v) ≥ FT (v1) = 2FT1(v1) + FT1(v1)FT2(v2).

Lemma 11 For n ≥ 6, if |V (T )| = n, T and v ∈ Core(T ) maximize R′(T ), then both neighbors
of v in T , v1 and v2, are of degree 2.

Proof. We no longer make the assumption that FT1(v1) ≥ FT2(v2), so the numbering of v1 and
v2 is arbitrary. If v1 has degree 1, then it is easy to see that n ≤ 4. Suppose for contradiction
that v2 is of degree at least three. Then T can be represented as in Fig. 8 where both A and
B contain more than one vertex, in other words a := FA(v2) ≥ 2 and b := FB(v2) ≥ 2, and
FT2(v2) = FA(v2)FB(v2) = ab. By (4.16), FT1(v1) ≥ FT2(v2)− 1 = ab− 1.

BAT1

v

v1 v2

Figure 8: T , T1, T2 and the subtrees.

Now we have

R′(T ) =
FT1(v1) + FT1(v1) + FA(v2)FB(v2) + FA(v2) + FB(v2)

(FT1(v1) + 1)(FT2(v2) + 1)

(by applying Lemma 9 to T1, A and B)

≤
1
2
FT1(v1)(FT1(v1) + 1) + FA(v2)FB(v2) + 1

2
(FA(v2)

2 − FA(v2)) + 1
2
(FB(v2)

2 − FB(v2))

(FT1(v1) + 1)(FT2(v2) + 1)

≤ 1

2

FT1(v1)

FT2(v2) + 1
+
ab+ 1

2
(a2 − a) + 1

2
(b2 − b)

ab(ab+ 1)
. (4.17)

Note that 1
2

FT1
(v1)

FT2
(v2)+1

≤ 1
2

by (4.16). We consider cases.

Case a = 2, b = 2:
As FT2(v2) = 4, we have FT1(v1) ∈ {3, 4, 5}. We list the possible trees below in Fig. 9.

13



v1 v v2

U : FT1(v1) = 3

v1 v v2

W : FT1(v1) = 4

v1 v v2

X : FT1(v1) = 4

v1 v v2

Y : FT1(v1) = 5

v1 v v2

Z : FT1(v1) = 5

Figure 9: Cases for a = 2, b = 2.

For these trees, easy calculation shows R′(U) = 3
5
< R′(P7) = 3

4
, R′(W ) = 12

25
< R′(P7) = 3

4
,

R′(X) = 16
25
< R′(P8) = 4

5
, R′(Y ) = 17

30
< R′(P8) = 4

5
, and R′(Z) = 7

10
< R′(P9) = 4

5
, contradicting

the maximality of the respective R′ fractions.
Case a = 2, b = 3:
Based on (4.17), R′(T ) ≤ 1

2
+ 10

6·7 <
3
4
, implying n ≤ 5.

Case a ≥ 3, b ≥ 3:

We have
ab+ 1

2
(a2−a)+ 1

2
(b2−b)

ab(ab+1)
= 1

1+ab
+ a−1

2b(ab+1)
+ b−1

2a(ab+1)
≤ 1

ab
+ 1

2b2
+ 1

2a2 = 1
2

(
1
a

+ 1
b

)2

, which is

maximal at a = 3, b = 3. Hence R′(T ) ≤ 1
2

+ 1
2
· 4

9
= 13

18
< 3

4
, implying n ≤ 5.

Now we are finally ready to prove Theorem 6. The proof goes by induction on n. The base
cases are 1 ≤ n ≤ 5. For n = 1, 2, 3, the only tree is a path, therefore there is nothing to prove.
For n = 4, there are two trees, P4 and the star S4. The star is out by Theorem 3, as it is the single
minimizer of R = R′+1. For n = 5, there are three trees, P5, the star S5, and Q5, which comes from
a P4 by attaching a leaf to an interior vertex. The star is out again, and R′(Q5) = 5

12
< R′(P5) = 2

3
,

as required.
With Lemma 11, we can represent the optimal T as in Fig. 10 and write

R′(T ) =
2FA(a) + 2FB(b) + 2 + FA(a) + FB(b)

(FA(a) + 2)(FB(b) + 2)
. (4.18)

BA

v

a b

v1 v2

Figure 10: Another representation of T .
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By (4.16), we can assume FB(b) = FA(a) + ε where ε ∈ {0, 1}. Then (4.18) can be written as

R′(T ) =
2(FA(a) + 1) + ε

(FA(a) + 2)(FA(a) + 2 + ε)
+
FA(a) + FB(b) + FA(a) + FB(b)

(FA(a) + 2)(FA(a) + 2 + ε)
. (4.19)

Note that by removing v1, v2 from T and joining a, b to v, we get a tree T ′ on n − 2 vertices
(see Fig. 11), for which

R′(T ′) =
FA(a) + FB(b) + FA(a) + FB(b)

(FA(a) + 1)(FA(a) + 1 + ε)
.

BA

v

a b

Figure 11: T ′.

We are going to show

R′(T ) ≤
bn

2
c

bn
2
c+ 1

(4.20)

by induction on n. Rewrite (4.19) as

R′(T )

=
2(FA(a) + 1) + ε

(FA(a) + 2)(FA(a) + 2 + ε)
+
FA(a) + FB(b) + FA(a) + FB(b)

(FA(a) + 1)(FA(a) + 1 + ε)
· (FA(a) + 1)(FA(a) + 1 + ε)

(FA(a) + 2)(FA(a) + 2 + ε)

≤ 2(FA(a) + 1) + ε

(FA(a) + 2)(FA(a) + 2 + ε)
+
bn

2
c − 1

bn
2
c
· (FA(a) + 1)(FA(a) + 1 + ε)

(FA(a) + 2)(FA(a) + 2 + ε)
.

Hence, with

f(x) =
2x+ ε+

bn
2
c−1

bn
2
c x(x+ ε)

(x+ 1)(x+ 1 + ε)
,

we have R′(T ) ≤ f(FA(a) + 1). It is simple algebra to check that for both ε ∈ {0, 1}, we have

f
(
bn

2
c
)
=
bn

2
c

bn
2
c+ 1

.

Therefore, to show (4.20), it suffices to show that for all integer x

f(x) ≤ f
(
bn

2
c
)

15



holds. Using the definition of f(x) as a fraction, this is equivalent to(
2x+ ε+

(
1− 1

bn
2
c

)
x(x+ ε)

)(
bn

2
c+ 1

)(
bn

2
c+ 1 + ε

)

≤

(
2bn

2
c+ ε+

(
bn

2
c − 1

)
(bn

2
c+ ε)

)(
x+ 1

)(
x+ 1 + ε

)
,

which is, in turn, equivalent to

0 ≤

(
bn

2
c+ 1 + ε

)((
x− bn

2
c
)2

+ε
(
x− bn

2
c
))

bn
2
c

.

The last inequality holds as x − bn
2
c is an integer. Therefore, (4.20) is proved by induction.

Furthermore, if equality holds for T in (4.20), then equality must hold for T ′ in its corresponding
(4.20), with n← n− 2. Eventually, by induction, T must be a path.
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