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Abstract

The authors discovered a dual behaviour of two tree indices, the Wiener index and the
number of subtrees, for a number of extremal problems [Discrete Appl. Math. 155 (3) 2006,
374–385; Adv. Appl. Math. 34 (2005), 138–155]. Barefoot, Entringer and Székely [Discrete
Appl. Math. 80(1997), 37–56] determined extremal values of σT (w)/σT (u), σT (w)/σT (v),
σ(T )/σT (v), and σ(T )/σT (w), where T is a tree on n vertices, v is in the centroid of the tree
T , and u,w are leaves in T . In this paper we test how far the negative correlation between
distances and subtrees go if we look for the extremal values of FT (w)/FT (u), FT (w)/FT (v),
F (T )/FT (v), and F (T )/FT (w), where T is a tree on n vertices, v is in the subtree core of the
tree T , and u,w are leaves in T—the complete analogue, changing distances to the number
of subtrees. We include a number of open problems, shifting the interest towards the number
of subtrees in graphs.

Keywords: Wiener index; tree; binary tree; caterpillar; star tree; good binary tree; distances
in trees; subtrees of trees; extremal problems; center; centroid; subtree core.

1 Motivation

1.1 Results for the Wiener index

In chemical graph theory, the Wiener index is a topological index of a molecule, defined as the
sum of the numbers of edges in the shortest paths in a chemical graph between all pairs of non-

∗This author acknowledges financial support from the grant #FA9550-12-1-0405 from the U.S. Air Force Office
of Scientific Research (AFOSR) and the Defense Advanced Research Projects Agency (DARPA) and from the grant
1000475 of the NSF DMS.
†This author acknowledges financial support from the grant 245307 from the Simons Foundation.

the electronic journal of combinatorics 20(1) (2013), #P67 1



hydrogen atoms in a molecule. Since 1947, when H. Wiener introduced this index [37] noting its
correlation with boiling temperatures of paraffins, this index has turned into a frequently used
graph parameter.

This paper is concerned with trees, i.e. connected and cycle-free graphs. In a tree T , for
vertices u, v ∈ V (T ) let dT (u, v) denote the distance of the vertices, i.e. the number of edges in
the unique uv path in T . The distance of vertex w, σT (w), is defined as

∑
v∈V (T ) dT (w, v), and the

Wiener index of the tree T , σ(T ), is defined as 1
2

∑
w σT (w). For a survey on the Wiener index

of trees, see [7]. We term degree 1 vertices in a tree as leaves. A tree is binary, if the degree of
every vertex is 1 or 3. A caterpillar tree has a path from which the distance of every vertex is at
most 1. A complete binary tree has an edge uv, from which all leaves have the same distance. A
good tree is complete binary tree, or comes from a complete binary tree by deletion of some leaves
in the following way. Make a planar (crossing-free) drawing of the complete binary tree such that
the special uv edge is on top, and delete some pairs of leaves such that the deleted pairs of leaves
make an initial segment in the left-to-right order among the leaves.
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Figure 1: A good binary tree resulting after the deletion of 2 pairs of second neighbors of u.

It has been known that among trees with given number of vertices, the path maximizes and the
star minimizes the Wiener index, see [8] or [22] Ex. 6.23. Regarding binary trees with given number
of vertices, the caterpillar tree maximizes the Wiener index [9], while the good tree minimizes the
Wiener index [9, 15]. [35, 40] generalized the concept of good trees to greedy trees and proved that
greedy trees minimize the Wiener index among trees with a given degree sequence. Among trees
with a given degree sequence, finding the specific caterpillar that maximizes the Wiener index
turned out to be difficult [3, 41].

In [19], Lepović and Gutman conjectured that every positive integer, with only 49 explicit
exceptions, is the Wiener index of some tree. This conjecture was verified independently in [32]
and [36], and further extended to the class of trees with maximum degree 3 in [33]. This problem
has some relevance to designing molecules with prescribed properties.

1.2 Results for subtrees of trees

In a bioinformatics paper, Knudsen [18] provided a multiple parsimony alignment algorithm, given
an affine gap cost and a phylogenetic tree. In bounding the time complexity of his algorithm,
a factor was the number of so-called “acceptable residue configurations”, which is the number of
subtrees of the phylogenetic tree containing at least one original leaf vertex. Knudsen estimated the
maximum number of acceptable residue configurations among all binary trees. Let F (T ) denote
the number of subtrees of the tree T (a subtree must have at least one vertex), and let FT (v)
denote the number of subtrees of the tree T that contain vertex v.
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Knudsen’s work motivated our earlier papers [26, 28] to show the following results: among
all trees with a given number of vertices, the path minimizes the number of subtrees, and the
star maximizes the number of subtrees. Furthermore, among binary trees with a given number
of vertices, the caterpillar minimizes the number of subtrees, and the good tree maximizes the
number of subtrees. (We also solved exactly Knudsen’s original problem, namely which binary
tree maximizes the number of subtrees with at least one original leaf [27].) For trees with a given
degree sequence, the number of subtrees analogue of the Wiener index result for greedy trees was
shown in [42].

[5] showed that the “number of subtrees” parameter also realizes all positive integers, except
34 explicitly given numbers. The proof is somewhat number theoretic as uses representation of
integers as sum of pentagonal numbers.

1.3 How far the analogy goes?

The dual behaviour of the Wiener index and the number of subtrees, shown above, is just statistical,
not deterministic. Wagner [34] made an analysis of the correlation between a number of pairs of
tree indices, and he found the highest (negative) correlation between the Wiener index and the
number of subtrees among the indices that he considered.

Recently Taoyang Wu and us [30] found a substantial simplification and unification of the results
in [26], [27], [28], regarding minimization of the Wiener index or maximization of the number of
subtrees over certain families of trees, through the “semi-regular property”. Making use of this
general property, the extremality of the greedy tree with respect to general distance-based graph
invariants are shown recently [25]. Surprisingly, the motivation for a fruitful different view came
from phylogenetics, where a quantity similar to the Wiener index appeared, namely the sum of
interleaf distances.

It is worthwhile to investigate how far the dual behaviour goes as the papers [26] and [28]
generated considerable interest in different disciplines [4, 6, 10, 11, 12, 13, 14, 17, 20, 21, 23, 24,
31, 34, 38]. The analogy certainly goes one step further, to describe the “middle part” of the tree.

1.4 The centroid, center, and subtree core of a tree

Much research has been devoted to define the “middle part” of a tree. The first such result is due
to Jordan [16]. In a tree T , the branch weight of a vertex v, bw(v), is the maximum number of
edges over all subtrees of T which contain v as a leaf. By definition, the centroid C(T ) of T is
the set of vertices minimizing the branch weight. Jordan [16] showed that either C(T ) = {c}, and
bw(c) 6 n−1

2
(we always denote the order of the tree by n), or C(T ) = {c1, c2}, where c1 and c2

are adjacent vertices with bw(c1) = bw(c2) = n−1
2

, and in both cases all other vertices have branch
weight strictly exceeding n

2
. Zelinka [39] gave an alternative characterization of the centroid: C(T )

contains exactly those vertices u of V (T ), which minimize the distance function of vertices, i.e.
σT (u) =

∑
v∈V (T ) dT (u, v).

Jordan [16] also defined the center of a tree T , as the set of vertices minimizing the function
eccentricity ecc(u) = maxv∈V (T ) dT (u, v), and showed that the center contains one vertex or two
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adjacent vertices. (For a contemporary reference, see [22] 6.21 and 6.22.) Ádám [1] studied further
concepts of centrality in trees.

We defined the “middle part” of a tree in a new way in [26]: the subtree core of T , Core(T ), is
the set of vertices maximizing FT (v), number of subtrees of T that contain v. We showed that the
subtree core of any tree T contains one or two vertices, and if the subtree core contains two vertices,
then they must be adjacent. The ultimate reason for this phenomenon is that FT (.) : V (T )→ R is
strictly concave along any path of T , and hence FT is maximized at a single vertex or two adjacent
vertices on any path of T . This new concept differs from the concept of center and centroid.

2 The results

Barefoot, Entringer and Székely [2] determined extremal values of σT (w)/σT (u), σT (w)/σT (v),
σ(T )/σT (v), and σ(T )/σT (w), where T is a tree on n vertices, v is in the centroid C(T ) of the tree
T , and u,w ∈ L(T ) are leaves in T . (We use the notation L(T ) for the set of leaves of the tree T .)

In this paper we test how far the negative correlation between distances and subtrees go if we
look for the extremal values of FT (w)/FT (u), FT (w)/FT (v), F (T )/FT (v), and F (T )/FT (w), where
T is a tree on n vertices, v is in the subtree core of the tree T , and u,w are leaves in T—the complete
analogue of [2], changing distances to the number of subtrees. Note that extremal behaviour of
fractions is always more delicate than that of the numerator and denominator, therefore it is a
natural step to see how far duality between Wiener index and the number of subtrees extend
when we study extreme values of the ratios above. Comparison of extremal trees is particularly
interesting. The Table summarizes our results.

From the two columns of “extremal tree”, it is easy to see the correspondence between trees
maximizing (minimizing) the distance function and the ones minimizing (maximizing) the subtree
function. In rows 1, 3 and 6 of the table, the extremal trees are comets. The different path length
is explained by the distance of a vertex always being polynomial in n, while the number of subtrees
containing a vertex being typically exponentially large. The star is extremal in row 5. In row 2,
the extremal tree is a path with an added vertex—but added at a different place. Rows 4 and 7
show different extremal trees for the two problems—still, the dumbbell contains a long path, while
the other extremal tree is a path, and the spider has a central vertex like a star.

Theorems 1 and 2 seem to have the same r-comet as extremal tree, as we have to round almost
the same number to obtain r. However, in neither of the two results we know when to round up
or down, so the extremal r’s may differ. In Theorem 7, the quantity to be rounded to obtain r for
the comet, is bigger by one than in the cited two theorems.
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Theorem 1 Among trees T of order n, the maximum value of maxw,u∈L(T )

{
FT (w)
FT (u)

}
is achieved by

a tree T formed from identifying the center of the star K1,x with one end vertex of the path Pn−x,
and only by such trees.

For trees of this description the value FT (w)
FT (u)

can be explicitly formulated as a function of x:

f(x) :=
1 + (n− x)2x−1

n− x− 1 + 2x
.

Trying to maximize f(x) for real x’s, from f ′(x) = 0 we observe

(n− x)(n− x− 1)2x−1 ln 2 + 1 + 2x−1 = 22x−1 + 2x ln 2. (2.1)

Although the asymptotic calculations using iteration are routine, we show the details in this
instance and skip the details later. Using the substitution x← n− y, (2.1) can be rewritten as

2y
(
y(y − 1) ln 2 + 1 + 21+y−n − 2 ln 2

)
= 2n.

As the left-hand side is an increasing function of y, it has a unique y0(n) solution for every positive
integer n. Taking logarithm of both sides,

y0(n) + log2

(
y0(n)(y0(n)− 1) ln 2 + 1 + 21+y0(n)−n − 2 ln 2

)
= n.

Substituting y0(n)← n−log2

(
y0(n)(y0(n)−1) ln 2+1+21+y0(n)−n−2 ln 2

)
in the previous equation

for the occurrences of y in the logarithmic term, we obtain

y0(n) + 2 log2 n+
ln ln 2

ln 2
+ o(1) = n

and from here the x0(n) solution to (2.1) is

x0(n) = 2 log2 n+
ln ln 2

ln 2
+ o(1).

Hence, in the Table, r = by0(n)c or r = dy0(n)e. It is easy to see that f(bx0(n)c) ∼ f(dx0(n)e) ∼ n
2
.

The following two theorems find extreme values of the reciprocals of the quantities in the second
and third lines of the table:

Theorem 2 Among trees T of order n, the maximum value of maxv∈Core(T ),u∈L(T )

{
FT (v)
FT (u)

}
is

achieved by a tree T formed from identifying the center v of the star K1,x−1 with one end ver-
tex of the path Pn−x+1 such that v ∈ Core(T ), and only by such trees.
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For trees of this description the value FT (v)
FT (u)

can be explicitly formulated as a function of x:

f(x) :=
(n− x+ 1)2x−1

n− x+ 2x−1 .

Trying to maximize f(x) for real x’s, observe

f ′(x) =
(n− x+ 2x−1) (−2x−1 + (n− x+ 1)2x−1 ln 2)− (n− x+ 1)2x−1(−1 + 2x−1 ln 2)

(n− x+ 2x−1)2
,

and that the solutions of f ′(x) = 0 are exactly the solutions of

(ln 2)(n− x)(n− x+ 1) = 2x−1 − 1. (2.2)

It is easy to see that there is only one solution x0(n) to (2.2), and standard asymptotic calculations
show that

n− x0(n) + 1 = n− 2 log2 n−
ln ln 2

ln 2
+ o(1).

Hence, in the Table, r = n+ 1−bx0(n)c or r = n+ 1−dx0(n)e. It is easy to see that f(bx0(n)c) ∼
f(dx0(n)e) ∼ n.

Theorem 3 Among trees of order n > 5, minv∈Core(T ),u∈L(T )

{
FT (v)
FT (u)

}
is achieved if and only if T

is formed from attaching one pendant vertex u to v = vx of a path v0v1v2 . . . vn−2. Here

x =

⌊
2

3
(n− 1)

⌋
.

The minimum value of FT (v)
FT (u)

is

2(n− x− 1)(x+ 1)

1 + (n− x− 1)(x+ 1)
,

which is asymptotically equal to 2.
The following 4 theorems are proved in a sibling paper [29], to keep the length of this paper

under control:

Theorem 4 Among trees of order n with v ∈ Core(T ),

F (T )

FT (v)
> 1 +

n− 1

2n−1

with equality if and only if T is a star centered at v.

Theorem 5 Among trees T of order n, where v ∈ Core(T ), the maximum value of F (T )
FT (v)

is
obtained by a path, with

F (T )

FT (v)
= 1 +

bn
2
c

bn
2
c+ 1

.
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Theorem 6 Among trees T of order n, where u ∈ L(T ),

F (T )

FT (u)
>

2n−1 + n− 1

1 + 2n−2

with equality if and only if T is a star.

Theorem 7 Among trees T of order n, maxu∈L(T )

{
F (T )
FT (u)

}
is achieved when T is an (x+1)-comet

and u is a leaf that has a degree 2 neighbor, and only by such trees.

For trees of this description the value F (T )
FT (u)

can be explicitly formulated as a function of x:

f(x) :=
2n−x−1(x+ 1) + 1

2
x(x− 1) + (n− 1)

2n−x−1 + x
.

The function f(x) is maximized when x = n−2 log2 n− ln ln 2
ln 2

+o(1). This complicated analysis
is detailed in [29].

3 Open problems

After having understood many extremal properties of the number of subtrees, next one would like
to understand how they relate to global properties.

Problem 8 Does the multiset {FT (v) : v ∈ V (T )} determine the tree T?

It makes sense to look for a more refined information than FT (v): let FT (v, x) denote the the
number of subtrees of T of order x that contain vertex v. Also, instead of an underlying tree T ,
we may consider a graph G. There are results on computing the number of subtrees of trees with
dynamic programming [38].

Problem 9 Are there determinant formulae to compute FT , FT (v), FT (v, x)? Or even more
general, FG, FG(v), FG(v, x)? Is there a way to approximate these numbers in a very large graph
efficiently?

Problem 10 Are the distributions FG(v, x) : x ∈ N (v ∈ V (G)) connected to connectivity, expan-
sion, or spectral properties of the underlying graph G?

The following problem is somewhat vague:

Problem 11 Given two graphs, G1 and G2, not necessarily of the same order or size, can we
conclude from the “similarity” of the distributions FGi

(v, x) : x ∈ N (v ∈ V (Gi)) the “similarity”
of G1 and G2?
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4 Proof to Theorem 2

Given a tree T of order n, we want to find the maximum of

R(T ) := max
v∈Core(T ),u∈L(T )

{
FT (v)

FT (u)

}
.

First note u = v is only possible in 6 2-vertex trees—by the strict concavity of FT (.) along paths,
mentioned in Section 1.4.

Lemma 12 If v ∈ Core(T ) and u ∈ L(T ), and R(T ) is maximized by FT (v)
FT (u)

among trees of order

n, then the internal vertices of the path connecting v and u have degree 2. (See Fig. 2, we denote
the uv path by Pu,v).

Tv

vu

Figure 2: Tv and Pu,v.

Proof. List the vertices of the Pu,v path as Pu,v := uv1v2 . . . vkv, and assume k > 1, otherwise we
have nothing to prove. Let A0 = {u}, A1, A2, . . . , Ak, Ak+1 = Tv denote the connected components
(trees) in T − E(Pu,v), with vi ∈ Ai for 1 6 i 6 k and v ∈ Tv.

Suppose (for contradiction) that Ai is not a single vertex for some 1 6 i 6 k, and consider a
tree T ′ obtained by moving all Ai’s from vi to v (see Fig. 3).

Tv

v

Ak

vk

Ak−1

vk−1

A2

v2

A1

v1u

T :

Tv

v
Ak

vkvk−1v2

A1

v1u

T ′ :

Figure 3: Making T ′ from T .

Simple enumerations give the following Horner’s scheme like formulae:

FT (u) =

(
. . .

((
(FTv(v) + 1)FAk

(vk) + 1
)
FAk−1

(vk−1) + 1

)
. . .+ 1

)
FA1(v1) + 1;

the electronic journal of combinatorics 20(1) (2013), #P67 9



FT ′(u) = k + 1 + FTv(v)
k∏

i=1

FAi
(vi) < FT (u); (4.3)

and

FT (v) = FTv(v)

(
1 + FAk

(vk)

(
1 + FAk−1

(vk−1)
(

1 + . . . (1 + 2FA1(v1)) . . .
)))

;

FT ′(v) = (k + 2)FTv(v)
k∏

i=1

FAi
(vi) > FT (v), (4.4)

unless FAi
(vi) = 1 for all 1 6 i 6 k, which is equivalent to vi having degree 2 in T .

Intuitively, (4.3) and (4.4) can be understood as moving any “branch” away from u and closer
to v will decrease the number of subtrees containing u and increase that of v. Hence by (4.3) and
(4.4), we have

R(T ′) >
FT ′(v)

FT ′(u)
>
FT (v)

FT (u)
,

a contradiction.

Assuming |V (Tv)| = x, knowing that the tree has order n, we obtain |V (Pu,v)| = n−x+ 1. We
can get explicitly

FT (u) = n− x+ FTv(v)

and
FT (v) = (n− x+ 1) · FTv(v).

Therefore
FT (u)

FT (v)
=

1

n− x+ 1
+

n− x
n− x+ 1

· 1

FTv(v)
. (4.5)

Hence, for given n and x, FT (v)
FT (u)

is maximized if and only if (4.5) is minimized, which is the case if

and only if FTv(v) is maximized. The following simple observation will be used.

Lemma 13 Given x = |V (Tv)|,
FTv(v) 6 2x−1

with equality if and only if Tv is a star centered at v.

Proof. This is trivial by noting that any subtree of Tv containing v induces a unique subset of
V (Tv) \ {v}. Hence the total number of such subtrees is at most the number of such subsets.

It is easy to see that, by changing Tv to be a star centered at v to maximize FTv(v), v stays in
the subtree core of T . Thus we proved Theorem 2.
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5 Proof to Theorem 1

Essentially the approach of the previous Section 4 will handle this question, so we skip some of
the details. Given a tree T of order n, we want to find the maximum of

R(T ) = max
w,u∈L(T )

{
FT (w)

FT (u)

}
.

First note uw ∈ E(T ) is only possible in 2-vertex trees. Choosing w = u provides in any tree
R(T ) = 1, as is the case of dT (w, u) = 2. Below we construct trees and leaves with higher ratios.
For an optimal tree T and leaves u,w, let the path connecting w and u be Pw,u = uv1v2 . . . vkw,
and by the arguments above we can assume k > 1. Let Ai be defined as in Section 4 for 1 6 i 6 k.
Like in the proof of Lemma 12, by moving all A′is for 1 6 i 6 k − 1 to vk we obtain T ′ with

FT ′(w)

FT ′(u)
>
FT (w)

FT (u)
,

unless FAi
(vi) = 1 for all 1 6 i 6 k, which is equivalent to vi having degree 2 in T . See Fig. 4 for

illustration. Indeed,

FT (u) =

(
. . .

((
2FAk

(vk) + 1
)
FAk−1

(vk−1) + 1

)
. . .+ 1

)
FA1(v1) + 1;

FT ′(u) = k + 2
k∏

i=1

FAi
(vk) < FT (u); (5.6)

and

FT (w) =

(
. . .

((
2FA1(v1) + 1

)
FA2(v2) + 1

)
. . .+ 1

)
FAk

(vk) + 1;

FT ′(w) = 1 + (k + 1)
k∏

i=1

FAi
(vk) > FT (w), (5.7)

unless FAi
(vi) = 1 for all 1 6 i 6 k, which is equivalent to vi having degree 2 in T .

Thus we have the following analogue of Lemma 12.

Lemma 14 R(T ) is maximized by a tree T and w, u ∈ L(T ) only if T is formed by a tree Tv rooted
at v with a path from u to v and an edge wv (Fig. 5).

Assume |V (Tv)| = x, then |V (Pu,v)| = n− x as the tree T has order n. It is easy to see that

FT (u) = n− x− 1 + 2FTv(v) = n− x− 1 + 2
(
FTv(v) +

1

n− x

)
− 2

n− x

and

FT (w) = 1 + (n− x) · FTv(v) = (n− x)
( 1

n− x
+ FTv(v)

)
.
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w

Ak

vk

Ak−1

vk−1

Ak−2

vk−2

A2

v2

A1

v1u

T :

wvk

Ak

vk−1vk−2v2

A1

v1u

T ′ :
Figure 4: T ′ and T with respect to w and u.

Tv

vu w

Figure 5: Tv and Pu,v with respect to w and u.

Therefore
FT (u)

FT (w)
=

2

n− x
+
n− x− 1− 2

n−x

n− x
· 1

1
n−x + FTv(v)

. (5.8)

Hence, with given n and x, FT (w)
FT (u)

is maximized if and only if (5.8) is minimized, which is the case

when FTv(v) is maximized. Using Lemma 13 again, we obtain Theorem 1.

6 Proof to Theorem 3

Let

R(T ) = min
v∈Core(T ),u∈L(T )

{
FT (v)

FT (u)

}
.

We need the following important Lemma, which will immediately follow from Lemmas 16 and 17:

Lemma 15 For T with given |V (T )| = n > 2, u ∈ L(T ) and v ∈ Core(T ) that achieves the
minimum value of R(T ), u and v must be adjacent (Fig. 6).

Assume that T is the tree that minimizes R(T ). As n > 2, there is a (unique) neighbor x of u
in T . For contradiction, assume x /∈ Core(T ). Consider the tree T ′ obtained from T by deleting

the {xu} edge and adding the {vu} edge. We will establish that v ∈ Core(T ′) and
FT ′ (v)
FT ′ (u)

< FT (v)
FT (u)

in the following two Lemmas, providing the contradiction.
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Tv

v u

Figure 6: uv ∈ E(T ) to minimize R(T ).

Lemma 16 With u ∈ L(T ) and v ∈ Core(T ) and T ′ defined as above, we must have

v ∈ Core(T ′).

Lemma 17 If the unique neighbor x of u is not a subtree core vertex of T , then

FT ′(v)

FT ′(u)
<
FT (v)

FT (u)
.

Proof. [Proof of Lemma 16] Assume n > 3, otherwise we have nothing to prove. To show that
v ∈ Core(T ′), we only need to show (by the concavity of FT (.) along any path) FT ′(v) > FT ′(y)
for any neighbor y of v. Evidently y 6= v and FT ′(v) > FT ′(u), so we can assume y /∈ {u, v}. Using
a generalized notation FH(a, b) for the number of subtrees of a tree H containing both vertices a, b,
we observe

FT ′(v) = FT (v)− FT (u, v) + FT\{u}(v) (6.9)

and
FT ′(y) = FT (y)− FT (u, y) + FT\{u}(v, y). (6.10)

If y ∈ V (PT (u, v)), then we have

FT\{u}(v) > FT\{u}(v, y) and FT (u, y) > FT (u, v),

immediately implying that (6.9) > (6.10) since FT (v) > FT (y) (by the fact that v ∈ Core(T )).
Otherwise, v ∈ V (PT (u, y)) and y 6= x. Let S be the component containing v in (T \ {u}) \ {vy},
then

FT (u, v)− FT (u, y) = FT\{u}(x, v)− FT\{u}(x, y) = FS(x, v) < FS(v) = FT\{u}(v)− FT\{u}(v, y),

again implying (6.9) > (6.10). Hence the proof of Lemma 16 is completed.

Proof. [Proof of Lemma 17] Observe

FT ′(v) = 2FT\{u}(v) < 2FT (v). (6.11)

Also observe

FT (u) = 1 +
FT (x)

2
6 1 +

FT (v)− 1

2
. (6.12)

Hence by (6.11) and (6.12),

FT ′(v)
(
FT (u)− FT (v)

2

)
6
FT ′(v)

2
< FT (v). (6.13)
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Note that (6.13) implies

FT ′(v)FT (u) < FT (v)
(

1 +
FT ′(v)

2

)
= FT (v)FT ′(u), (6.14)

finishing the proof of Lemma 17.

Based on Lemma 15, we represent T that minimizes R(T ) as Tv ∪ {uv} (Fig. 6). We have

FT (v)

FT (u)
=

2FTv(v)

1 + FTv(v)
= 2− 2

1 + FTv(v)
,

and hence R(T ) is minimized when FTv(v) is minimized.
Now we focus on Tv and let the neighbors of v in Tv be v1, . . . , vk. We claim k > 2. Indeed, if

there is only one neighbor v1 = w, which separates a subtree Tw from v, like on Fig. 6 v separates
Tv from u. It is easy to see that FT (v) = 2+2FTw(w) and FT (w) = 3FTw(w), showing v /∈ Core(T )
when FTw(w) > 2, a contradiction. This happens for all n > 5.

Hence k > 2, and let the connected components in Tv \ {v} be T1, . . . , Tk (Fig. 7), such that vi
is a vertex of Ti. Assume without loss of generality that

FT1(v1) > FTi
(vi)

for any i.

Tk−1 TkT2T1

v

v1 v2 vk−1 vk

Figure 7: Tv and its subtrees.

First we formulate the condition for v to be in the subtree core of T :

Lemma 18 With T and v represented above, v ∈ Core(T ) if and only if

2
∏

16j6k,j 6=i

(1 + FTj
(vj)) > FTi

(vi) (6.15)

for any 1 6 i 6 k.

Proof. By the strict concavity of FT (.) along any path, we have v ∈ Core(T ) if and only if
FT (v) > FT (y) for any neighbor of v. This inequality evidently holds when y = u.
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For y = vi for some 1 6 i 6 k, FT (v) > FT (vi) if and only if the number of subtrees containing
v but not vi is at least as large as the number of subtrees containing vi but not v. Notice that the
former is

2
∏

16j6k,j 6=i

(1 + FTj
(vj)),

and the latter is
FTi

(vi),

completing the proof.

Next we claim that T1, the heaviest branch in Tv regarding FTi
(vi), must be a path.

Lemma 19 To minimize FTv(v), where v ∈ Core(T ) in Fig. 6, T1 must be a path in Fig. 7.

Proof. Suppose (for contradiction) that T1 is not a path, and let

Pv1,w = w0(v1)w1w2 . . . wl−1wl(w)

be a longest path in T1 from v1 = w0 to some leaf w = wl. (In other words, considering T1 as a
rooted tree at v1, it is of height l and w is one of the vertices of the greatest height.) Let j (0 6 j 6
l − 1) be the smallest integer such that wj has a neighbor z not on Pv1,w. Let Aj, Aj+1, . . . , Al−1
denote the connected components of T1\E(Pv1,w) containing wj, wj+1, . . . , wl−1 respectively. Define
the tree A>j+1 = Aj+1 ∪ Aj+2 ∪ . . . ∪ Al−1 ∪ {w} with the edge set wj+1wj+2, . . . , wl−1wl added.

We will consider T ′1 obtained from T1 by moving Aj from wj to wj+1 (Fig. 8), and the corre-
sponding T ′v, T

′ in the original problem.

w(wl)

Al−1

wl−1

Al−2

wl−2

Aj+1

wj+1

Aj

wjv1(w0)

T1 :

w(wl)

Al−1

wl−1

Al−2

wl−2

Aj+1

wj+1

Aj

wjv1(w0)

T ′1 :

Figure 8: Generating T ′1 from T1.

Then we have
FT1(v1) = j + FAj

(wj)
(

1 + FA>j+1
(wj+1)

)
(6.16)
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and
FT ′1

(v1) = j + 1 + FAj
(wj)FA>j+1

(wj+1). (6.17)

From (6.16) and (6.17), it is easy to see that

FT ′1
(v1) >

1

2
FT1(v1).

Hence, for any i 6= 1, we have
FTi

(vi) 6 FT1(v1) 6 2FT ′1
(v1),

maintaining the condition (6.15) in T ′. Also from (6.16) and (6.17), we have

FT ′1
(v1) < FT1(v1) (6.18)

since FAj
(wj) > 1. Hence the condition (6.15) is also maintained for i = 1 in T ′.

Thus v ∈ Core(T ′). Furthermore, (6.18) implies that FT ′v(v) < FTv(v), a contradiction.

We are now ready to minimize FTv(v) and to characterize the structure with minimal FTv(v).
Assume x = |V (T1)| (and consequently FT1(v1) = x) and |V (T )| = n > 5. Consider now S = Tv\T1.

Lemma 20 The inequality
∏k

i=2(1 +FTi
(vi)) > n− 1− x holds. Equality holds if and only if S is

a path and v is an endpoint of the path S.

Proof. It is easy to see that

k∏
i=2

(1 + FTi
(vi)) > 1 +

k∑
i=2

FTi
(vi) > |V (S)| = n− 1− x. (6.19)

All the terms of 1 +
∑k

i=2 FTi
(vi) are present among the terms of expansion of the left-hand side.

If equality holds, then the 2k−1 terms on the left side are these k terms. This happens if and only
if k = 2. In case of k = 2 and equality in (6.19), the same argument applies to S \ {v}, etc.,
completing the characterization by induction.

We will need the following fact that is easy to verify by considering cases according to n modulo
3:

Lemma 21 For a positive integer n, n− 1 = dx
2
e+ x if and only if x = b2

3
(n− 1)c.

Now we consider cases.
Case (i): x > b2

3
(n− 1)c.

As (6.15) implies

2
k∏

i=2

(1 + FTi
(vi)) > x,
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we have

FTv(v) =
k∏

i=1

(1 + FTi
(vi)) >

⌈x
2

⌉
(x+ 1) >

⌈b2
3
(n− 1)c

2

⌉
(1 + b2

3
(n− 1)c). (6.20)

It is easy to see that if equation holds in (6.20), then
⌈
x
2

⌉
=
∏k

i=2(1 +FTi
(vi)) and x = b2

3
(n− 1)c.

By Lemma 20, n− 1− x 6
∏k

i=2(1 + FTi
(vi)), and hence

n− 1 6 x+
⌈x

2

⌉
. (6.21)

By Lemma 21, formula (6.21) is solved by equality if and only if x = b2
3
(n − 1)c, and with strict

inequality if and only if x > b2
3
(n−1)c. Therefore, if equality holds in (6.20), then x = b2

3
(n−1)c,

and by Lemma 20, k = 2 and T2 is a path. The description above is a construction that always
realizes the lower bound in the right-hand side of (6.20).

Our goal is to conclude that the minimum of FTv(v) is what we realized as the minumum for
Case (i) in (6.20).
Case (ii): 1

3
(n− 1) 6 x 6 b2

3
(n− 1)c − 1.

By Lemma 20, FS(v) > |V (S)| = n− 1− x, and hence

FTv(v) > (n− 1− x)(x+ 1) = g(x). (6.22)

The lower bound for FTv(v) in this case is a quadratic function of x, which is minimized in one of
the endpoints of the interval. Easy calculations show

g
(1

3
(n−1)

)
>
⌈b2

3
(n− 1)c

2

⌉
(1+b2

3
(n−1)c) and g

(
b2

3
(n−1)c−1

)
>
⌈b2

3
(n− 1)c

2

⌉
(1+b2

3
(n−1)c),

showing that the minimum in Case (i) cannot even be matched in Case (ii).
Case (iii): x = 1.
This means T1 = v1. By the choice of T1, Ti = vi for i = 1, 2, . . . , k, and hence Tv is a star. By
Lemma 13, FTv(v) = 2n−2, exceeding the right-hand side of (6.20) for n > 5.
Case (iv): 2 6 x < 1

3
(n− 1).

As 2 6 x, there is a leaf w in T1 that is not v1. We consider subcases.
Subcase (iv)(a):

For i = 2, . . . , k, Ti = vi. Then easy calculation gives FTv(v) = (x+1)2n−2−x. This number exceeds
the right-hand side of (6.20) for n > 5.

Subcase (iv)(b):
Without loss of generality, assume that there is a leaf z 6= v2 in T2 and y its unique neighbor.

Obtain a tree T ′v by removing the {yz} edge from Tv and adding the {wz} edge. Then (6.15)
is maintained for T ′v, so it is a legitimate candidate to minimize FTv(v), as in Case (iv)

x+ 1 < n− 1− (x+ 1) 6
k∏

i=2

(1 + FTi
(vi)).
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Furthermore,

FT ′v(v) 6 (x+ 2)FT2(v2)
k∏

i=3

(1 + FTi
(vi))

< (x+ 1)(1 + FT2(v2))
k∏

i=3

(1 + FTi
(vi))

= FTv(v)

since x > FT2(v2). Hence this case will not obtain the minimum of FTv(v).
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