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Abstract

We study q-analogues of k-Fibonacci numbers that arise from weighted tilings

of an n × 1 board with tiles of length at most k. The weights on our tilings arise

naturally out of distributions of permutations statistics and set partitions statistics.

We use these q-analogues to produce q-analogues of identities involving k-Fibonacci

numbers. This is a natural extension of results of the first author and Sagan on set

partitions and the first author and Mathisen on permutations. In this paper we give

general q-analogues of k-Fibonacci identities for arbitrary weights that depend only

on lengths and locations of tiles. We then determine weights for specific permutation

or set partition statistics and use these specific weights and the general identities to

produce specific identities.

Keywords: generalized fibonacci numbers; q-analogues; permutations; set parti-

tions

1 Introduction

Miles [7] defines the k-generalized Fibonacci numbers f
(k)
n by

f (k)
n =

k
∑

i=1

f
(k)
n−i,

with f
(k)
n = 0 for 0 6 n 6 k − 2 and f

(k)
k−1 = 1.

We will work with a shifted version of these k-Fibonacci numbers, F k
n , defined by the

recursion
F k
n = F k

n−1 + F k
n−2 + · · ·F k

n−k,
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if n > 0, with F k
n = 0 if n < 0 and F k

0 = 1. Note that F 2
n are the usual Fibonacci numbers.

An n× 1 board is a row of n squares as pictured below.

· · · n · · ·

A tile of length i is simply an i×1 board. A tiling is any arrangement of non overlapping
tiles that cover every square on an n× 1 board. We will often restrict the lengths of the
tiles that we can use. Let T k

n be the set of tilings of an n× 1 board using tiles of length
at most k. Define |T k

0 | = 1 by including the empty tiling of the empty board.

Theorem 1.1. For n ∈ Z, we have
∣

∣T k
n

∣

∣ = F k
n .

Proof. Let Ak
n be the number of tilings of an n × 1 board using tiles of length at most

k. The first tile could be of length 1, 2, 3, ..., or k. If the first tile is of length 1, then all
possible tilings of the remaining (n − 1) × 1 board are counted by Ak

n−1. If the first tile
is of length 2, then all possible tilings of the remaining (n− 2)× 1 board are counted by
Ak

n−2. This pattern continues until the first tile is of length k in which case the tilings of
the remaining (n− k)× 1 board are counted by Ak

n−k.
This gives us that

Ak
n = Ak

n−1 + Ak
n−2 + · · ·+ Ak

n−k.

Notice that for n < 0, Ak
n = F k

n = 0 and that Ak
0 = 1 = F k

0 . The former represents the
impossible case of a tiling of negative length and the latter represents the empty tiling.
Thus,

∣

∣T k
n

∣

∣ = F k
n for n ∈ Z.

Define a weight function w : T k
n → Z[z1, z2, . . . , zk, q] in the following way. Let T ∈ T k

n

be a tiling and write T = t1t2 . . . tm, where tj is a tile of T . Let w(tj) = zifi,σ,τ (q),
where tj has length i, tj begins in position σ, the length of the board following tj is
τ , and fi,σ,τ (q) ∈ Z[q] is a monomial. We let w be a multiplicative function, so that
w(T ) = w(t1t2 . . . tm) = w(t1)w(t2) · · ·w(tm).

If we have a weight function w as defined above, and a vector z = (z1, z2, . . . , zk), then
we define

F k
n (z; q) =

∑

τ∈T k
n

w(τ)

to be the q-analogue of the k-Fibonacci numbers associated to the weight function w.
In some cases we will only tile a portion of a board at a time and leave either the

beginning or the end to be tiled later. Let T k
n,m+ be the set of tilings of an n × 1 board

using tiles of length at most k with an m × 1 board appended to the end, and let T k
n,m−

be the set of tilings of an n× 1 board using tiles of length at most k with an m× 1 board
appended to the beginning. Notice that because we are not tiling the extra m× 1 board,
|T k

n,m+ | = |T k
n,m−

| = F k
n .

This does however change a weighted tiling. Since the polynomial fi,σ,τ (q) may depend
on the length of the board preceding or the length of the board following the tile under
consideration, we may need to increase the weight of each tile. In this case we define the
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shifted vector (z1s
+
m,1(q), z2s

+
m,2(q), . . . , zks

+
m,k(q)), where the s+m,i(q) ∈ Z[q] are polynomi-

als. Each of the s+m,i(q) will increase the weight of a tile of length i by an appropriate
amount. We will write

∑

T∈T k

n,m+

w(τ) = F k
n (z1s

+
m,1(q), z2s

+
m,2(q), . . . , zks

+
m,k(q); q) =: F k

n (zs
+
m; q).

Similarly, define the shifted vector (z1s
−

m,1(q), z2s
−

m,2(q), . . . , zks
−

m,k(q)), where the s
−

m,i(q) ∈
Z[q] are polynomials and write

∑

T∈T k

n,m−

w(τ) = F k
n (z1s

−

m,1(q), z2s
−

m,2(q), . . . , zks
−

m,k(q); q) =: F k
n (zs

−

m; q).

Theorem 1.2. For n > 1 and an arbitrary weight function w : T k
n → Z[z1, z2, . . . , zk, q],

the q-analogue of F k
n satisfies

F k
n (z; q) = z1f1,1,n−1(q)F

k
n−1(s

−

1 z; q) + z2f2,1,n−2(q)F
k
n−2(s

−

2 z; q) + · · ·+

zkfk,1,n−k(q)F
k
n−1(s

−

k z; q).

Proof. This follows immediately from the fact that w is defined to be multiplicative and
the proof of Theorem 1.1. We note that if the first tile is of length i then the remaining
tiling is of an n× 1 board with an i× 1 board appended to the beginning.

In the next section we will use tilings of boards with tiles of length at most k to give
bijective proofs of identities involving the k-Fibonacci numbers. Furthermore, we will give
identities involving the q-analogues of the k-Fibonacci numbers in the general sense as we
did in Theorem 1.2. In Section 3, we will describe sets of permutations that are counted by
k-Fibonacci numbers and provide results involving q-analogues where the weight functions
are defined by the inversion number or the major index of the permutations. In Section
4, we will describe sets of set partitions that are counted by k-Fibonacci numbers and
provide results involving q-analogues where the weight functions are defined by the rb or
the ls statistic.

2 Identities

We will describe identities involving k-Fibonacci numbers and provide bijective proofs of
these identities using tilings. We will then adapt these proofs to provide q-analogues of
these identities using an arbitrary weight function.

Our first identity is a generalization of a very familiar identity involving Fibonacci
numbers. This identity appears in the paper [8] of Munarini, but we provide a tiling
proof here. To prove it we need a definition. Let a break in a tiling be a place where two
tiles come together. Consider the tiling of a 5 × 1 board given below. There are breaks
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between positions 2 and 3 and between positions 3 and 4 in this tiling.

1 2 3 4 5

Theorem 2.1. For m > 1 and n > 1,

F k
m+n = F k

mF
k
n +

k
∑

i=2

i−1
∑

j=1

F k
m−jF

k
n−i+j.

Proof. Consider a tiling of an (m + n) × 1 board using tiles of length at most k. Now,
there is either a break between the mth and m+ 1st positions or not. If there is a break,
then the number of tilings of the first m positions is F k

m and the number of tilings of the
remaining n positions is F k

n . So, the total number of tilings if there is a break is F k
mF

k
n .

If there is no break between the mth and m+ 1st positions, there must be one tile
covering both of these positions. This tile can be of length 2, 3, . . . , or k. If the tile is of
length 2, there is only one way it can cover positions m and m + 1. The total number
of tilings of the board with a tile of length 2 covering the mth and m + 1st positions is
F k
m−1F

k
n−1.

If the tile covering the mth and m + 1st position is a tile of length 3 then there are
two possible locations for this tile. If the mth and m + 1st positions are covered by the
first and second positions in this tile then there are F k

m−1F
k
n−2 tilings. If they are covered

by the second and third positions then there are F k
m−2F

k
n−1 tilings. So, the total number

of tilings of the board with a tile of length 3 covering the mth and m + 1st positions is
F k
m−1F

k
n−2 + F k

m−2F
k
n−1 =

∑2
j=1 F

k
m−jFn−3+j.

In general, if we consider a tile of length i, there are i−1 ways for it to cover themth and
m+1st positions, creating a total of F k

m−1F
k
n−(i−1) +F k

m−2F
k
n−(i−2) + · · ·+F k

m−(i−1)F
k
n−1 =

∑k−1
j=1 F

k
m−jF

k
n−i+j tilings.

Summing this last expression over i and adding on the number of tilings with a break
between the mth and m+ 1st positions gives the desired result.

Theorem 2.2. For m > 1 and n > 1 and an arbitrary weight function w we have,

Fm+n(z; q) = F k
m(zs

+
n ; q)F

k
n (zs

−

m; q)

+
k

∑

i=2

i−1
∑

j=1

zifi,m−j+1,n−i+j(q)F
k
m−j(zs

+
n+j; q)F

k
n−i+j(zs

−

m+i−j; q).

Proof. This proof is very similar to the one above, we simply consider the weights of the
tiles we are using.

If there is a break between the mth and m + 1st tile then the m × 1 board at the
beginning has an n× 1 board appended to the end. Thus the number of weighted tilings
of the first m positions is F k

m(zs
+
n ; q). Similarly the number of weighted tilings of the final
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n positions is F k
n (zs

−

m; q). Thus, the number of weighted tilings of an (m + n)× 1 board
where there is a break between the mth and m+ 1st positions is F k

m(zs
+
n ; q)F

k
n (zs

−

m; q).
Suppose there is a tile of length i covering the mth and m+1st positions. Furthermore,

assume that the jth position of this tile covers the mth position of the larger board. This
tile has weight zifi,m−j+1,n−i+j(q) because it is of length i, it begins in position m− j + i
and there is a board of length n − i + j following it. The number of weighted tilings of
the m− j positions preceding this tile is F k

m−j(zs
+
n+j; q) since each of these is a weighted

tiling of an (m− j)× 1 board with an (n+ j)× 1 board appended to the end. Similarly,
the number of weighted tilings of the n − i + j positions following the tile of length i is
F k
n−i+j(zsm+i−j; q). This gives

k
∑

i=2

i−1
∑

j=1

zifi,m−j+1,n−i+j(q)F
k
m−j(zs

+
n+j; q)F

k
n−i+j(zs

−

m+i−j; q)

weighted tilings of a board without a break between the mth and m+ 1st positions.
Summing this last expression over i and adding on the number of tilings with a break

between the mth and m+ 1st positions gives the desired result.

Theorem 2.3. For n > 1,

F k
n = F k−1

n +
n−k
∑

j=0

F k−1
j F k

n−k−j.

Proof. Consider a tiling of an n × 1 board consisting of tiles of length at most k. Now,
there is either a tile of length k in the tiling or not. If there is no tile of length k in the
tiling then there are F k−1

n tilings.
Suppose there is a tile of length k in the tiling. Consider the location of the first

tile of length k. If the first tile of length k begins at the j + 1st position on the board
then the first j positions must be tiled with tiles of length at most k − 1, which can be
done in F k−1

j ways. The final n − k − j positions can be tiled with tiles of length at

most k, which can be done in F k
n−k−j ways. Summing over appropriate values of j gives

F k
n = F k−1

n +
∑n−k

j=0 F
k−1
j F k

n−k−j.

Theorem 2.4. For n > 1 and an arbitrary weight function w,

F k
n (z; q) = F k−1

n (z; q) +
n−k
∑

j=0

zkfk,j+1,n−k−j(q)F
k−1
j (zs+n−j; q)F

k
n−k−j(zs

−

k+j; q).

Proof. This follows directly from the definitions, and the proof of Theorem 2.3.

Miles [7] proved the following determinant identity involving k-generalized Fibonacci
numbers.

det











f
(k)
n f

(k)
n+1 · · · f

(k)
n+k−1

f
(k)
n+1 f

(k)
n+2 · · · f

(k)
n+k

...
...

. . .
...

f
(k)
n+k−1 f

(k)
n+k · · · f

(k)
n+2k−2











= (−1)
(2n+k)(k−1)

2 .
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We will use a method of lattice paths and their relationships to minors of a Toeplitz-
like matrix for k-Fibonacci numbers to prove a weighted version of this theorem for F k

n .
Lindström [5] introduced this method, and Gessel and Viennot [1] showed that it has
broad application. This method was applied in [4] to determine a family of q-analogues
of Fibonacci numbers. We will describe it in it’s entirety here and use it to determine a
q-analogue of the identity

det











F k
n+k−1 F k

n+k · · · F k
n+2k−2

F k
n+k−2 F k

n+k−1 · · · F k
n+2k−3

...
...

. . .
...

F k
n F k

n+1 · · · F k
n+k−1











=

{

1 if k is odd,
(−1)n−1 if k is even.

The proof of this identity is an immediate consequence of the proof of Theorem 2.5.
Consider the digraph Dk = (Vk, Ak) with vertices labeled 0, 1, 2 . . . and for each vertex

n there are k arcs beginning at n and ending at n + 1, n + 2, . . . , n + k respectively. It
is easy to see that the number of directed walks from vertex a to vertex b is F k

b−a. Below
is the portion of the digraph on the vertices 0, 1, 2, . . . , 7 for k = 3. All arcs are directed
to the right.

b b b b b b b b
0 1 2 3 4 5 6 7

Let the edge from n to n+ i for 1 6 i 6 k be written ~en,n+i and let an arbitrary weight
w(~en,n+i) be the same as the corresponding weight of a tile of length i in a tiling. Let p
be a directed path from vertex a to vertex b and let w(p) be the product of the weights
of its arcs. We have that

∑

p

w(p) = F k
b−a(s

−

a z; q),

where the sum is over all paths p from a to b. We will not consider the portion of the
graph after b, so we do not need to include any term of the form s+m,i(q).

Let u : u1 < u2 < · · · < um and v : v1 < v2 < · · · < vm be sequences of vertices in Dk.
An m-tuple of paths from u to v is

P =
{

u1
p1
→ vα(1), u2

p2
→ vα(2), . . . , um

pm
→ vα(m)

}

,

where α ∈ Sm, the symmetric group on m elements. Define the weight of such an m-tuple
to be w(P ) =

∏m

i=1 w(pi). Let the sign of the m-tuple of paths be sgn(P ) = sgn(α).
Now, the matrix above is the minor of the Toeplitz-like matrix











F k
0 F k

1 F k
2 · · ·

0 F k
0 F k

1 · · ·
0 0 F k

0 · · ·
...

...
...

. . .










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given by the first k rows and columns n+k−1 through n+2k−2. Since we are interested
in the q-analogue of the identity above, we will be interested in the Toeplitz-like matrix

F̂ =











F k
0 (z;q) F k

1 (z;q) F k
2 (z;q) · · ·

0 F k
0 (s1z;q) F k

1 (s1z;q) · · ·
0 0 F k

0 (s2z;q) · · ·
...

...
...

. . .











.

Let F̂u,v be the minor of this matrix given by the rows indexed by the sequence u and
columns indexed by the sequence v. From the weight definitions above we have that

det F̂u,v =
∑

P

sgn(P )w(P ),

where the sum is over all m-tuples of paths from u to v.
The minor we are interested in is the one with

u = 0, 1, . . . , k − 1 and v = n+ k − 1, n+ k, . . . , n+ 2k − 2. (1)

Our goal is to describe a simple way to compute the determinant of this minor. We will
say that an m-tuple of paths is noncrossing if no two paths share a vertex.

Theorem 5.2 from [4] shows that

det F̂u,v =
∑

P

sgn(P )w(P ),

where the sum is over all m-tuples of noncrossing paths. This is sufficient to compute the
determinant of F̂u,v. We observe that because the vertices u : 0, 1, . . . , k− 1 are adjacent
and the vertices v : n+ k− 1, n+ k, . . . , n+2k− 2 are adjacent, the only k-tuple of paths
from u to v are paths that consist entirely of the edges ~ei,i+k for 0 6 i 6 n + k − 2. Let
P k
n be this k-tuple of paths.
The k-tuple of paths P k

n consists entirely of arcs of length k. We need to determine
the weights of these arcs in the context of zkfk,σ,τ (q). Suppose that n + k − 1 = pk + r
where p and r are nonnegative integers and r < k. The first r arcs are followed by paths
of length pk. Thus the product of the weights of these arcs is

∏r

i=1 zkfk,i,pk(q). Now, the
next k arcs are each followed by a path of length (p − 1)k, so the weights of these arcs
is
∏r+k

i=r+1 zkfk,i,(p−1)k(q). This process continues until we get to the last k arcs which are
followed by paths of length 0. Thus, the weights of the arcs are

zn+k−1
k

r
∏

i=1

fk,i,pk(q)

p−1
∏

j=0

k
∏

a=1

fk,r+jk+a,(p−j−1)k(q).

Due to the nature of the paths in P n
k the associated permutation α must be of the

form r(r+1) . . . k12 . . . (r−1), where 1 6 r 6 k. This permutation has (r−1)(k−(r−1))
inversions. Thus, if k is odd, sgn(α) is even.
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If k is even, then the parity of α is the same as the parity of r− 1. Now, suppose that
n + k − 1 is divisible by k. This implies that n − 1 is divisible by k and hence is even.
Also, if n + k − 1 is divisible by k then α = 123 . . . k, i.e. r = 1. Thus, α is even when
n− 1 is even.

This gives us the following theorem.

Theorem 2.5. Let u and v be as in (1) and n + k − 1 = pk + r where p and r are

nonnegative integers and r < k, then we have that

det F̂u,v =

{

zn+k−1
k

∏r

i=1 fk,i,pk(q)
∏p−1

j=0

∏k

a=1 fk,r+jk+a,(p−j−1)k(q) if k is odd,

(−1)n−1zn+k−1
k

∏r

i=1 fk,i,pk(q)
∏p−1

j=0

∏k

a=1 fk,r+jk+a,(p−j−1)k(q) if k is even.

In the next sections we will give specific q-analogues of the identities listed below by
determining distributions of statistics over certain combinatorial objects. We will show
that the distributions depend only on the “tiles”, which will allow us to determine fi,σ,τ (q),
s−m,i(q), and s+m,i(q) for each of these sets and statistics. We will then be able to simply
substitute into the identities determined above to give q-analogues.

Because we will be determining q-analogues using many different statistics and many
different sets, we will call all of them F k

n (z; q). We hope that the context maintains the
clarity of which q-analogue we are discussing.

F k
n (z; q) = z1f1,1,n−1(q)F

k
n−1(s

−

1 z; q) + z2f2,1,n−2(q)F
k
n−2(s

−

2 z; q) + · · ·+

zkfk,1,n−k(q)F
k
n−1(s

−

k z; q).

Fm+n(z; q) = F k
m(zs

+
n ; q)F

k
n (zs

−

m; q) +
k

∑

i=2

i−1
∑

j=1

zifi,m−j+1,n−i+j(q)F
k
m−j(zs

+
n+j; q)F

k
n−i+j(zs

−

m+i−j; q).

F k
n (z; q) = F k−1

n (z; q) +
n−k
∑

j=0

zkfk,j+1,n−k−j(q)F
k−1
j (zs+n−j; q)F

k
n−k−j(zs

−

k+j; q).

det F̂u,v =

{

zn+k−1
k

∏r

i=1 fk,i,pk(q)
∏p−1

j=0

∏k

a=1 fk,r+jk+a,(p−j−1)k(q) k odd,

(−1)n−1zn+k−1
k

∏r

i=1 fk,i,pk(q)
∏p−1

j=0

∏k

a=1 fk,r+jk+a,(p−j−1)k(q) k even.

3 Permutations and q-Analogues

We will consider distributions of permutation statistics over certain sets of permutations
that are counted by the k-Fibonacci numbers. These distributions will give rise to specific
q-analogues of the identities discussed above. For each statistic we will only need to
determine the weight of a tile and the shift factor and substitute these into the identities
from Section 2. The sets of permutations we will discuss arise naturally from the study
of pattern avoidance. We will discuss the structure of the permutations in these sets and
refer the reader to papers in which these results appear, but we will not discuss the idea
of pattern avoidance. We refer the reader to [11] for an overview of pattern avoidance.
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We define layered permutations to be permutations of the form

m(m+ 1) . . . nj(j + 1) . . . (m− 1) . . . 12 . . . (i− 1).

Let LPn be the set of layered permutations in Sn, then for example

LP4 = {1234, 2341, 3412, 3421, 4123, 4231, 4312, 4321}.

Each contiguous increasing sequence in a layered permutation is called a layer. For ex-
ample the permutation 4231 has three layers, 4, 23, and 1. We will say that the length of
a layer is the number of elements in the layer.

Let r : Sn → Sn be the bijective map that satisfies, r(π1π2 . . . πn) = πnπn−1 . . . π1,
where π1π2 . . . πn ∈ Sn. We call r the reversal map. Let RLPn = {r(π) : π ∈ LPn} be
the set of reverse layered permutations. The layers of a permutation in RLPn are the
reverse of the layers of the corresponding permutation in LPn. For example, RLP4 =
{4321, 1432, 2143, 1243, 3214, 1324, 2134, 1234}.

Let PRLPn be the set of permutations obtained from LPn be reversing all but the
last element in each layer of a permutation π ∈ LPn. We will call these partially reversed

layered permutations. We have PRLP4 = {3214, 3241, 3412, 3421, 4213, 4231, 4312, 4321}.
Let LP k

n (RLP k
n , PRLP k

n ) be the sets of layered (reverse layered, partially reverse
layered) permutations with layers of length at most k. Mansour [6] proves that |LP k

n | =
|RLP k

n | = |PRLP k
n | = F k

n . In [3] the first author and Mathisen study statistical distribu-
tions over RLP 2

n .
We observe that any element of LP k

n , RLP k
n , or PRLP k

n is uniquely determined by
its layers, and these layers can be thought of as tiles in a tiling of an n × 1 board. This
gives an obvious bijection with T k

n . In the following subsections we will discuss specific
permutation statistics and their associated weight functions for LP k

n , RLP k
n , and PRLP k

n ,
and use them to give specific q-analogues of the identities from Section 2.

3.1 The Inversion Statistic

Let π ∈ Sn. We say π(i) and π(j) form an inversion if i < j and π(i) > π(j). Let
inv(π) be the number of inversions in π. For example, the permutation π = 453612 has
inv(π) = 10.

3.1.1 LP k
n

Consider the set LP k
n . Let π = π1π2 . . . πm ∈ LP k

n where πj is a layer for 1 6 j 6 m. Then
any element in the layer πj is larger than every element in a layer following πj. Further-
more, the elements of πj are in increasing order. Thus, there are no inversions inside of the
layer πj. If πj has length i, denoted ℓ(πj) = i and the length of the permutation following
πj is ℓ(πj+1 . . . πm). Then we will say the weight of πj is w(πj) = ziq

iℓ(πj+1...πm). In the
context of the general weight functions we would say that fi,σ,τ (q) = qiℓ(πj+1...πm) = qiτ .

From the definition of inv(π), we see that w(π) =
(

∏m

j=1 zℓ(πj)

)

qinv(π). Define F k
n (z; q) =

∑

π∈LP k
n
w(π).
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We need only determine the shift factors s+m,i(q) and s−m,i(q) for this set and this
statistic. Since the weight of a layer only depends on the length of the permutation
appearing after this layer, we must have that for all i andm, s−m,i(q) = 1 and s+m,i(q) = qim.

Thus F k
n (zs

+
m; q) = F k

n (z1q
m, z2q

2m, . . . , zkq
km), which essentially means that the weight

of each position is increased by a factor of qm. Since there are n positions, we have

F k
n (zs

+
m; q) = qnmFn(z; q).

For n > 1, the q-analogue of the k-Fibonacci numbers for the distribution of the
inversion statistic over LP k

n satisfies

F k
n (z; q) = z1q

n−1F k
n−1(z; q) + z2q

2(n−2)Fn−2(z; q) + · · ·+ zkq
k(n−k)Fn−k(z; q),

where F k
0 (z; q) = 1 and F k

n (z; q) = 0 if n < 0.
Given the weight and shifting factor associated to the distribution of the inversion

statistic over LP k
n we obtain the following identities for u and v as in (1) and n+ k− 1 =

pk + r with p and r nonnegative integers and r < k:

Fm+n(z; q) = qnmF k
m(z; q)F

k
n (z; q) +

k
∑

i=2

i−1
∑

j=1

ziq
i(n+j)q(m−j)(n+j)F k

m−j(z; q)Fn−i+j(z; q).

F k
n (z; q) = F k−1

n (z; q) +
n−k
∑

j=0

zkq
k(n−k−j)qj(n−j)F k−1

j (z; q)F k
n−k−j(z; q).

det F̂u,v =

{

zn+k−1
k qprk

2+k3(p2) if k is odd,

(−1)n−1zn+k−1
k qprk

2+k3(p2) if k is even.

3.1.2 RLP k
n

Consider the set RLP k
n . Let π = π1π2 . . . πm ∈ RLP k

n , where each πj is a layer. Since all
of the elements of πi are less than all of the elements of πj if i < j, we need only look
inside each layer to determine the number of inversions. The elements of any layer πj

are in decreasing order, so if ℓ(πj) = i then there are
(

i

2

)

inversions. This gives us that

fi,σ,τ (q) = q(
i

2) in this case, so w(πj) = ziq
(i2), and hence w(π) =

(

∏m

j=1 zℓ(πj)

)

qinv(π).

Define F k
n (z; q) =

∑

π∈RLP k
n
w(π).

Finally, we need to determine the shifting factors. Since the number of inversions does
not depend on the location of the layer, we have that s−m,i = 1 and s+m,i = 1 for each m
and i.

For n > 1, the q-analogue of the k-Fibonacci numbers for the distribution of the
inversion statistic over RLP k

n satisfies

F k
n (z; q) = z1F

k
n−1(z; q) + z2qFn−2(z; q) + · · ·+ zkq

(k2)Fn−k(z; q),

where F k
0 (z; q) = 1 and F k

n (z; q) = 0 if n < 0.
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Given the weight and shifting factor associated to the distribution of the inversion
statistic over RLP k

n we obtain the following identities for u and v as in (1):

Fm+n(z; q) = F k
m(z; q)F

k
n (z; q) +

k
∑

i=2

i−1
∑

j=1

ziq
(i2)F k

m−j(z; q)F
k
n−i+j(z; q).

F k
n (z; q) = F k−1

n (z; q) +
n−k
∑

j=0

zkq
(k2)F k−1

j (z; q)F k
n−k−j(z; q).

det F̂u,v =

{

zn+k−1
k q(n+k−1)(k2) if k is odd,

(−1)n−1zn+k−1
k q(n+k−1)(k2) if k is even.

3.1.3 PRLP k
n

Let π = π1π2 . . . πm ∈ PRLP k
n , where each πj is a layer. Suppose πj is a layer of length

i. The first i − 1 elements are in decreasing order now, with the largest element in the
last position. This gives

(

i−1
2

)

inversions inside of each layer of length i. Since the layers
in RPLP k

n are in the same order as they were in LP k
n each element of πj is larger than

any element in a layer following πj. This gives us that fi,σ,τ (q) = q(
i−1
2 )+iτ . Hence,

w(πj) = ziq
(i−1

2 )+iτ and w(π) =
(

∏m

j=1 zℓ(πj)

)

qinv(π). Define F k
n (z; q) =

∑

π∈PRLP k
n
w(π).

As in the case of LP k
n , we have that s

+
m,i(q) = qim and s−m,i(q) = 1. Thus F k

n (zs
+
m; q) =

F k
n (z1q

m, z2q
2m, . . . , zkq

km) = F k
n (zs

+
m; q) = qnmFn(z; q).

For n > 1, the q-analogue of the k-Fibonacci numbers for the distribution of the
inversion statistic over PRLP k

n satisfies

F k
n (z; q) = z1q

n−1F k
n−1(z; q) + z2q

2(n−2)Fn−2(z; q) + · · ·+ zkq
(k−1

2 )+k(n−k)Fn−k(z; q),

where F k
0 (z; q) = 1 and F k

n (z; q) = 0 if n < 0.
Given the weight and shifting factor associated to the distribution of the inversion

statistic over PRLP k
n we obtain the following identities for u and v as in (1) and n+k−1 =

pk + r with p and r nonnegative integers and r < k:

Fm+n(z; q) = qnmF k
m(z; q)F

k
n (z; q) +

k
∑

i=2

i−1
∑

j=1

ziq
(i−1

2 )+i(n−i+j)q(m−j)(n+j)F k
m−j(z; q)Fn−i+j(z; q).

F k
n (z; q) = F k−1

n (z; q) +
n−k
∑

j=0

zkq
(k−1

2 )+k(n−k−j)qj(n−j)F k−1
j (z; q)F k

n−k−j(z; q).

det F̂u,v =

{

zn+k−1
k q(n+k−1)(k−1

2 )+prk2+k3(p2) if k is odd,

(−1)n−1zn+k−1
k q(n+k−1)(k−1

2 )+prk2+k3(p2) if k is even.
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3.2 The Major Index

Let π ∈ Sn. We say that π(i) and π(i+1) form a descent if π(i) > π(i+1). Define Dπ =
{i : π(i)π(i + 1) is a descent}. We define the major index of π to be maj(π) =

∑

i∈Dπ
i.

For example, the permutation π = 453612 has maj(π) = 2 + 4 = 6.

3.2.1 LP k
n

Let π = π1π2 . . . πm ∈ LP k
n , where πj is a layer for 1 6 j 6 m. The elements in the layers

of π are increasing, so there are no descents within layers. The last element in the first
m − 1 layers is larger than the first element in the next layer. Thus, in all but the last
layer, there is a descent from the last element in the layer to the first element in the next
layer. For the major index we sum the locations of the the tops of the descents, which
are the locations of the ends of all but the last layer. Suppose πj is a layer of π of length
i. Define w(πj) = zifi,σ,τ (q) = ziq

σ−1. The term qσ−1 counts the index of the descent

starting in the layer preceding πj. Thus, w(π) =
(

∏m

j=1 zℓ(πj)

)

qmaj(π). We define

∑

π∈LP k
n

w(π) = F k
n (z; q).

We need only determine the shifting factors associated to this statistic. Since fi,σ,τ (q)
depends only on the length of the permutation preceding the layer, we have s+m,i(q) = 1
and s−m,i(q) = qm. Thus, zs−m(q) = (z1q

m, z2q
m, . . . , zkq

m). For simplicity, we will write
zs−m(q) = zqm.

For n > 1, the q-analogue of the k-Fibonacci numbers for the distribution of the major
index over LP k

n satisfies

F k
n (z; q) = z1F

k
n−1(zq; q) + z2Fn−2(zq

2; q) + · · ·+ zkFn−k(zq
k; q),

where F k
0 (z; q) = 1 and F k

n (z; q) = 0 if n < 0.
Given the weight and shifting factor associated to the distribution of the major index

over LP k
n we obtain the following identities for u and v as in (1):

Fm+n(z; q) = F k
m(z; q)F

k
n (zq

m; q) +
k

∑

i=2

i−1
∑

j=1

ziq
m−jF k

m−j(z; q)F
k
n−i+j(zq

m+i−j; q).

F k
n (z; q) = F k−1

n (z; q) +
n−k
∑

j=0

zkq
jF k−1

j (z; q)F k
n−k−j(zq

k+j; q).

det F̂u,v =

{

zn+k−1
k q(

n+k−1
2 ) if k is odd,

(−1)n−1zn+k−1
k q(

n+k−1
2 ) if k is even.

3.2.2 RLP k
n

Let π = π1π2 . . . πm ∈ RLP k
n , where πj is a layer for 1 6 j 6 m. The elements in each

layer of π are decreasing, and hence all but the last position of each layer is the top of a
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descent. The last position of each layer is smaller than the first position of the next layer,
so there are no descents between layers. We are adding the positions of each descent to
determine maj(π). Consider the layer πj, assume ℓ(πj) = i, and that πj begins in position
σ. Then the first i− 1 elements of πj are in positions σ, σ + 1, . . . , σ + i− 2. Summing

these gives (σ − 1)(i − 1) +
(

i

2

)

. Let w(πj) = zifi,σ,τ (q) = ziq
(σ−1)(i−1)+(i2). This gives us

that w(π) =
(

∏m

j=1 zℓ(πj)

)

qmaj(π). We define F k
n (z; q) =

∑

π∈RLP k
n
w(π).

We need only determine the shifting factors for this distribution. Again fi,σ,τ (q) only
depends on the length of the permutation preceding the layer, we have that s+m,i(q) = 1

and s−m,i(q) = q(i−1)m for each i and m. We have zs−m(q) = (z1, z2q
m, z3q

2m . . . , zkq
(k−1)m).

For simplicity, we will write zs−m(q) = zq(i−1)m.
For n > 1, the q-analogue of the k-Fibonacci numbers for the distribution of the major

index over RLP k
n satisfies

F k
n (z; q) = z1F

k
n−1(zq

(i−1); q) + z2qFn−2(zq
(i−1)2; q) + · · ·+ zkq

(k2)Fn−k(zq
(i−1)k; q),

where F k
0 (z; q) = 1 and F k

n (z; q) = 0 if n < 0.
Given the weight and shifting factor associated to the distribution of the major index

over LP k
n we obtain the following identities for u and v as in (1):

Fm+n(z; q) = F k
m(z; q)F

k
n (zq

(i−1)m; q) +
k

∑

i=2

i−1
∑

j=1

ziq
(m−j)(i−1)+(i2)F k

m−j(z; q)F
k
n−i+j(zq

(i−1)(m+i−j); q).

F k
n (z; q) = F k−1

n (z; q) +
n−k
∑

j=0

zkq
j(k−1)+(k2)F k−1

j (z; q)F k
n−k−j(zq

(i−1)(k+j); q).

det F̂u,v =

{

zn+k−1
k q(k−1)(n+k−1

2 )+(k2)(n+k−1) if k is odd,

(−1)n−1zn+k−1
k q(k−1)(n+k−1

2 )+(k2)(n+k−1) if k is even.

3.2.3 PRLP k
n

Let π = π1π2 . . . πm ∈ PRLP k
n , where πj is a layer for 1 6 j 6 m. Suppose ℓ(πj) = i.

Then the first i − 1 elements of πj are decreasing. So the first i − 2 locations of πj are
the tops of descents. The last element in each layer in this case is larger than the first
element in the next layer. Thus, we combine the results of the distribution of the major
index over LP k

n and RLP k
n . Because the element preceding the first element of πj is

larger than the first element of πj, part of the weight of πj is σ − 1, i.e. the length of
the permutation preceding πj. The descents in the first i − 2 positions of πj contribute

(i− 2)(σ − 1) +
(

i−1
2

)

. Thus, we have that w(πj) = ziq
(σ−1)(i−1)+(i−1

2 ). This gives us that

w(π) =
(

∏m

j=1 zℓ(πj)

)

qmaj(π). We define

F k
n (z; q) =

∑

π∈PRLP k
n

w(π).
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We need only determine the shift factors s−m(q) and s+m(q). Again, combining the
results from LP k

n and RLP k
n we have that s+m,i(q) = 1 and s−m,i(q) = q(i−1)m. We will write

zq(i−1)m for (z1, z2q
m, z3q

2m, . . . , zkq
(k−1)m).

For n > 1, the q-analogue of the k-Fibonacci numbers for the distribution of the major
index over PRLP k

n satisfies

F k
n (z; q) = z1F

k
n−1(zq

(i−1)1; q) + z2Fn−2(zq
(i−1)2; q) + · · ·+ zkq

(k−1
2 )Fn−k(zq

(i−1)k; q),

where F k
0 (z; q) = 1 and F k

n (z; q) = 0 if n < 0.
Given the weight and shifting factor associated to the distribution of the major index

over PRLP k
n we obtain the following identities for u and v as in (1):

Fm+n(z; q) = F k
m(z; q)F

k
n (zq

(i−1)m; q) +
k

∑

i=2

i−1
∑

j=1

ziq
(m−j)(i−1)+(i−1

2 )F k
m−j(z; q)F

k
n−i+j(zq

(i−1)(m+i−j); q).

F k
n (z; q) = F k−1

n (z; q) +
n−k
∑

j=0

zkq
(k−1)(j)+(k−1

2 )F k−1
j (z; q)F k

n−k−j(zq
(i−1)(k+j); q).

det F̂u,v =

{

zn+k−1
k q(k−1)(n+k−1

2 )+(k−1
2 )(n+k−1) if k is odd,

(−1)n−1zn+k−1
k q(k−1)(n+k−1

2 )+(k−1
2 )(n+k−1) if k is even.

4 Set Partitions

We now consider distributions of set partition statistics over certain set partitions that
are counted by k-Fibonacci numbers. Again these sets arise out of the theory of pattern
avoidance. We will describe these sets, but not explain pattern avoidance in set partitions.
We refer the reader to [2, 9] where these sets can be found.

A partition of [n] = {1, 2, . . . , n} is a family of disjoint subsets, B1, B2, . . . , Bk, of
[n] called blocks such that

⋃k

i=1Bi = [n]. We will write π = B1/B2/ . . . /Bk, where
minB1 < minB2 < · · · < minBk. For example, 126/35/4/7 is a partition of [7].

We say that a partition π of [n] is layered if

π = 12 . . . i/(i+ 1)(i+ 2) . . . j/ . . . /m(m+ 1) . . . n.

For example, 12/3/4567/89 is a layered partition of [9]. Let LΠn be the set of lay-
ered partitions, and let LΠk

n be the set of layered partitions with layer lengths at most
k. For example, LΠ4 = {1234, 1/234, 12/34, 123/4, 1/2/34, 1/23/4, 12/3/4, 1/2/3/4}, and
LΠ2

4 = {12/34, 1/2/34, 1/23/4, 12/3/4, 1/2/3/4}. In [4] the first author and Sagan study
distributions of set partition statistics over LΠ2

n.
As with layered permutations, there is an obvious bijection between LΠk

n and T k
n . As

we did in Section 3, we will determine weights on layers by looking at distributions of
set partition statistics on layered set partitions. This will allow us to again determine
q-analogues of the k-Fibonacci identities from Section 2.
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4.1 The Right Bigger Statistic

Wachs and White [10] studied the distribution of the right bigger statistic and the left
smaller statistic and determined q-analogues of the Stirling numbers of the second kind.
We will focus on the distributions of these two statistics on LΠk

n.
Let π = B1/B2/ . . . /Bm be a set partition. For each element b ∈ Bi with i < j, we

have that (b, Bj) is a right bigger pair if b < maxBj. Let rb(π) be the number of right
bigger pairs in π.

Again, let π = B1/B2/ . . . /Bm be a set partition. For each element b ∈ Bj with j > i,
we have that (b, Bi) is a left smaller pair if b > minBi. Let ls(π) be the number of left
smaller pairs in π.

The first author and Sagan [4] show that ls and rb are equidistributed over layered
set partitions with restricted block sizes. Thus, we need only determine the identities for
one of these statistics. We will proceed to work with the rb statistic.

Notice that if π = B1/B2/ . . . /Bm ∈ LΠk
n then every element in block Bj is greater

than every element in block Bi if i < j. Thus, the maxBj > b for each b ∈ Bi with
i < j. Now suppose that |Bj| = i, we will say the length of block Bj is i. In this case
w(Bj) = zifi,σ,τ (q) = ziq

σ−1, where σ − 1 is the length of the partition preceding block

Bj. This shows that for π = B1/B2/ . . . /Bm ∈ LΠk
n, we have w(π) =

(

∏m

j=1 zℓ(Bj)

)

qrb(π).

We define
F k
n (z; q) =

∑

π∈LΠk
n

w(π),

where F0(z; q) = 1 and Fn(z; q) = 0 for n < 0.
The shift factors related to the distribution of the rb statistic are s+m,i(q) = 1 and

s−m,i(q) = qm. The values of the shift vectors and the fact that fi,σ,τ (q) = ziq
σ−1 give us

that the distribution of the rb statistic over LΠk
n is the same as the distribution of maj

over LP k
n . Thus the results from Section 3.2.1 hold here.
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