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Abstract

Let 2 6 r < m and g be positive integers. An ({r,m}; g)–graph (or biregular
graph) is a graph with degree set {r,m} and girth g, and an ({r,m}; g)–cage (or
biregular cage) is an ({r,m}; g)–graph of minimum order n({r,m}; g). If m = r+1,
an ({r,m}; g)–cage is said to be a semiregular cage.

In this paper we generalize the reduction and graph amalgam operations from
[M. Abreu, G. Araujo–Pardo, C. Balbuena, D. Labbate. Families of Small Reg-
ular Graphs of Girth 5. Discrete Math. 312(18) (2012) 2832–2842] on the inci-
dence graphs of an affine and a biaffine plane obtaining two new infinite families of
biregular cages and two new semiregular cages. The constructed new families are
({r, 2r−3}; 5)–cages for all r = q+1 with q a prime power, and ({r, 2r−5}; 5)–cages
for all r = q + 1 with q a prime. The new semiregular cages are constructed for
r = 5 and 6 with 31 and 43 vertices respectively.
Keywords: biregular, cage, girth.
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1 Introduction

All graphs considered are finite, undirected and simple (without loops or multiple edges).
For definitions and notations not explicitly stated the reader may refer to [15], [13] and
[16].

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The girth of a
graph G is the length g = g(G) of a shortest cycle. The degree of a vertex v ∈ V is the
number of vertices adjacent to v. A graph is called r–regular if all its vertices have the same
degree r. A (r, g)–graph is a r–regular graph of girth g and a (r, g)–cage is a (r, g)–graph
with the smallest possible number of vertices. Cages have been intensely studied since
they were introduced by Tutte [31] in 1947. Erdős and Sachs [20] proved the existence
of a (r, g)–graph for any value of r and g. Biggs is the author of an impressive report on
distinct methods for constructing cubic cages [14]. More details about constructions of
cages can be found in the surveys by Wong [32], by Holton and Sheehan [27, Chapter 6],
or the recent one by Exoo and Jajcay [21].

The cages theory has been generalized in many ways, one such is as follows: if D =
{a1, . . . , ak} is a set of positive integers with 2 6 a1 < a2 < . . . < ak then a (D; g)–graph is
a graph with degree set D and girth g and a (D; g)–cage is a (D; g)–graph with minimum
order n(D; g) = n(a1, . . . , ak; g). It is obvious that the (r; g)–cage is a special case of the
(D; g)–cage when D = {r}.

Few values of n(D; g) are known. In particular, Kapoor et al. [28] proved that
n(D; 3) = 1 + ak. Moreover, the following lower bound for n(D; g) was given by Downs
et al. [18]:

n(D; g) >























1 +
t

∑

i=1

ak(a1 − 1)i−1 if g = 2t+ 1;

1 +
t−1
∑

i=1

ak(a1 − 1)i−1 + (a1 − 1)t−1 if g = 2t.

(1)

A biregular ({r,m}; g)–graph is a (D; g)–graph with degree set D = {r,m} and girth g
and a bi-regular ({r,m}; g)–cage is an ({r,m}; g)–graph of smallest possible order. Note
that bouquets of r cycles of length g are ({2, 2r}; g)-cages and the complete bipartite
graphs Kr,m are ({r,m}; 4)–cages. If m = r + 1, an ({r,m}; g)–cage is said to be a
semiregular cage.

The existence of biregular ({r,m}; g)–graphs has been proved by Chartrand, Gould,
and Kapoor in [17] for all 2 6 r < m and g > 3 (also proved by Füredi et al. in
[23]). On the other hand, several contructions of biregular ({r,m}; g)–cages have been
achieved for different values of r, m and g. In particular, Chartrand et al. proved in
[17] that n({r,m}; 4) = r + m, for 2 6 r < m, and g = 4 and they also proved in [17]
that n({2,m}; g) attains the lower bound (1). Furthermore, Yuansheng and Liang in
[33] proved that n({r,m}; 6) > 2(rm − m + 1) for any 2 6 r < m; that n({r,m}; 6) =
2(rm−m+ 1) for g = 6 and r < m when 2 6 r 6 5 or r > 2 and m− 1 a prime power;
and they conjectured that n({r,m}; 6) = 2(rm−m+ 1), for any 2 6 r < m.
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In this paper, we focus our attention on biregular graphs of girth exactly five, where
n({r,m}; 5) = rm+1. Some known results in this case, Downs et al. [18] have shown that
n({3;m}; 5) = 3m+ 1, for any m > 4, Hanson et al. [24] have shown that n({4;m}; 5) =
4m+1, for any integer m > 5, and Araujo–Pardo et al. in [7] proved several results in this
context. Moreover, it is worth to note that Yuansheng and Liang in [33], claim to have
proved that n({5,m}; 5) = 5m + 1 for m > 6 in an unpublished manuscript. In Table
1, we summarize these and other known results on the exact values of n({r,m}; g), for
g > 5, together with the results obtained in this paper which we now proceed to describe.

r m g = 5 g = 6 g = 7 g = 8 g = 9 g = 11

r = 3 m > 4 3m+ 1 4m+ 2 7m+ 1
25m

3
+ 5 15m+ 1 31m+ 1

[18] [24, 33] [18] m = 3k [7] m > 6 m = 4k
9m+ 3 [18] [7]

m = 4, 5, 7 [10]
r = 4 m > 5 4m+ 1 6m+ 2 13m+ 1 121m+ 1

[24] [33] m = 6k m = 6k
[7] [7]

r > 5 m = 2k(r − 1) 1 + rm 1 +m(r2 − r + 1) 1 +m
(r−1)5−1

r−2

r = ph + 1 [7] [7] [7]
p prime m = k(r − 1) + 1 2(rm−m+ 1)

[6, 33]
m = kr [7]
m = 2r − 3 (*)

h = 1 m = 2r − 5 (*)
p > 7

Table 1: Exact values of n({r,m}; g). The symbol (*) means results obtained in this
paper.

We generalize the reduction and graph amalgam operations from [1] on the incidence
graphs Aq of an affine and Bq of a biaffine plane (elliptic semiplane of type C) obtaining
two new infinite families of biregular ({r,m}; 5)–cages and two new semiregular cages of
girth 5. The constructed families are ({r, 2r−3}; 5)–cages for all r = q+1 with q a prime
power, and ({r, 2r − 5}; 5)–cages for all r = q + 1 with q a prime. The new semiregular
cages are constructed for r = 5 and 6 with 31 and 43 vertices respectively.

The paper is organized as follows: the graphs Aq and Bq are presented in Section 2,
with a labelling which will be necessary for the construction of biregular cages. In Section
3, we construct previously unknown ({r, 2r−3}; 5)–cages, for a prime power q > 2 and the
integer r = q+1, in Theorem 3.3, adding edges to the graph Aq. Moreover if r−1 is even,
we exhibit r non-isomorphic such ({r, 2r− 3}; 5)–cages in Theorem 3.5. In particular, we
find a ({4, 5}; 5)–semiregular cage with 21 vertices. In Section 4 we slightly generalize
reduction and amalgam operations, described in [1] and [22], that, performed on the
bipartite graph Bq, will allow us to construct new ({r, 2r−5}; 5)–cages, for r = q+1 with
q > 7 prime, in Section 5, Theorems 5.10 and 5.11. Finally, in Section 6 we construct
two new semiregular cages, namely a ({5, 6}; 5)-cage with 31 vertices and a ({6, 7}; 5)-
cage with 43 vertices. Note that the latter is a sporadic example in which we adapt and
slightly generalize the techniques that we have used in Section 4.
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2 Preliminaries

Let q = pn > 2 be a prime power and α a primitive (q − 1)th–root of unity. Consider the
finite field GF (q) = {0, 1, α, α2, . . . , αq−2} and denote GF ∗(q) = GF (q) \ {0}.

The graphs constructed in this paper arise from the (bipartite) incidence graph Bq of
an elliptic semiplane of type C (cf. [19, 5, 22]) together with the (bipartite) incidence
graph Aq of the affine plane of order q. We fix a labelling on their vertices which will be
central for our constructions since it allows us to keep track of the properties (such as
regularity and girth) of the graphs obtained from Bq and Aq applying some operations
such as reductions and amalgams (cf. Sections 3, 4).

Definition 2.1. Let q > 2 be a prime power, and consider the finite field GF (q).

(i) Let Bq be a bipartite graph with vertex set (V0, V1) where Vr = GF (q) × GF (q),
r = 0, 1; and the edge set defined as follows:

(x, y)0 ∈ V0 adjacent to (m, b)1 ∈ V1 if and only if y = mx+ b. (2)

(ii) Let Aq be the graph obtained from Bq by adding the following set Lq := {(q, x)1 | x ∈
GF (q)} of q vertices and the set Eq := {uv | u := (q, x)1 , v := (x, y)0 and x, y ∈
GF (q)} of q2 edges.

The graph Bq is also known as the incidence graph of the biaffine plane [25] and the
graph Aq is the incidence graph of an affine plane of order q. The graph Bq has been used in
the problem of finding extremal graphs without short cycles (cf. e.g. [1, 3, 4, 8, 9, 11, 30]).

The following properties of the graph Bq are well known (see [1, 25, 30]) and they will
be fundamental throughout the paper.

Proposition 2.2. Let Bq be the (bipartite) incidence graph defined above. Let Px =
{(x, y)0| y ∈ GF (q)}, for x ∈ GF (q), and Lm = {(m, b)1| b ∈ GF (q)}, for m ∈ GF (q).
Then the graph Bq has the following properties:

(i) it is q–regular, vertex transitive, of order 2q2 and has girth 6 for q > 3;

(ii) it admits a partition V0 =
⋃

x∈GF (q)

Px and V1 =
⋃

m∈GF (q)

Lm of its vertex set;

(iii) each block Px is connected to each block Lm by a perfect matching, for x,m ∈ GF (q);

(iv) each vertex in P0 and L0 is connected straight to all its neighbours in Bq, meaning
that N((0, y)0) = {(i, y)1|i ∈ GF (q)} and N((0, b)1) = {(j, b)0|j ∈ GF (q)};

(v) the other matchings between Px and Lm are twisted and the rule is defined alge-
braically in GF (q) according to (2). �

For further information regarding these properties and for constructions of the adja-
cency matrix of Bq as a block (0, 1)–matrix please refer to [2, 5, 12].
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3 Construction of a family of ({r, 2r − 3}; 5)–cages.

In this section, for a prime power q > 2 and the integer r = q+1, we construct previously
unknown ({r, 2r − 3}; 5)–cages, adding edges to the graph Aq presented in Section 2.

Let q > 2 be a prime power and let r = q + 1. We define Rq to be the graph with
V (Rq) := V (Aq) and E(Rq) := E(Aq) ∪ D where D = {(m, 0)1(m, b)1 | b ∈ GF ∗(q) and
m ∈ GF (q) ∪ {q}}.

Theorem 3.3. Let q > 2 be a prime power and let r = q + 1. Then the graph Rq is a
({r, 2r − 3}; 5)–cage satisfying Downs’ bound, i.e. n({r, 2r − 3}; 5) = r(2r − 3) + 1.

Proof. The vertices M := {(m, 0)1|m ∈ GF (q)∪ {q}} ⊂ V (Rq) have degree q+ (q− 1) =
2q − 1 = 2r − 3, and the remaining vertices of Rq have degree q + 1 = r.

By construction Bq ⊂ Aq ⊂ Rq. Let C be a cycle in Rq. If the edges of C are
totally contained in Aq then the length of C is at least six, since Aq is the incidence
graph of an affine plane. Otherwise, C contains at least an edge e = xy ∈ D, where
x, y ∈ Lm and m ∈ GF (q) ∪ {q}. Then it follows from the bipartition and girth of Aq

that the distance dAq
(x, y) = 4. Thus the length of C in this case is at least five and

exactly five if C contains exactly one edge of D. Hence, the graph Rq has girth 5 since
C = (q, 0)1(q, 1)1(1, 0)0(0, 0)1(0, 0)0(q, 0)1 where (q, 0)1(q, 1)1 is the only edge of C in D.

Finally, |V (Rq)| = |V (Aq)| = 2q2 + q = 2r2 − 3r + 1 = r(2r − 3) + 1.

Corollary 3.4. The graph Rq is a semi–regular cage if and only if r = 4.

Proof. It follows immediately since 2r − 3 = r + 1 if and only if r = 4.

Note that an isomorphic graph to R3 has been found also in [24].
In a similar way, for q even, we construct a family of non–isomorphic ({r, 2r−3}; 5)–cages.

Let q be an even prime power and let Dm := {(m, 0)1(m, b)1 | b ∈ GF (q)} and Fm :=
{(m, 0)1(m, 1)1} ∪ {(m,αi)1(m,αi+1)1 | 1 6 i 6 q − 3, i odd}, for m ∈ GF (q) ∪ {q}. Then
Dm

∼= K1,q−1 is a star with vertex set Lm and Fm is a matching between the vertices of
Lm.

Let 0 6 t 6 q− 1 and let It = {αq−t−1, . . . , αq−2} be a set of indexes. We define Gt to
be the graph with V (Gt) := V (Aq) and E(Gt) := E(Aq) ∪ Ft ∪Dt, where

Ft :=
⋃

m∈GF (q)\It

Fm and Dt :=
⋃

m∈ It∪{q}

Dm.

Note that the graph Gt is obtained from the graph Aq adding t + 1 stars and q − t
matchings within the sets Lm. In particular, for t = 0 the index set It = ∅ and the only
star added to Aq is the one in Lq. Moreover, if we set Iq := GF (q), then we can say that
the graph Gq := Rq.

Theorem 3.5. Let q = 2s be an even prime power, with s > 1. Then there are at least
q + 1 non–isomorphic ({r, 2r − 3}; 5)–cages.
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Proof. Let Gt be the family of graphs defined as above, for 0 6 t 6 q. Reasoning as
in Theorem 3.3, is follows that, for every 0 6 t 6 q − 1, the graphs Gt have girth 5,
order r(2r − 3) + 1 and are biregular with t + 1 vertices of degree 2r − 3. Thus, Gt is a
({r, 2r − 3}; 5)–cage for every 0 6 t 6 q − 1. Moreover, Gi ≇ Gj, for i, j ∈ GF (q) ∪ {q}
with i 6= j, since they have a different number of vertices of degree 2r − 3.

4 Operations on Bq

In this section we slightly generalize reduction and amalgam operations, described in
[1] and [22], that, performed on the bipartite graph Bq, will allow us to construct new
({r, 2r − 5}; 5)–cages, for r = q + 1 with q > 7 prime, in Section 5.

4.1 Reductions

We describe two reduction operations on Bq already introduced in [1]. The first one is
exactly the same while the second one is slightly generalized.
Reduction 1[1] Remove vertices from P0 and L0.

Let T ⊆ S ⊆ GF (q), S0 = {(0, y)0|y ∈ S} ⊆ P0, T0 = {(0, b)1|b ∈ T} ⊆ L0 and
Bq(S, T ) = Bq − S0 − T0.

Lemma 4.6. Let T ⊆ S ⊆ GF (q). Then Bq(S, T ) is biregular with degrees (q − 1, q)
of order 2q2 − |S| − |T |. Moreover, the vertices (i, t)0 ∈ V0 and (j, s)1 ∈ V1, for each
i, j ∈ GF (q) − {0}, s ∈ S and t ∈ T are the only vertices of degree q − 1 in Bq(S, T ),
together with (0, s)1 ∈ V1 for s ∈ S − T if T ( S.

Proof. It is an immediate consequence of Proposition 2.2 (i), (v).

Reduction 2 Remove blocks Pi and Lj from Bq or from Bq(S, T ).
Let u0, u1 be non–negative integers such that 0 6 u0 6 u1 < q − 1. If ui > 0, let

Ui := {αq−j ∈ GF (q) : j = 2, . . . , ui + 1} be an index set, for i = 0, 1. Let U0 and U1 be
sets of blocks of Bq chosen as follows:

U0 := {Px ⊂ V0 : x ∈ U0} if 1 6 u0 6 q − 1 or U0 := ∅ if u0 = 0

U1 := {Lm ⊂ V1 : m ∈ U1} if 1 6 u1 6 q − 1 or U1 := ∅ if u1 = 0.

Then, we define Bq(u0, u1) := Bq−U0−U1 to be the graph obtained from Bq by deleting the
last u0 blocks of V0, and the last u1 blocks of V1. Analogously, we define Bq(S, T, u0, u1) :=
Bq − (S0 ∪ T0) − (U0 ∪ U1) to be the graph obtained from the graph Bq(S, T ) obtained
with Reduction 1. Clearly, for u0 = u1 = 0, Bq(0, 0) = Bq and Bq(S, T, 0, 0) = Bq(S, T ).

Lemma 4.7. Let u0, u1 be non–negative integers, with 0 6 u0 6 u1 < q − 1. Then

(i) the graph Bq(u0, u1) is a biregular graph with degrees {q− u0, q− u1} of order 2q2 −
q(u0 + u1) if u0 6= u1 ;
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(ii) the graph Bq(u0, u1) is a (q − u0)–regular graph of order 2q(q − u0) if u0 = u1 ;

(iii) the graph Bq(S, T, u0, u1) has degrees {q−u0, q−u1, q−u0−1, q−u1−1} and order
2q2 − q(u0 + u1)− |S| − |T |. Moreover, the vertices (i, t)0 ∈ V0 with i ∈ GF (q)−U0

and t ∈ T are the only vertices of degree q−u1−1 in Bq(S, T, u0, u1) and the vertices
(j, s)1 ∈ V1 with j ∈ GF (q) − U1 and s ∈ S, together with the vertices (0, s)1 ∈ V1,
for s ∈ S − T if T ( S, are the only vertices of degree q− u0 − 1 in Bq(S, T, u0, u1);

Proof. It is an immediate consequence of Proposition 2.2 (i), (v) and Lemma 4.6.

4.2 Amalgam

In this section we describe an amalgam operation inspired by Jørgensen [29], Funk [22]
and Abreu et al. [1], where regular bipartite graphs were transformed into (no longer
bipartite) regular graphs of higher degree adding weighted edges with different weights on
opposite sides of the bipartition.

Since we apply Reduction 1 before increasing the degree of Bq, we describe the amal-
gam operation performed on the reduced graph Bq(S, T, u0, u1) for 0 6 u0 6 u1 < q − 1.
The labelling for Bq introduced in Section 2, will be essential, in the choice of the graphs
used for the amalgam, to guarantee the biregularity and the girth 5 in the final graph.

Let Γ1 and Γ2 be two graphs of the same order and with the same labels on their
vertices. In general, an amalgam of Γ1 into Γ2 is a graph obtained adding all the edges
of Γ1 to Γ2.

Let Pi and Li be defined as in Section 2. Consider the graph Bq(S, T, u0, u1), for some
T ⊆ S ⊆ GF (q) and 0 6 u0 6 u1 < q − 1. Let S0 ⊆ P0, T0 ⊆ L0 as in Reduction 1, and
let P ′

0 := P0 − S0 and L′
0 := L0 − T0 be the blocks in Bq(S, T, u0, u1) of order q − |S| and

q − |T |, respectively.
Let Hi, Gi, for i = 0, 1, be graphs of girth at least 5 and order q − |S|, q − |T | and q,

respectively. To simplify notation in our results, we label Pi and Li as in Section 2, but
assume that the labellings of H0, H1, G0 and G1 correspond to the second coordinates of
P ′
0, L

′
0, Pi and Lj respectively for i ∈ GF ∗(q)− U0 and j ∈ GF ∗(q)− U1.

We define B∗
q (S, T, u0, u1) to be the amalgam of H0 into P ′

0, H1 into L′
0, G0 into Pi, for

i ∈ GF ∗(q)− U0, and G1 into Lj, for j ∈ GF ∗(q)− U1. Note that |V (B∗
q (S, T, u0, u1))| =

|V (Bq(S, T, u0, u1))|.
The next lemma is immediate and it shows the behavior of the degree set of the graph

B∗
q (S, T, u0, u1).

Lemma 4.8. Let G := B∗
q (S, T, u0, u1). Then the degrees of the vertices of G are:

1. dG((0, y)0) = q − u1 + dH0(y),

2. dG((0, b)1) = q − u0 + dH1(b) if b /∈ S − T ,

3. dG((0, b)1) = q − u0 − 1 + dH1(b) if b ∈ S − T ,

4. dG((x, y)0) = q − u1 + dG0(y) if y /∈ T ,
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5. dG((x, y)0) = q − u1 − 1 + dG0(y) if y ∈ T ,

6. dG((m, b)1) = q − u0 + dG1(b) if b /∈ S,

7. dG((m, b)1) = q − u0 − 1 + dG1(b) if b ∈ S,

Note that with the above mentioned labelling, the labels of G0, G1 are the elements of
GF (q) and the labels of H0, H1 are either the elements of GF (q) itself or a proper subset
according to S, T being empty or not.

Let MF := {(u, v) : u, v ∈ GF (q) and uv ∈ E(F )}, for F ∈ {H0, H1, G0, G1}. For
each (u, v) ∈ MF , we define ω((u, v)) = ±(u − v) ∈ GF ∗(q) to be its weight or Cayley
Colour. We define Ω(F ) := {ω((u, v)) : (u, v) ∈ MF} to be the set of weights or set of
Cayley Colours of F , for F ∈ {H0, H1, G0, G1}.
Note that Ω(F1) ∩ Ω(F2) = ∅ implies that MF1 ∩MF2 = ∅, for F1, F2 ∈ {H0, H1, G0, G1}
and F1 6= F2, but the converse is false.

The following lemma generalizes theorems [1, Theorem 5] and [22, Theorem 2.8].

Theorem 4.9. Let T ⊆ S ⊆ GF (q) and let 0 6 u0 6 u1 < q − 1. Let H0, H1, G0 and G1

be defined as above and suppose that MH0 ∩MH1 = ∅, MH0 ∩MG1 = ∅, MH1 ∩MG0 = ∅
and Ω(G0)∩Ω(G1) = ∅. Then the amalgam B∗

q (S, T, u0, u1) has girth at least 5 and order
2q2 − q(u0 + u1)− |S| − |T |.

Proof. Suppose first that u0 = u1 = 0 and so B∗
q (S, T ) = B∗

q (S, T, u0, u1) (cf. Reduction
2).

Let C be a shortest cycle in B∗
q (S, T ) and suppose, by contradiction, that |C| 6 4.

Therefore, C = (xyz) or C = (wxyz). Since Bq has girth 6 and H0, H1, G0, G1 have girth
at least 5, then C cannot be completely contained in Bq or in H0, H1, G0 or G1. Then,
w.l.o.g. the path xyz in C is such that x, y ∈ Pi and z ∈ Lm for some i,m ∈ GF (q).
Since the edges between Pi and Lm form a matching, then xz /∈ E(Bq) and hence xz /∈
E(B∗

q (S, T )). Thus |C| > 3 and we can assume |C| = 4 and C = (wxyz),with xyz taken
as before.

If w ∈ Pi, by the same argument, wz /∈ E(B∗
q (S, T )) and we have a contradiction.

There are no edges between Pi and Pj in B∗
q (S, T ), so w /∈ Pj for j ∈ GF (q)− {i}, which

implies that w ∈ Ln for some n ∈ GF (q). If n 6= m, we have a contradiction since there
are no edges between Lm and Ln in B∗

q (S, T ). Therefore x, y ∈ Pi and w, z ∈ Lm. Let
x = (i, a1)0, y = (i, a2)0, w = (m, b1)1 and z = (m, b2)1 as in the labelling chosen in Section
2. Then wx, yz ∈ E(B∗

q (S, T )) imply that a1 = m · i+ b1 and a2 = m · i+ b2, respectively.
If m or i are zero, i.e. if xy ∈ H0 or wz ∈ H1, then the above equations are satisfied

if and only if a1 = b1 and a2 = b2, but this contradicts at least one of MH0 ∩MH1 = ∅,
MH0 ∩MG1 = ∅ and MH1 ∩MG0 = ∅.

If m and i are both non-zero, i.e. if xy ∈ G0 and wz ∈ G1, then the above equations
are satisfied if and only if a1 − a2 = b1 − b2, implying that ±(a1 − a2) ∈ Ω(G0) and
±(a1 − a2) = ±(b1 − b2) ∈ Ω(G1) which contradicts Ω(G0) ∩ Ω(G1) = ∅.

Hence B∗
q (S, T ) has girth at least five. Since B∗

q (S, T, u0, u1) is a subgraph of B∗
q (S, T ),

for 0 6 u0 6 u1 < q− 1, then also B∗
q (S, T, u0, u1) ha girth five, completing the proof.
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5 New ({r, 2r − 5}; 5)-cages for r > 8.

In this section we will construct a new family of ({r, 2r − 5}; 5)-cages, for r = q + 1 and
q > 7 a prime, applying Reduction 1, 2 and Amalgam (cf. Theorem 4.9 and Lemma 4.8)
to the graph Bq as previously described.

Recall that every prime q is either congruent to 1 or 3 modulo 4, we will now treat
these two cases separately, when q = 4n + 1 or q = 4n + 3. In each case we will specify
the sets S and T to be deleted from P0 and L0, the integers u0 and u1 of number of
blocks to be deleted, and the graphs H0, H1, G0 and G1 to be used for the amalgam into
B∗

q (S, T, u0, u1).
Since q is a prime we can consider that GF (q) coincides with Zq, and the addition

operations are modulo q. We present the case q ≡ 3 mod 4 first, since the smallest case
of the construction occurs for q = 7 ≡ 3 mod 4. In what follows, recall that D(F ) denotes
the degree set of a graph F .

5.1 Construction for primes q = 4n+ 3, n > 1.

Let B∗
q (S, T, u0, u1) be the graph resulting from the following choice of its parameters:

S = { q+1
4
,− q+1

4
} = { q+1

4
, 3q−1

4
}; T = ∅; u0 = 0; u1 = 1

Graph Vertices Edges Description

H0 Zq − { q+1
4
, 3q−1

4
}

{

(j, j + q−1
2
) | j ∈ Zq − { q+1

4
, 3q−1

4
, 3q+3

4
}
}

∪
{

(3q+3
4

, q−3
4
)
}

(q − 2)–cycle
sums modulo q Ω(H0) = { q−1

2
, q−3

2
}

G0 Zq

{

(j, j + q−1
2
) | j ∈ Zq

}

q–cycle
sums modulo q Ω(G0) = { q−1

2
}

H1
∼= G1 Zq

{

(0, j) : j ∈ Z∗
q − { q−1

2
, q+1

2
}
}

∪
{

( q+1
4
, q−1

2
), (3q−1

4
, q+1

2
)}
}

Ω(H1) = Ω(G1) = Z∗
q − { q−1

2
}

To illustrate the construction we present in Figure 1 the graph B∗
q (S, T, u0, u1) without

the edges from Bq, for q = 7. Each line style represents a different weight (or Cayley
Colour). As we will proved in the Theorem 5.10, this is an ({8, 11}; 5)–cage.

ω = 1

ω = q−3
2

= 2

ω = q−1
2

= 3

Figure 1: B∗
7(S, T, 0, 1)− E(B7) with S = {3, 5} and T = ∅

Theorem 5.10. Let q = 4n+3 be a prime, for n > 1. Let S, T, u0, u1, H0, H1, G0 and G1

be defined as above. Then the amalgam graph B∗
q (S, T, u0, u1) is an ({r, 2r − 5}; 5)–cage

of order r(2r − 5) + 1, where r = q + 1.
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Proof. From Lemma 4.8, the degree set D(B∗
q (S, T, u0, u1)) = {r, 2r−5}, where r = q+1.

In fact, all vertices in V0∩Bq(S, T, u0, u1) have degree q−1. Moreover, D(H0) = D(G0) =
{2} since H0 and G0 are cycles. Hence, all the vertices of V0 ∩ V (B∗

q (S, T, u0, u1)) have
degree q+1 = r. In V1 we distinguish three subsets of vertices: V ′

1 := {(m, 0)1 : m ∈ Zq},
V ′′
1 := {(m, t)1 : m ∈ Zq, t ∈ q+1

4
, 3q−1

4
} and V ′′′

1 := {(m, t)1 : t ∈ Z∗
q − { q+1

4
, 3q−1

4
}}.

The vertices in V ′′′
1 have degree q in Bq(S, T, u0, u1), and their degree is 1 in H1 and G1.

Thus these vertices have degree q + 1 = r in B∗
q (S, T, u0, u1). The vertices of V ′′

1 have
degree q − 1 in Bq(S, T, u0, u1), whereas their degree is 2 in H1 and G1. Hence, they
have degree q + 1 = r in B∗

q (S, T, u0, u1). Finally, the vertices in V ′
1 have degree q in

Bq(S, T, u0, u1), while they have degree q − 3 in H1 and G1. Hence, they have degree
q + q − 3 = 2q − 3 = 2(r − 1)− 3 = 2r − 5 in B∗

q (S, T, u0, u1).
The graph B∗

q (S, T, u0, u1) has girth at least 5, since we are under the hypothesis of

Theorem 4.9. In fact, Ω(H0) ∩ Ω(H1) = Ω(H0) ∩ Ω(G1) = { q+3
2
}, but MH0 ∩ MH1 =

MH0 ∩ MG1 = ∅, since the only edge of weight q+3
2

in H0 is (3q+3
4

, q−3
4
), while the edges

(0, q−3
2
) (0, q+3

2
) are those of weight± q+3

2
inH1 andG1. We also have that Ω(G0)∩Ω(H1) =

Ω(G0) ∩ Ω(G1) = ∅, which implies that MG0 ∩ MH1 = MG0 ∩ MG1 = ∅. Moreover, the
girth is exactly five, since the 5–cycle ((0, 0)0, (0,

q+1
4
)0, (0,

q−1
2
)0, (0,

q−1
2
)1, (0, 0)1) lies in

B∗
q (S, T, u0, u1).
Finally, the order of B∗

q (S, T, u0, u1) is 2q2 − q(u0 + u1) − |S| − |T | = 2q2 − q − 2 =
r(2r − 5) + 1, by Lemma 4.7, which satisfies exactly Down’s bound (1)

n({r, 2r − 5}; 5) = 1 +
2

∑

i=1

(2r − 5)(r − 1)i−1 = r(2r − 5) + 1.

Hence, the graph B∗
q (S, T, 0, 1) is an ({r, 2r − 5}; 5)-cage.

5.2 Construction for primes q = 4n+ 1, n > 3.

Let B∗
q (S, T, u0, u1) be the graph resulting from the following choice of its parameters:

S = { q−1
4
,− q−1

4
} = { q−1

4
, 3q+1

4
}; T = ∅; u0 = 0; u1 = 1

Graph Vertices Edges Description

H0 Zq − { q−1
4
, 3q+1

4
}

{

(j, j + q−1
2
) | j ∈ Zq − { q−1

4
, 3q+1

4
, 3q−3

4
}
}

∪
{

(3q−3
4

, q+3
4
)
}

(q − 2)–cycle
sums modulo q Ω(H0) = { q−1

2
, q+3

2
}

G0 Zq

{

(j, j + q−1
2
) | j ∈ Zq

}

q–cycle
sums modulo q Ω(G0) = { q−1

2
}

H1
∼= G1 Zq

{

(0, j) : j ∈ Z∗
q − { q−1

2
, q+1

2
}
}

∪
{

( q−1
4
, q−1

2
), (3q+1

4
, q+1

2
)}
}

Ω(H1) = Ω(G1) = Z∗
q − { q−1

2
}

Theorem 5.11. Let q = 4n+1 be a prime, for n > 3. Let S, T, u0, u1, H0, H1, G0 and G1

be defined as above. Then the amalgam graph B∗
q (S, T, u0, u1) is an ({r, 2r − 5}; 5)–cage

of order r(2r − 5) + 1, where r = q + 1.

Proof. Analogous to the proof of Theorem 5.10.
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6 New semiregular ({r, r + 1}; 5)-cages for r = 5, 6.

In this section we construct two new semiregular cages, namely a ({5, 6}; 5)-cage with 31
vertices and a ({6, 7}; 5)-cage with 43 vertices. For the first one, we choose S, T, u0, u1, H0,
H1, G0 and G1 to construct the amalgam graph B∗

q (S, T, u0, u1) and the result is obtained
as a consequence of Theorem 4.9 and Lemma 4.8. The second one is a sporadic example
in which we adapt and slightly generalize the techniques that we have used so far.

6.1 Construction of the ({5, 6}; 5)-cage.

Let GF (4) = {0, 1, α, α2} be the finite field of order 4 and let B∗
q (S, T, u0, u1) be the graph

resulting from the following choice of its parameters (c.f. Figure 2):

S = {0}; T = ∅; u0 = 0; u1 = 0

Graph Vertices Edges Description

H0 GF ∗(4) {(1, α2), (α2, α)} 2–path
Ω(H1) = {1, α}

G0 GF (4) {(0, α), (1, α2)} Two disjoint edges
Ω(G1) = {α}

H1
∼= G1 GF (4) {(α2, 0), (0, 1), (1, α)} 3–path

Ω(H2) = Ω(G2) = {1, α2}

Theorem 6.12. Let q = 4 and let S, T, u0, u1, H0, H1, G0 and G1 be defined as above.
Then the amalgam graph B∗

4(S, T, u0, u1) is a ({5, 6}; 5)–cage of order 31.

Proof. From Lemma 4.8 we have that the degree set D(B∗
4(S, T, u0, u1)) = {5, 6}, and

moreover, the set of vertices of degree 6 is {(i, 1)0 : i ∈ GF (4)} ∪ {(0, α2)1}.
The graph B∗

4(S, T, u0, u1) has girth at least 5, since we are under the hypothesis
of Theorem 4.9. In fact, Ω(H0) ∩ Ω(H1) = Ω(H0) ∩ Ω(G1) = {1}, but MH0 ∩ MH1 =
MH0 ∩MG1 = ∅, since (α2, α) is the only edge of weight 1 in H0, while the only edges of
such weight is (0, 1) in H1 and G1. We also have that Ω(G0)∩Ω(H1) = Ω(G0)∩Ω(G1) = ∅,
which implies that MG0 ∩ MH1 = MG0 ∩ MG1 = ∅. Moreover, the girth is exactly five,
since the 5–cycle ((0, 0)0, (0, 1)0, (0, α)0, (1, α)1, (1, 0)1) lies in B∗

4(S, T, u0, u1).
Finally, by Lemma 4.7 we have that the order of the graph is 2q2−q(u0+u1)−|S|−|T | =

2(16)− 1 = 31.

6.2 Construction of the ({6, 7}; 5)-cage.

For this construction we need to modify Reduction 1 and apply the amalgam operation
accordingly as follows:
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(0, 1)0

(0, α)0(0, α2)0

(1, 0)0 (1, 1)0

(1, α)0(1, α2)0

(α, 0)0 (α, 1)0

(α, α)0(α, α2)0

(α2, 0)0 (α2, 1)0

(α2, α)0(α2, α2)0

ω = 1

ω = α2

ω = α

(0, 0)1 (0, 1)1

(0, α)1(0, α2)1

(1, 0)1 (1, 1)1

(1, α)1(1, α2)1

(α, 0)1 (α, 1)1

(α, α)1(α, α2)1

(α2, 0)1 (α2, 1)1

(α2, α)1(α2, α2)1

Figure 2: B∗
4(S, T, 0, 0)− E(B4) with S = {0} and T = ∅

Let q = 5 and consider the graph B5. We modify Reduction 1 removing vertices from
P0 and vertices of V1 from each block Lj for j ∈ GF (5) (whereas in Reduction 1 we delete
vertices of V1 only from the block L0).

Let T := {3} ⊂ GF (5), S := {0, 3} ⊂ GF (5), S0 = {(0, y)0|y ∈ S} ⊆ P0, Tj =

{(j, b)1|b ∈ T} ⊆ Lj for j ∈ GF (5), and let B5(S, TT ) := B5 − S0 −
⋃

j∈GF (5)

Tj. Note

that the graph B5(S, TT ) has degree set D(B5(S, TT )) = {q − 1, q} = {4, 5} and order
2q2−|S|−q|T | = 50−2−5 = 43. Moreover, each vertex in V0−P0 has degree q−|T | = 4,
each vertex of V1 with second coordinate in S − T has degree q − |S − T | = 4, and all
other vertices have degree q = 5.

Now we will amalgam some graphs into B5(S, TT ). Let H0 := {(2, 4), (4, 1)}, G0 :=
{(0, 2), (2, 4), (4, 1), (1, 3), (3, 0)} and H1 := {(4, 0), (0, 1), (1, 2)}. These graphs are a 2–
path, a 5–cycle and a 3–path, respectively, with weights Ω(H0) = Ω(G0) = {2} and
Ω(H1) = {1}.

Let B∗
5(S, TT ) be the graph obtained from the amalgam of H0 into P ′

0 := P0 − S0, G0

into Pi, for all i ∈ GF ∗(5), and H1 into L′
j = Lj − Tj, for all j ∈ GF (5) (c.f. Figure 3 for

an illustration).

Theorem 6.13. Let q = 5 and let S, T,H0, H1 and G0 be defined as above. Then the
amalgam graph B∗

5(S, TT ) is a ({6, 7}; 5)–cage of order 43.

Proof. Using the same reasoning as in the proof of Theorem 4.9, the amalgam graph
B∗

5(S, TT ) has girth at least 5, since Ω(H0) ∩ Ω(H1) = Ω(G0) ∩ Ω(H1) = ∅. The girth is
exactly 5, since G0 is a 5–cycle. Moreover, the degree set D(B∗

5(S, TT )) = {6, 7}, since
all vertices of B5(S, TT ) of degree 4 obtain two new edges in B∗

5(S, TT ), and similarly
the vertices of B5(S, TT ) of degree 5 obtain one or two new edges in B∗

5(S, TT ). Hence,
B∗

5(S, TT ) is a ({6, 7}; 5)–cage as desired, since its order satisfies Down’s bound.

There is a further and simpler way of constructing this graph: let G be the Hoffman-
Singleton Graph [26], consider a vertex x ∈ V (G) and N(x) = {x1, x2, . . . , x7} its set
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(0, 1)0

(0, 2)0

(0, 4)0

(1, 0)0

(1, 1)0

(1, 2)0(1, 3)0

(1, 4)0

(2, 0)0

(2, 1)0

(2, 2)0(2, 3)0

(2, 4)0

(3, 0)0

(3, 1)0

(3, 2)0(3, 3)0

(3, 4)0

(4, 0)0

(4, 1)0

(4, 2)0(4, 3)0

(4, 4)0

(0, 0)1

(0, 1)1

(0, 2)1

(0, 4)1

(1, 0)1

(1, 1)1

(1, 2)1

(1, 4)1

(2, 0)1

(2, 1)1

(2, 2)1

(2, 4)1

(3, 0)1

(3, 1)1

(3, 2)1

(3, 4)1

(4, 0)1

(4, 1)1

(4, 2)1

(4, 4)1

Figure 3: B∗
5(S, TT )− E(B5) with S = {0, 3} and T = {3}

of neighbors, then the graph H obtained from G by deleting the set of vertices {x} ∪
(N(x) − x1) is clearly a graph of girth 5 and 43 vertices with 6 vertices of degree 7 and
the rest of degree 6. The graph H is a ({6, 7}); 5)-cage as desired, since its order satisfies
Down’s bound. It is not difficult to prove that this graph H is isomorphic to the previous
B∗

5(S, TT ).
It is widely known that Moore graphs of odd girth are very rare: complete graphs, the

Petersen graph, the Hoffman-Singleton Graph and maybe the (57, 5)-cage. Therefore, the
deletion technique carried out for the Hoffman-Singleton Graph can be only applied for
this case and may be for r = 57.
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