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Abstract

A graph G is said to be 2-distinguishable if there is a labeling of the vertices
with two labels so that only the trivial automorphism preserves the label classes.
The minimum size of a label class in any such labeling of G is called the cost of
2-distinguishing G and is denoted by ρ(G). The determining number of a graph G,
denoted Det(G), is the minimum size of a set of vertices whose pointwise stabilizer
is trivial. The main result of this paper is that if Gk is a 2-distinguishable Cartesian
power of a prime, connected graph G on at least three vertices with Det(G) 6 k and
max{2,Det(G)} < Det(Gk), then ρ(Gk) ∈ {Det(Gk),Det(Gk) + 1}. In particular,
for n > 3, ρ(Kn

3 ) ∈ {dlog3(2n+ 1)e +1, dlog3(2n+ 1)e +2}.

1 Introduction

A labeling of the vertices of a graph G with the integers 1, . . . , d is called a d-distinguishing
labeling if no non-trivial automorphism of G preserves the label classes. A graph is called
d-distinguishable if it has a d-distinguishing labeling. Albertson and Collins introduced
distinguishing in [3]. Recent work shows that large members of many infinite graph
families are 2-distinguishable. These families include hypercubesQn with n > 4, Cartesian
powers Kn

3 with n > 3, and Gn for a connected graph G 6= K2, K3 and n > 2 [1, 4, 12, 13],
Kneser graphs Kn:k with n > 6, k > 2 [2], and (with seven small exceptions) 3-connected
planar graphs [8]. In 2007 Wilfried Imrich posed the following question [11]: “What is
the minimum number of vertices in a label class of a 2-distinguishing labeling for the
hypercube Qn?”

Call the minimum size of a label class in a 2-distinguishing labeling of a graph G the
cost of 2-distinguishing G and denote it by ρ(G). The 2-distinguishing labeling provided
for Qn by Bogstad and Cowan in [4] shows that for n > 4, ρ(Qn) 6 n + 2. The best
result known when Imrich originally asked the question was ρ(Qn) ≈

√
n [11]. For n > 5

the author of the present paper showed that dlog2 ne + 1 6 ρ(Qn) 6 2dlog2 ne − 1 [6].
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Recall that Qn is a Cartesian power of K2. In this paper the question of the cost of
2-distinguishing is extended to Cartesian powers of other prime graphs.

A significant tool used in this work is the determining set [5], a set of vertices whose
pointwise stabilizer is trivial. Albertson and Boutin showed in [2] that a graph is d-
distinguishable if and only if it has a determining set that is (d− 1)-distinguishable. (Set
distinguishability will be defined in Section 2.3.) In particular, the complement of such
a determining set is a label class in a d-distinguishing labeling of G. Thus, a graph is
2-distinguishable if and only if it has a determining set for which any automorphism that
fixes it setwise must also fix it pointwise. In such a case, the determining set and its
complement provide the two necessary label classes for a 2-distinguishing labeling. Thus
in particular, the cost of 2-distinguishing a graph G is bounded below by the size of a
smallest determining set, denoted Det(G).

This paper proves that if Gk is a 2-distinguishable Cartesian power, with G a prime
connected graph on at least three vertices with Det(G) 6 k and max{2,Det(G)} <
Det(Gk), then ρ(Gk) ∈ {Det(Gk),Det(Gk) + 1}. (These hypotheses are mild and exclude
relatively few graphs.) Note that in general the cost of 2-distinguishing and the size of a
smallest determining set can be far apart. For example, work of Goff and Greenfield [9]
(see Example 1 in Section 2.3) shows that the cost of 2-distinguishing a graph G can be
an arbitrarily large multiple of Det(G).

This paper is organized as follows. Definitions and facts about determining sets,
Cartesian products, and distinguishing labelings are given in Section 2. This section
formally sets out the key idea tying together determining sets and distinguishing labelings
and provides important technical tools used in following sections. Section 3 states and
proves the main theorem. Open questions are given in Section 4.

2 Background

Graphs throughout this paper will be assumed to be simple and finite.

2.1 Determining Sets

Let G be a graph. A subset A ⊆ V (G) is said to be a determining set for G if whenever
ϕ, ψ ∈ Aut(G) so that ϕ(x) = ψ(x) for all x ∈ A, then ϕ = ψ. Thus every automorphism
of G is uniquely determined by its action on the vertices of a determining set. Every graph
has a determining set since a set containing all but one vertex of the graph is determining.
The determining number of G, denoted here by Det(G), is the minimum r such that G
has a determining set of size r.

Recall that the setwise stabilizer of A ⊆ V (G) is the set of all ϕ ∈ Aut(G) for which
ϕ(x) ∈ A for all x ∈ A. In this case we say that A is invariant under ϕ, or ϕ preserves
A, and we write ϕ(A) = A. The pointwise stabilizer of A is the set of all ϕ ∈ Aut(G) for
which ϕ(x) = x for all x ∈ A. It is easy to see [5] that A is a determining set for G if and
only if the pointwise stabilizer of A is trivial.
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2.2 Automorphisms & Characteristic Matrices

Recall that the Cartesian product of graphs G and H, denoted by G2H, has vertex set
V (G)× V (H) with an edge between vertices (x, u) and (y, v) if either x is adjacent to y
in G and u = v, or u is adjacent to v in H and x = y. The Cartesian power Hk is the
Cartesian product of H with itself k times.

A good reference for Cartesian products is [10]. Recall that H is prime with respect
to the Cartesian product if it cannot be written as the Cartesian product of two smaller
graphs. Every connected graph can be written uniquely (up to order) as the Cartesian
product of prime factors, H = G12 · · ·2Gm. Throughout this section assume that
H = G12 · · ·2Gm is a prime decomposition of a connected graph H with respect to
the Cartesian product. (Note that a relatively prime decomposition would work as well.)
Each vertex U ∈ H can be written uniquely as a vector U = (u1, . . . , um) with ui ∈ Gi.
Each automorphism of H can be understood in the following way.

Theorem 1. [10] If ϕ ∈ Aut(H) then there is a permutation π ∈ Sm and isomorphisms
ψi : Gi → Gπ(i) so that

ϕ(u1, . . . , um) = (ψπ−1(1)(uπ−1(1)), . . . , ψπ−1(m)(uπ−1(m))).

Let A = {U1, . . . , Ur} be an ordered set of vertices of H. Let MA be the r×m matrix
whose ith row contains the coordinates for Ui with respect to the given Cartesian product
decomposition. Call MA the characteristic matrix of A. Note that the jth column of MA
consists of the jth coordinates of U1, . . . , Ur and can be denoted [U1,j . . . Ur,j]

T . We say
the jth and kth columns of MA, [U1,j . . . Ur,j]

T and [U1,k . . . Ur,k]
T , are isomorphic images

of each other if there exists an isomorphism ψ : Gj → Gk so that ψ(Ui,j) = Ui,k for all
i. We can now state criteria for a set to be a determining set of a Cartesian product as
follows.

Lemma 1. [7] A set of vertices A is a determining set for H if and only if each column
of the characteristic matrix MA contains a determining set for the appropriate factor of
H and no two columns of MA are isomorphic images of each other.

2.3 Distinguishing Labelings

A labeling f : V (G) → {1, . . . , d} is said to be d-distinguishing if only the trivial au-
tomorphism preserves the label classes. Every graph has a distinguishing labeling since
each vertex can be assigned a distinct label. A graph is called d-distinguishable if it has
a d-distinguishing labeling. If G is a 2-distinguishable graph, call a label class in a 2-
distinguishing labeling of G a distinguishing class. Define the cost of 2-distinguishing G
to be the minimum size of a distinguishing class in G and denote it by ρ(G).

We will also need to know what it means for a subset of vertices to be d-distinguishable.
Let A ⊆ V (G). A labeling f : A → {1, . . . , d} is called d-distinguishing if whenever an
automorphism fixesA setwise and preserves the label classes ofA then it fixesA pointwise.
Note that though such an automorphism fixes A pointwise, it is not necessarily trivial; it
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may permute vertices in the complement of A. A set A is called d-distinguishable if it has
a d-distinguishing labeling. By definition, A is 1-distinguishable if every automorphism
that preserves A fixes it pointwise.

The following theorem and corollary tie together determining sets and distinguishing
labelings and facilitate the work in this paper.

Theorem 2. [2] A graph is d-distinguishable if and only if it has a determining set that
is (d− 1)-distinguishable.

Corollary 2.1. Let G be a 2-distinguishable graph. A subset A ⊆ V (G) is a distin-
guishing class for G if and only if it is a determining set with the property that every
automorphism that fixes it setwise, also fixes it pointwise. That is, A is distinguishing
class if and only if each of the setwise stabilizer and the pointwise stabilizer for A is trivial.

In particular, suppose A is a 1-distinguishable determining set. The fact that it is
1-distinguishable means that any automorphism that preserves A as a set also fixes it
pointwise. The fact that it is a determining set means that the only automorphism that
fixes it pointwise is the trivial automorphism. Thus only the trivial automorphism fixes
A setwise. If we label the vertices of A with 1s and the vertices of its complement with 2s,
only the trivial automorphism preserves the label classes. Therefore A is a distinguishing
class of a 2-distinguishing labeling.

Thus in particular, the cost of 2-distinguishing a graph is bounded below by the size
of a smallest determining set, Det(G). However, the fact that Det(G) is a lower bound
does not mean that it is always close to the cost of 2-distinguishing. For instance, in the
example below Goff and Greenfield [9] show that the cost of 2-distinguishing can be an
arbitrarily large multiple of the determining number for a graph.

Example 1. Let k be an integer greater than or equal to 3. Let H be an asymmetric
graph on n = 2k vertices. Let G be the disjoint union of 2n copies of H. A set of vertices
of G is a determining set if and only if it contains at least one vertex from each copy of H.
Thus Det(G) = 2n. A labeling of G with two labels is distinguishing if and only if each
copy of H gets a different labeling. There are 2n distinct labelings of H with two labels
- exactly enough for one for each copy of H. Thus there is a unique (up to the order of
the copies of H) 2-distinguishing labeling of G. Since all distinct labelings of H with two
labels occur, each label is used on exactly half the vertices. Thus ρ(G) = k 2n = kDet(G).

2.4 Tools for the Characteristic Matrix

Let A = {U1, . . . , Ur} ⊆ V (H) and let ϕ ∈ Aut(H) so that ϕ(A) = A. It will be
useful to understand the effect of ϕ on the characteristic matrix MA. Since ϕ(A) = A,
Mϕ(A) has the same rows as MA but in a different order. That is, there is a permutation
σ ∈ Sr on the rows of MA that yields Mϕ(A). However, since ϕ ∈ Aut(H) by Theorem
1 there is a permutation π ∈ Sm on the columns of MA and isomorphisms ψi : Gi →
Gπ(i) so that the effect on MA is to transform the jth column [U1,j . . . Ur,j]

T of MA to
[ψπ−1(j)(U1,π−1(j)) . . . ψπ−j(1)(Ur,π−1(j))]

T in Mϕ(A). That is, the jth column in Mϕ(A) is an
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isomorphic image of the π−1(j)th column of MA. It is the interplay of the row permutation
σ and the column permutation π together with the columns isomorphisms ψi that yields
the results in this paper.

Example 2. Let U1 = 10110101, U2 = 11001100 and U3 = 10001001 be vertices of
Q8 = K8

2 . The characteristic matrix of A = {U1, U2, U3} is

MA =

 1 0 1 1 0 1 0 1
1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 1

 .
Notice that columns 1 and 7 are isomorphic images of each other, as are columns 2 and
8, and columns 3, 4, and 5. No column is an isomorphic image of column 6. Consider
ϕ ∈ Aut(Q8) with corresponding factor (column) permutation π = (2 8) and factor
(column) isomorphisms ψ2, ψ8 equal to the non-trivial automorphism of K2, while all
other ψi equal the trivial automorphism. Note that Mϕ(A) = MA. Thus we see that ϕ
not only preserves A as a set, but fixes A pointwise.

Example 3. Let U1 = 0000, U2 = 1010 and U3 = 1100 be vertices of Q4 = K4
2 . Let

A = {U1, U2, U3} and see MA below. Note that no pair of columns are isomorphic images
of each other and that each column contains a determining set for K2. Thus by Lemma 1,
A is a determining set for Q4. Consider ϕ ∈ Aut(Q4) with corresponding factor (column)
permutation π = (1 3) and factor (column) isomorphisms ψ1, ψ3 equal to the non-trivial
automorphism of K2, and π2, π4 equal to the trivial automorphism. See Mϕ(A) below.
Note that we can obtain Mϕ(A) from MA using the row permutation σ = (1 2). Thus
σ(A) = A and more particularly, ϕ(U1) = U2, ϕ(U2) = U1, and ϕ(U3) = U3.

MA =

 0 0 0 0
1 0 1 0
1 1 0 0

 , Mϕ(A) =

 1 0 1 0
0 0 0 0
1 1 0 0

 .
Given a characteristic matrix MA, classify each column by a set of positive integers

{a1, a2, . . . , am} where a1 is the largest number of positions of equal value in the column,
a2 is the second largest, et cetera. We will call {a1, a2, . . . , am} the column type. For
instance, columns 1 and 7 of the characteristic matrix in Example 2 have type {3}, while
the remaining columns have type {2, 1}. Note that any two columns that are isomorphic
images of each other must have the same column type, but that non-isomorphic columns
may have the same type as well. Further note that any permutation of the rows of MA
leaves unchanged the number of positions of a given value in each column, and therefore
preserves the column type of each column. Thus if ϕ preserves the set A, then σ (the
associated row permutation of MA) preserves the column type of each column. However,
since under the action of ϕ, column j of Mϕ(A) is an isomorphic copy of column π−1(j) of
MA, and since column isomorphism preserves column type, the type of column j of Mϕ(A)
is the same as the type of column π−1(j) of MA. Thus for any ϕ ∈ Aut(H) the column
permutation π associated with ϕ takes columns to columns of the same type. These facts
will be important in proving the results in this paper.
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To use Lemma 1, it will be important to be able to construct characteristic matrices
with the property that no pair of columns are isomorphic images of each other. To
aid in this we will define a canonical way to choose a representative in each column
orbit. Let G be a factor of H. Assume a total order on the vertices of G, u1 6 u2 6
u3 6 · · · 6 u|V (G)|, and assume the induced lexicographic order on the (set) Cartesian
product Gr. Let C = [c1 c2 · · · cr]T be a column (r-vector) associated with the factor
G in a characteristic matrix. The set of r-vectors that are isomorphic to C is O =
{ψ(C) = [ψ(c1) ψ(c2) · · ·ψ(cr)]

T | ψ ∈ Aut(G)}. We will say C is a lowest lexicographic
representative, or l-l-r, if it is the least element (in the induced lexicographic order) in O.
That is, the vertex in the first position of C is the least vertex in its orbit; the vertex in
the second position is least over all second position vertices in columns isomorphic to C
which have this same lowest first position; the vertex in the third position is least over
all third position vertices which have the same least first and second positions; etc. By
definition, two l-l-r columns are isomorphic if and only if they are equal, and every column
has an isomorphic image that is l-l-r. Note that we can build a column we know to be
l-l-r by ensuring that u2 occurs after the first occurrence of u1, and u3 occurs and the first
occurrence of u2, etc.

3 Cost of 2-Distinguishing Cartesian Powers

Theorem 3. If Gk is a 2-distinguishable Cartesian power of a prime connected graph
G on at least three vertices with Det(G) 6 k and max{2,Det(G)} < Det(Gk), then
ρ(Gk) ∈ {Det(Gk),Det(Gk) + 1}.

Proof. Let m = max{2,Det(G)}, r = Det(Gk). Let `r be the largest integer so that
Det(G`r) = r. (Note that since G is finite there are only a finite number of non-isomorphic
columns of length r and thus such an integer exists.) Let T = {1, . . . ,m} be a determining
set of size m for G. Let m+1, . . . , |V (G)| denote the remaining vertices of G. Since we will
be using vertices ofG as entries in a matrix, we will refer to 1, 2, . . . , |V (G)| as values rather
than vertices. Assume the total order on the vertices of G implied by the linear order
of their values. (The order is necessary for the definition of l-l-r.) Let U = {U1, . . . , Ur}
be a minimum size determining set for G`r . Let N be the characteristic matrix for U .
Without loss of generality assume that each column of N is l-l-r. (If some columns
are not l-l-r, apply appropriate automorphisms of G to them to make them l-l-r. Note
that column isomorphism preserves the properties necessary for a characteristic matrix
of a determining set given in Lemma 1. Thus the rows of this modified matrix provide
a minimum size determining set, say U ′, for G`r . Further, since column isomorphisms
correspond to automorphisms of G`r , U ′ is an automorphic image of U . Thus we may
assume that U is such that all columns of N are already l-l-r.) Since `r is maximal, N
contains all l-l-r columns of length r that contain a determining set for G. (Otherwise we
could add such a column, and get a determining set of size r for G`r+1.)

First we will find a distinguishing class A for G`r in separate cases depending on the
values of m and of r. Then we will modify A to a distinguishing class for Gk.
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

U1

U2

U3

U4

U5

U6

U7

U8

U9

X


=



1 1 1 1 1 1 1 1 1
2 2 2 2 1 1 1 1 2
2 3 3 3 2 1 1 1 3
2 3 4 4 3 2 1 1 4
2 3 4 1 4 3 2 1 2
2 3 4 1 1 4 3 2 2
2 3 4 1 1 1 4 3 2
3 3 4 1 1 1 1 4 2
4 4 4 1 1 1 1 1 2
2 3 4 1 1 1 1 1 1

· · ·


Figure 1: First 9 columns when r = 9,m = 4. Singular values in each of first 8 columns
are underlined.

Case 1: m > 3.
For i ∈ {1, . . . , r − 1} define column i to be the unique l-l-r column with values from

T , with identical values in positions i+1, . . . , r, 1, . . . , i−m+1 (the r−m+1 consecutive
positions modulo r beginning at i + 1), and with the remaining distinct values from T
in the remaining positions. Each of these columns has type {r −m + 1, 1, . . . , 1}. Since
1 < m < r, we get that 1 < r − m + 1 < r and therefore these columns are distinct.
Define the rth column to be [1 2 3 · · · m 2 · · · 2]T . This column is also l-l-r of type
{r −m+ 1, 1, . . . , 1}, and since m > 3 this column is distinct from each of the first r − 1
columns.

Since N contains all l-l-r columns of length r that contain a determining set for G,
it must contain each of these r columns. We can assume without loss of generality that
the defined columns are in the described positions. (If not, permute the columns of N
until they do. Since this characteristic matrix still satisfies the conditions of Lemma 1,
the rows of this modified matrix provide a minimum size determining set, say U ′′, for
G`r . Further, since column permutations correspond to automorphisms of G`r , U ′′ is an
automorphic image of U . Thus we can assume U is such that N has the defined columns
in the described positions.) See Figure 1 for the first nine columns of MA when r = 9 and
m = 4.

In each of the first r − 1 columns we will want to keep track of the singular values,
that is, values that occur precisely once in the given column. Note that under column
isomorphism, the value that occurs in a given position may change, but whether it is a
singular value for its column does not. However, under row permutation, the positions in
a given column that are singular may change, but the values that are singular will not.
Both these facts will be important later. In Figure 1 the singular values are underlined
in each of the first r − 1 columns.

Add an (r+ 1)st row to matrix N , creating an (r+ 1)× `r matrix M , so that the first
r − 1 columns are precisely the columns of type {r −m + 2, 1, . . . , 1} in M and the rth

column is the only column of type {r −m+ 1, 2, 1, . . . , 1} in M . Note that since m < r,
these are distinct types. To accomplish this, for i ∈ {1, . . . r− 1} append to column i the
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value in position i + 1. (This is the non-singular value for the column.) Append a 1 to
column r. Append to the remaining `r − r columns a value that is an (m+ 1)st value for
that column. (We know that each of these columns must contain at least Det(G) = m
distinct values. If a column contains m+ 1 or more distinct values, append one of these.
If a column contains only m distinct values, since Det(G) < |V (G)| for all G, there exists
an (m + 1)st value. Append such a value to the column.) Since these rightmost `r − r
columns contain at least m+ 1 distinct values, while the first r columns contain precisely
m, the column types of the first r columns are different from the column types of any of
the latter `r − r.

Let the vertex of G`r associated with row r+1 of M be denoted X. Let A = U ∪{X}.
Note that since U is a determining set for G`r , so is A. By construction, M = MA is the
characteristic matrix for A. We will see that A is a distinguishing class for G`r .

Let ϕ ∈ Aut(G`r) so that ϕ(A) = A. As discussed earlier, ϕ acts as a permutation
σ on the rows of MA. But since ϕ ∈ Aut(G`r), ϕ also acts as a permutation π of the
columns of MA composed with isomorphisms ψi of individual columns.

By construction, the first r − 1 columns are the only columns of M of type {r −m+
2, 1, 1, . . . , 1} and the rth column is the only one of its type. As argued in Section 2.2,
since ϕ(A) = A, the column permutation π can only permute columns of the same type.
Thus the set of columns {1, . . . , r − 1} is invariant under π, and π(r) = r.

Claim: ϕ(X) = X
Recall that by construction, each of the first r−1 columns has type {r−m+2, 1, . . . , 1}

and therefore contains m − 1 > 2 singular values. In particular, for i ∈ {1, . . . , r − 1},
column i has a singular value in positions i − 1 and i of MA. Thus each of the rows
1, . . . , r contains at one least value in its first r − 1 coordinates that is a singular value
for its column. Thus, the (r + 1)st row is the only row of MA for which each of the first
r− 1 coordinates contains a value that is non-singular in its column. Since the first r− 1
columns are invariant under π, and the property of having the last position in a column
equal to values in other positions is preserved under column isomorphism, the same is
true in Mϕ(A). Thus the (r + 1)st row of Mϕ(A) (the σ−1(r + 1)st row of MA) is the only
row for which each of the first r − 1 coordinates contains a value that is non-singular in
its column. Thus σ−1(r + 1) = r + 1 and ϕ(X) = X.

Claim: ϕ(U1) = U1.
Recall that π(r) = r and that σ(r+ 1) = r+ 1. Further, in MA only the first position

in the rth column matches the (r+1)st position. Since π(r) = r, and column isomorphism
preserves which positions in a given column match, the same is true in Mϕ(A). Thus the
rth coordinate of the first row of Mϕ(A) (row σ−1(1) of MA) must match the rth coordinate
the σ(r+ 1) = (r+ 1)st row. But the first row of MA is the only one whose rth coordinate
matches that of the (r + 1)st row. Thus σ−1(1) = 1 and ϕ(U1) = U1.

Claim: ϕ fixes each of U2, . . . , Ur−m+1.
Note that the first r−m+ 1 rows have precisely m− 1 of their first r− 1 coordinates

containing values that are singular in their columns. The next m−1 rows have only m−2
of their first r− 1 coordinates containing values that are singular in their columns. Since
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π leaves the first r − 1 columns invariant, and since column isomorphisms preserve the
the positions in which singular values occur in columns, the number per row of singular
values in the first r − 1 coordinates is invariant under ϕ. Thus, the first r −m + 1 rows
are invariant under σ as are the next m− 1 rows.

Since row 1 of MA has singular values in coordinates 1, . . . ,m − 1, row permutation
maintains which values are singular values, we know that row 1 of Mϕ(A) has singular
values in the same coordinates as row σ−1(1) = 1. That is, it has singular values in
coordinates 1, . . . ,m− 1. Since column isomorphism preserves the positions in a column
that contain singular values, and only columns 1, . . .m − 1 have singular values in their
first position, π({1, . . . ,m− 1}) = {1, . . . ,m− 1}. Suppose that σ−1(2) = j ∈ {1, . . . , r−
m + 1}. As argued above, row 2 of Mϕ(A) has singular values in the same coordinates
as row σ−1(2) = j of MA. These coordinates are j, . . . ,m + j − 2 which implies that
π({2, . . . ,m}) = {j, . . . ,m+j−2}. Since π is a permutation this means that π({1, . . . ,m−
1}∩{2, . . . ,m}) = π({2, . . . ,m−1}) = {1, . . . ,m−1}∩{j, . . . ,m+ j−2} has size m−2.
Since each is a set of consecutive integers, this is true if and only if j = 2. Thus σ(2) = 2.
Continuing this process, we can conclude that σ(i) = i for all i ∈ {1, . . . , r−m+1}. Thus
ϕ fixes each of U2, . . . , Ur−m+1.

Claim: ϕ fixes Ur−m+2, . . . , Ur.
Note that since σ fixes the first r−m+1 rows, column 1 contains a 1 followed by r−m

2s. Recall that row permutations preserves which values are singular and which are non-
singular in a given column. Thus in column 1, 1 is a singular value and 2 is a non-singular
value. Since column 1 of MA is the only of the first r − 1 columns to have a singular
value in its first position and a non-singular value in its second, and these properties are
preserved by column permutation/isomorphism, π(1) = 1. Since the (r−m+2)st position
of column 1 of Mϕ(A) (and MA) is a non-singular value, row r −m + 2 of Mϕ(A) begins
with a value that is non-singular for it’s column. However, the (r −m+ 2)nd row of MA
is unique among rows r −m + 2, . . . , r of MA in having a non-singular value in its first
coordinate. Thus σ(r −m + 2) = r −m + 2. We can now argue as we did above that σ
preserves r −m + 2, . . . , r. Thus ϕ fixes Ur−m+2, . . . , Ur. Thus ϕ fixes all the vertices in
A. Thus A is a distinguishing class for G`r .

Case 2: m = 2 and r > 5.
This proof strongly resembles the proof for m > 3. Recall our setup: r = Det(Gk); `r is

the largest integer so that G`r has a minimum size determining set of size r; T = {1, 2} is a
determining set for G; U is a minimum size determining set for G`r ; N is the characteristic
matrix for U ; and all columns of N are l-l-r.

For i ∈ {1, . . . , r − 1} define column i to be the unique l-l-r column with values from
T , with identical values in positions i and i + 1. Thus each of these columns has type
{r − 2, 2}. Note that since r > 5 these columns are all distinct. Define the rth column to
be [1 2 · · · 2]T , which is l-l-r of type {r − 1, 1}. Since `r is the maximum integer so that
G`r has a determining set of size r, N contains all non-isomorphic l-l-r columns of length
r and thus it contains the described columns. We can assume these columns arise in the
described positions or choose an automorphic image of U for which it is true.
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

U1

U2

U3

U4

U5

U6

U7

U8

U9

X


=



1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 2
2 2 2 1 1 1 1 1 2
2 1 2 2 1 1 1 1 2
2 1 1 2 2 1 1 1 2
2 1 1 1 2 2 1 1 2
2 1 1 1 1 2 2 1 2
2 1 1 1 1 1 2 2 2
2 1 1 1 1 1 1 2 2
2 1 1 1 1 1 1 1 2

· · ·


Figure 2: First 9 columns of MA when r = 9. Duplicate values in each column are
underlined.

Denote the vertex associated with row i of N by Ui. Then U = {U1, . . . , Ur} and
N = MU . Add an (r + 1)st row to the matrix N , creating a matrix M , so that the first
r− 1 columns are precisely the columns of type {r− 1, 2} in M and the rth column is the
only one of type {r, 1}. (Since r 6= 2, these are distinct types.) We accomplish this by
appending to column i for i ∈ {1, . . . r− 1} the value not in position i or i+ 1, appending
2 to column r, and for columns outside the first r, appending a third value to the column.
(If a column already contains three or more values, it doesn’t matter which value we
choose to append in position r+ 1. If a column contains only two distinct values, append
a third. Since we assumed G had at least three vertices, this is possible.) Let the vertex
of G`r associated with the (r+1)st row be denoted X. Let A = U ∪{X}. Then M = MA.
See Figure 2 to see the first eight columns of M when r = 9. We will see that A is a
distinguishing class for G`r .

Let ϕ ∈ Aut(G`r) so that ϕ(A) = A. As discussed earlier, since ϕ(A) = A, ϕ acts
as a permutation σ on the rows of MA as well as a permutation π of the columns of MA
composed with isomorphisms ψi of individual columns. Since column type is invariant
under column isomorphism, the set {1, . . . , r − 1} is invariant under π, and π(r) = r.

Since π(r) = r, and since the rth column of MA has a singular value in its first position,
and since the property of a position containing a singular value is invariant under column
isomorphism, the rth column of Mϕ(A) has a singular value in its first position as well.
But since ϕ acts as a row permutation σ on MA, the first row of Mϕ(A) (the σ−1(1)st row
of MA) must have as its rth coordinate a value that is singular in its column. But row 1
of MA is the only such row with this property. Thus σ(1) = 1.

Since σ(1) = 1, the first column of Mϕ(A) must contain a duplicate value in position
1. Since the only column of MA for which this is true is the first column, we have that
π(1) = 1. Then the second row of Mϕ(A) must have a duplicate value in its second
coordinate; thus so does the σ−1(2)nd row of MA. However the only row of MA with a
duplicate value in its second position, is its second. Thus σ(2) = 2. Continuing in this
manner we see that σ fixes the rows 1, . . . , r of MA. Since σ ∈ Sr+1 fixes each of 1, . . . , r,
it must also fix r + 1. Thus σ fixes all the rows of MA which tells us that ϕ fixes all the
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vertices in A. Thus A is a distinguishing class for G`r .

Case 3: m = 2 and r 6 4.
Consider the set of vertices of A = {U1, . . . , Ur, X} ⊂ V (G`r) whose characteristic

matrix has the following first r columns and whose remaining columns are distinct l-l-r
columns containing a determining set for G and containing at least three distinct values.
By Lemma 1, A is a determining set for G`r . In arguments analogous to those above, it
can be shown that A is a distinguishing class for G`r .

For r = 4, MA =


U1

U2

U3

U4

X

 =


1 1 1 1
1 2 1 2
2 2 2 2
2 1 2 2
2 1 1 2

· · ·

.

For r = 3, MA =


U1

U2

U3

X

 =


1 1 1
2 2 2
2 1 1
2 1 2

· · ·

.

Claim: A projects to a distinguishing class for Gk.
Suppose that `r−1 < k < `r. Let pk : G`r → Gk be the standard projection map that

deletes the final `r − k components of vertices of G`r . Let A be defined as above and
denote {pk(U1), . . . , pk(Ur), pk(X)} by pk(A). Let ϕ be in the setwise stabilizer of pk(A).
Let Mpk(A) and Mϕ(pk(A)) be the appropriate characteristic matrices.

The argument proving that A is a distinguishing class for G`r used only the first r
columns of A. Lemma 2, which follows the proof of this theorem and its corollary, proves
that r 6 k. Thus the first r columns of MA are the same as the first r columns of
Mpk(A). Thus if ϕ fixes pk(A) setwise, it must also fix it pointwise. Therefore pk(A) is a
distinguishing class for Gk of size r + 1.

Corollary 3.1. For n > 3, dlog3(2n+ 1)e+ 1 6 ρ(Kn
3 ) 6 dlog3(2n+ 1)e+ 2.

Proof. This uses the fact that Det(Kn
3 ) = dlog3(2n+ 1)e+ 1 from [7], and that for n > 3,

Kn
3 is 2-distinguishable [13].

Lemma 2. If G is a print connected graph and k a positive integer so that Det(G) 6 k
and Det(G) < Det(Gk) then Det(Gk) 6 k.

Proof. Note that since Det(G) < Det(Gk), 2 6 k. Let m = max{2,Det(G)}. Thus
with m as defined we have m 6 k. Let T = {1, . . . ,m} be a determining set for G. (If
m = Det(G), this will be a minimum size determining set. If Det(G) = 1, then |V (G)| > 2
and we can add a vertex to a minimum size determining set to get a determining set of
size two.) Create an k×k matrix so that column i has the value i in each of the positions
i through i + k − m modulo k and values 1, . . . , i − 1, i + 1, . . . ,m in the remaining
positions. Note that since 2 6 m 6 k, we have that 1 6 k − m + 1 6 k − 1 and
each column has its repeated values in distinct positions. Since the position of repeated
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values is invariant under column isomorphism, no pair of columns is isomorphic. Since in
addition, each column is constructed to contain a determining set for G, by Lemma 1, this
is a characteristic matrix for a determining set of size k for Gk. Thus Det(Gk) 6 k.

Note that an important tool in this work was the fact that G had more than m =
max{2,Det(G)} vertices. This allowed us to force the column types of columns r+1, . . . , `r
to be distinct from the column types of the first r columns, and therefore to guarantee
that the first r columns were invariant under any automorphism that preserved A. This
tool does not exist for Qn = Kn

2 . Thus the techniques in this paper cannot be immediately
used to get analogous results for Qn.

4 Open Questions

Question 1. Classify 2-distinguishable Cartesian powers Gk so that ρ(Gk) = Det(Gk)
(or so that ρ(Gk) = Det(Gk) + 1).

Question 2. Find more 2-distinguishable graph families G with the property that for all
G ∈ G, ρ(G) ∈ {Det(G),Det(G) + 1}.

Question 3. Find 2-distinguishable graph families G with the property that for all G ∈ G,
ρ(G) = Det(G) (or so that ρ(G) = Det(G) + 1).

Question 4. Find minimal determining sets for families of 2-distinguishable graphs to
help find minimum distinguishing classes.
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