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Abstract

This note is a report on a computer investigation of some small classical Ramsey
numbers. We establish new lower bounds for the classical Ramsey numbers R(3, 11)
and R(4, 8). In the first case, the bound is improved from 46 (a record that had
stood for 46 years) to 47; and in the second case the bound is improved from 57 to
58.

The classical Ramsey number R(s, t) is the smallest integer n such that in any two-
coloring of the edges of Kn there is a monochromatic copy of Ks in the first color or a
monochromatic copy of Kt in the second color. A comprehensive summary of the current
state of the art can be found in the dynamic survey on Small Ramsey Numbers [10].

In this note we present constructions that improve the lower bounds for the Ramsey
numbers R(3, 11) and R(4, 8), and then describe the the modification in our search algo-
rithm that led to the improvement in the R(3, 11) bound. Listings for these colorings are
given at the end of this paper, and can also be found at the authors web site [4].

1 R(3,11)

The best published bounds for R(3, 11) are 46 6 R(3, 11) 6 50. The lower bound of 46
was established 46 years ago [8], whereas the upper bound is very recent [7]. The graph
that established the lower bound is the circle graph 45(1, 3, 5, 12, 19). In this note we
present a graph which improves the lower bound by one.

Theorem 1. R(3, 11) > 47.
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Proof. The proof is given by the coloring of K46 which can be derived from Listing 1 at the
end of the paper, wherein the adjacency list for the color one graph in a (3, 11)-coloring
of K46 is given.

In all, we found 143447 pairwise non-isomorphic (3, 11)-colorings of K46. Of these,
141829 have a trivial automorphism group, and 1618 have exactly one non-trivial auto-
morphism. The number of edges in these graphs that are assigned color one ranges from
217 to 228. Note that a 10-regular graph of order 46 has 230 edges. Adjacency matrices
for several of these colorings can be found at the authors web site [4].

2 R(3,10)

An effort was also made to improve the lower bound for R(3, 10). The current bounds in
this case are 40 6 R(3, 10) 6 42. The lower bound was established in [1] and the upper
bound was recently established in [7].

We were able to come tantilizingly close to a new lower bound, finding 810 pairwise
non-isomorphic colorings of K40 with exactly one monochromatic triangle in color one
and no monochromatic copies of K10 in color two.

In all we generated thousands of (3, 10)-colorings of K39. Using these colorings as
a starting point, Jan Goedgebeur [6] has created a catalog of nearly 50000000 (3, 10)-
colorings of K39.

3 R(4,8)

In [5], Fujita used the SAT solver miniSat to improve the lower bound on R(4, 8) from 56
to 57. Using Fujita’s graph as a starting point, we were able to improve the bound to 58
using the method outlined in [3].

Theorem 2. R(4, 8) > 58.

Proof. The proof is given by the coloring of K57 which can be derived from listing 2, at
the end of this note. This listing shows the adjacency list for the color one graph in a two
coloring of K57.

4 The Construction Algorithm

The method used to find our R(3, 11) colorings is similar to the method described in [3],
with an important difference, which we now describe.

In general, the goal of the algorithm is to produce a (s, t)-coloring of Kn. One begins
with a coloring obtained either randomly 1 or from a known good coloring of a smaller

1To be more precise, we might replace random by pseudo-random.
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complete graph. Then each edge is examined, in random order, and counts are made of
the number of Ks subgraphs in color one that would result if the edge were assigned color
one, and of the number of Kt subgraphs that would result if the edge were assigned color
two.

When dealing with diagonal Ramsey numbers (where s = t) one can simply compare
the counts, choosing the better color most of the time, but choosing the other with a
small probability (usually depending on the difference in the counts). This would be a
typical implementation of simulated annealing [9].

For off-diagonal Ramsey numbers, there is additional issue. One needs to determine
how much weight to assign to a Ks in color 1 as a opposed to a Kt in color 2. Empirical
evidence suggests that the weights should be approximately inversely proportional to the
3/2-power of the number of vertices in the complete subgraphs that one is trying to avoid.
So in the case of R(3, 11), each monochromatic K3 in color one would count (11/3)1.5 ≈ 7
times as much as a monochromatic K11 in color two. This is roughly the way subgraphs
weights were assigned in [1], [2], and [3] to obtain new Ramsey bounds.

As with all randomized search methods, the essential problem here is how to avoid
getting stuck in local minima. Typically this is done by occasionally picking the edge that
produces the largest (weighted) subgraph count, instead of the smallest. In the algorithm
that produced the (3, 11)-coloring presented here, we added a second method. The relative
weights of the two types of monochromatic subgraphs were changed at regular intervals.
In this particular case, the weight of a monochromatic K11 in color two was fixed at 1,
while the weight of a monochromatic K3 in color one was allowed to vary from 1 to 13.
Within this range the K3 weight was determined by a piecewise linear sawtooth function
of time, except that when a new best coloring was achieved (measured by an unweighted
subgraph count), the K3 weight returned to the minimum value (1).

5 Adjacency Lists

1 2 5 8 11 26 28 32 37 41

0 4 15 19 22 29 31 33 40 44

0 7 13 21 30 31 38 40 44

12 13 21 22 23 24 28 34 39 41

1 7 11 21 26 30 32 37 38 41

0 13 16 21 31 34 36 38 45

7 8 11 13 15 23 25 28 41

2 4 6 12 22 24 27 29 33 34

0 6 12 18 24 27 30 38 39 40

12 13 14 17 23 24 30 33 36 37

17 19 20 21 23 24 32 33 34 35

0 4 6 12 22 31 35 40 42 44

3 7 8 9 11 15 19 20 25 45

2 3 5 6 9 19 20 26 32 35

9 19 21 22 26 32 34 38 45

1 6 12 26 32 34 35 37 42
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5 17 19 22 32 33 40 41 43 44

9 10 16 26 28 29 31 39

8 26 28 29 31 33 37 44

1 10 12 13 14 16 30 36 37 42

10 12 13 22 40 41 42 43 44

2 3 4 5 10 14 27 29 43

1 3 7 11 14 16 20 30 36 37

3 6 9 10 26 27 29 38 43 45

3 7 8 9 10 25 42 43 44 45

6 12 24 26 27 29 30 33 37 38

0 4 13 14 15 17 18 23 25 36

7 8 21 23 25 28 31 35 42 44

0 3 6 17 18 27 36 38 43 45

1 7 17 18 21 23 25 32 35 42

2 4 8 9 19 22 25 34 35 45

1 2 5 11 17 18 27 32 41 43

0 4 10 13 14 15 16 29 31 36

1 7 9 10 16 18 25 39 42

3 5 7 10 14 15 30 40 43 44

10 11 13 15 27 29 30 38 41 43

5 9 19 22 26 28 32 39 40 41

0 4 9 15 18 19 22 25 39 40

2 4 5 8 14 23 25 28 35

3 8 17 33 36 37 43 44 45

1 2 8 11 16 20 34 36 37 45

0 3 4 6 16 20 31 35 36

11 15 19 20 24 27 29 33

16 20 21 23 24 28 31 34 35 39

1 2 11 16 18 20 24 27 34 39

5 12 14 23 24 28 30 39 40

Listing 1. The Color 1 Graph in a (3, 11)-coloring of K46.

2 3 5 6 10 11 12 19 22 23 25 26 36 37 42 43 45 46 50 56

3 4 6 7 11 12 13 19 23 24 25 26 27 37 38 43 44 46 47 50 53

0 4 5 7 8 12 13 14 24 25 27 28 38 39 44 45 47 53 56

0 1 5 6 8 9 14 15 25 26 28 29 39 40 41 45 46 48 55

1 2 6 7 9 10 14 15 16 26 27 29 30 40 41 42 46 47 51 54

0 2 3 7 8 10 11 16 17 27 28 30 31 41 42 43 47 54 55

0 1 3 4 8 9 11 12 17 18 28 29 31 32 42 43 44 53 55

1 2 4 5 9 10 12 13 18 29 30 32 33 43 44 45 52 53 54

2 3 5 6 10 11 13 14 20 30 31 33 34 44 45 46 50 52 54 56

3 4 6 7 11 12 13 14 15 20 21 31 32 34 35 45 46 47 50 53

0 4 5 7 8 12 13 15 16 21 22 32 33 35 36 46 47 49 53

0 1 5 6 8 9 13 14 16 17 22 23 33 34 36 37 47 49 50 55

0 1 2 6 7 9 10 14 15 16 17 18 23 24 34 35 37 38 48 50 51 55
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1 2 7 8 9 10 11 15 16 18 24 25 35 36 38 39 48 49 51 52

2 3 4 8 9 11 12 16 17 19 20 25 26 36 37 39 40 49 52

3 4 9 10 12 13 17 18 19 20 21 26 27 37 38 40 41 51 52 53

4 5 10 11 12 13 14 18 21 22 27 28 38 39 41 42 52 53 56

5 6 11 12 14 15 19 20 22 23 27 28 29 39 40 42 43 48 52

6 7 12 13 15 16 19 20 21 23 24 28 29 30 40 41 43 44 48

0 1 14 15 17 18 28 29 31 32 37 45 48 49 51 53 54 56

8 9 14 15 17 18 22 23 25 26 30 31 32 42 43 45 46 48 50

9 10 15 16 18 23 24 26 27 31 32 33 43 44 46 47 50 52 56

0 10 11 16 17 20 24 25 27 28 32 33 34 44 45 47 52 55 56

0 1 11 12 17 18 20 21 25 26 28 29 33 34 35 45 46 53 55

1 2 12 13 18 21 22 26 27 29 30 34 35 36 46 47 49 52 53 54

0 1 2 3 13 14 20 22 23 27 28 30 31 35 36 37 47 49 52 54 55

0 1 3 4 14 15 20 21 23 24 28 29 31 32 37 38 49 50 55

1 2 4 5 15 16 17 21 22 24 25 29 30 32 33 38 39 50 54

2 3 5 6 16 17 18 19 22 23 25 26 30 31 33 34 39 40 50 54

3 4 6 7 17 18 19 23 24 26 27 31 32 34 35 40 41 51 52

4 5 7 8 18 20 24 25 27 28 32 33 35 36 41 42 49 51 52

5 6 8 9 19 20 21 25 26 28 29 33 34 36 37 42 43 49 52

6 7 9 10 19 20 21 22 26 27 29 30 34 35 37 38 43 44 49 56

7 8 10 11 21 22 23 27 28 30 31 35 36 38 39 44 45 48 49

8 9 11 12 22 23 24 28 29 31 32 36 37 39 40 45 46 49 51

9 10 12 13 23 24 25 29 30 32 33 37 38 40 41 46 47 51 53

0 10 11 13 14 24 25 30 31 33 34 38 39 40 41 42 47 54 56

0 1 11 12 14 15 19 25 26 31 32 34 35 39 40 42 43 48

1 2 12 13 15 16 26 27 32 33 35 36 40 41 43 44 48 56

2 3 13 14 16 17 27 28 33 34 36 37 41 42 43 44 45 49 50 56

3 4 14 15 17 18 28 29 34 35 36 37 38 42 43 45 46 48 50 53

3 4 5 15 16 18 29 30 35 36 38 39 43 44 46 47 48 49 52 54

0 4 5 6 16 17 20 30 31 36 37 39 40 44 45 47 50 52 54

0 1 5 6 7 17 18 20 21 31 32 37 38 39 40 41 45 46 50 51

1 2 6 7 8 18 21 22 32 33 38 39 41 42 46 47 51 52 54

0 2 3 7 8 9 19 20 22 23 33 34 39 40 42 43 47 52 54 55

0 1 3 4 8 9 10 20 21 23 24 34 35 40 41 43 44 51 55

1 2 4 5 9 10 11 21 22 24 25 35 36 41 42 44 45 49 51 56

3 12 13 17 18 19 20 33 37 38 40 41 49 50 54 55 56

10 11 13 14 19 24 25 26 30 31 32 33 34 39 41 47 48 50 51 53 55

0 1 8 9 11 12 20 21 26 27 28 39 40 42 43 48 49 51 53 54 56

4 12 13 15 19 29 30 34 35 43 44 46 47 49 50 54 55 56

7 8 13 14 15 16 17 21 22 24 25 29 30 31 41 42 44 45 53

1 2 6 7 9 10 15 16 19 23 24 35 40 49 50 52 54 55 56

4 5 7 8 19 24 25 27 28 36 41 42 44 45 48 50 51 53 55

3 5 6 11 12 22 23 25 26 45 46 48 49 51 53 54 56

0 2 8 16 19 21 22 32 36 38 39 47 48 50 51 53 55

Listing 2. The Color 1 Graph in a (4, 8)-coloring of K57.
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