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Dept. de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya
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Abstract

Regular digraphs of degree d > 1, diameter k > 1 and order N(d, k) = d+· · ·+dk

will be called almost Moore (d, k)-digraphs. So far, the problem of their existence
has only been solved when d = 2, 3 or k = 2, 3. In this paper we prove that almost
Moore digraphs of diameter 4 do not exist for any degree d.

Keywords: Almost Moore digraph, characteristic polynomial, cyclotomic polynomial.

1 Introduction

The degree/diameter problem finds, given two natural numbers d and k, the largest possible
number of vertices in a [directed] graph with maximum [out-]degree d and diameter k (for
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a survey of it see [12]). In the directed case, W.G. Bridges and S. Toueg in [4] proved
that this number of vertices is less than the Moore bound , M(d, k) = 1 + d + · · · + dk,
unless d = 1 or k = 1. Then, the question of finding for which values of d > 1 and k > 1
there exist digraphs of order

N(d, k) = M(d, k)− 1

becomes an interesting problem. In this case, any extremal digraph turns out to be d-
regular (see [10]). From now on, regular digraphs of degree d > 1, diameter k > 1 and
order N(d, k) will be called almost Moore (d, k)-digraphs (or (d, k)-digraphs for short).

The problem of the existence of almost Moore (d, k)-digraphs has been solved when
d = 2, 3 or k = 2, 3. M. Miller and I. Fris [11] proved that the (2, k)-digraphs do not exist
for values of k > 2 and Baskoro et al. [3] established the nonexistence of (3, k)-digraphs
unless k = 2. On the other hand, Fiol et al. [6] showed that the (d, 2)-digraphs do exist
for any degree. Their classification was completed by J. Gimbert in [8]. Moreover, J.
Conde et al. [5] proved the nonexistence of (d, 3)-digraphs.

In this paper we prove that almost Moore digraphs of diameter four do not exist
for any degree. The paper is organized as follows: Section 2 is devoted to determine
the characteristic polynomial of a (d, 4)-digraph in terms of the polynomials Fn,4(x) =
Φn(1+x+x2 +x3 +x4), being Φn(x) the nth cyclotomic polynomial and 2 6 n 6 N(d, 4).
In Section 3, assuming the cyclotomic conjecture (see [7]) for k = 4, which says that
Fn,4(x) is irreducible unless n = 3, 6, we prove the nonexistence of (d, 4)-digraphs for
d > 2. Finally, in Section 4 we show the conjecture for k = 4.

2 On the characteristic polynomial of a (d, 4)-digraph

Given a (d, k)-digraph G, its adjacency matrix A fulfills the equation

I + A+ · · ·+ Ak = J + P, (1)

where J denotes the all-one matrix and P = (pij) is the (0, 1)-matrix associated with
a distinguished permutation r of the set of vertices V (G) = {1, . . . , N}; that is to say,
pij = 1 iff r(i) = j (see [1]).

Notice that r has a cycle structure which corresponds to its unique decomposition in
disjoint cycles. The number of permutation cycles of G of each length n 6 N will be
denoted by mn and the vector (m1, . . . ,mN) will be referred to as the permutation cycle
structure of G.

The factorization of det(xI − (J +P )) in Q[x] in terms of the cyclotomic polynomials
Φi(x) is given by (see [2, 5])

det(xI − (J + P )) = (x− (N + 1))(x− 1)m(1)−1
N∏

n=2

Φn(x)m(n), (2)

where m(n) =
∑

n|imi represents the total number of permutation cycles of order multiple
of n.
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From Equations (1) and (2), the problem of the factorization in Q[x] of the charac-
teristic polynomial of G, φ(G, x) = det(xI −A), was connected by J. Gimbert in [7] with
the study of the irreducibility in Q[x] of the polynomials

Fn,k(x) = Φn(1 + x+ · · ·+ xk).

The idea is that, when such polynomials are irreducible, they appear as factors of the
characteristic polynomial of G.

Proposition 1. Let (m1, . . . ,mN) be the permutation cycle structure of a (d, k)-digraph
G and 2 6 n 6 N . If Fn,k(x) is an irreducible polynomial in Q[x], then it is a factor of
φ(G, x) and its multiplicity is m(n)/k.

This result was proved in [7]. Moreover, it was proved that F2,k(x) = 2 + x+ · · ·+ xk

is irreducible in Q[x], for any positive integer k. On the other hand, it was shown that
for each n > 2 there are infinitely many values of k for which Fn,k(x) is reducible in Q[x].
More precisely,

Lemma 2. Let n > 2 and k > 1 be integers. Then, the following statements hold.

(i) If n is odd and k ≡ −2 (mod 2n), then Φ2n(x) divides Fn,k(x).

(ii) If n ≡ 0 (mod 4) and k ≡ −2 (mod n), then Φn(x) divides Fn,k(x).

(iii) If n ≡ 2 (mod 4) and k ≡ −2 (mod n
2
), then Φn

2
(x) divides Fn,k(x).

On the other hand, in [7] it was conjectured that Fn,k(x) is irreducible in Q[x] if n and
k do no satisfy any of the conditions of Lemma 2.

Conjecture 3. Let n > 2 and k > 1 be integers. One has that

(i) If k is even, then Fn,k(x) is reducible in Q[x] if and only if n | (k+ 2), in which case
Fn,k(x) has just two factors.

(ii) If k is odd, then Fn,k(x) is reducible in Q[x] if and only if n is even and n | 2(k+ 2),
in which case Fn,k(x) has just two factors.

We will refer to this conjecture as the cyclotomic conjecture. The case k = 2 was
proved by H.W. Lenstra Jr. and B. Poonen [9] and, recently, the authors proved the case
k = 3 in [5].

The remainder of this section is devoted to finding the conditions in order to obtain
a factorization of the characteristic polynomial of a (d, 4)-digraph G in terms of Fn,4(x).
Thus, let G be a (d, 4)-digraph of degree d > 3 and let (m1, . . . ,mN) be its permutation
cycle structure, where N = d+ d2 + d3 + d4.

We will assume the cyclotomic conjecture is true for k = 4, that is Fn,4(x) is irreducible
in Q[x] except n = 3, 6, which will be proven in the last section. From now on, we will
write Fn(x) instead of Fn,4(x).
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Then, by applying Proposition 1 we have that∏
26n6N
n6=3,6

(Fn(x))
m(n)

4 is a factor of φ(G, x).

The remaining factors of φ(G, x) are derived as follows:

• Since G is d-regular and strongly connected, φ(G, x) has the linear factor x−d with
multiplicity 1;

• Taking into account that x − 1 is a factor of det(xI − (J + P )) with multiplicity
m(1)− 1 and since

F1(x) = (x+ 1)(x2 + 1)x,

we have that x+ 1, x2 + 1 and x are factors of φ(G, x) with multiplicities a1, a2 and
a3, respectively, where a1 + 2a2 + a3 = m(1)− 1;

• Since Φ3(x) = x2 +x+ 1 is a factor of det(xI − (J +P )) with multiplicity m(3) and
taking into account the factorization of F3(x) in Q[x],

F3(x) = (x2 − x+ 1)(x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x+ 3),

we have that Φ6(x) = x2 − x + 1 and F3(x)/Φ6(x) are factors of φ(G, x) with
multiplicities b1 and b2, respectively, where 2b1 + 6b2 = 2m(6); that is, b1 = m(3)−
3b2. Analogously, since the factorization of F6(x) in Q[x] is

F6(x) = (x2 + x+ 1)(x6 + x5 + x4 + 2x3 + x2 + 1),

we have that Φ3(x) and F6(x)/Φ3(x) are factors of φ(G, x) with multiplicities c1 and
c2, respectively, where c1 = m(6)− 3c2.

As a result, the characteristic polynomial of G is

φ(G, x) = (x− d)(x+ 1)a1(x2 + 1)a2xa3Φ6(x)b1(F3(x)/Φ6(x))b2 (3)

× Φ3(x)c1(F6(x)/Φ3(x))c2
∏

26n6N
n 6=3,6

(Fn(x))
m(n)

4 . (4)

3 On the nonexistence of (d, 4)-digraphs

In this section, we will derive the nonexistence of a (d, 4)-digraph from the irreducibility
of the polynomials Fn(x) which appear in the factorization of its characteristic polynomial
and from the behaviour of the first three powers of its adjacency matrix.

Theorem 4. Assuming that the cyclotomic conjecture is true for k = 4, there is no almost
Moore digraph of diameter four.
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Proof. Let G be a (d, 4)-digraph with adjacency matrix A. We compute the graph spectral
invariants TrA` (` = 1, 2, 3) in terms of the sum of the `th powers of the roots of each
factor of φ(G, x).

Given a monic polynomial of degree n > 1, a(x) = xn +
∑n

i=1 an−ix
n−i, and given an

integer ` > 1, we define S`(a(x)) to be the sum of the `th powers of all the roots of a(x).
Using Newton’s formulas [14], which express S`(a(x)) in terms of the coefficients of a(x),
we have

S1(a(x)) = −an−1,
S2(a(x)) = a2n−1 − 2an−2,
S3(a(x)) = −a3n−1 + 3an−1an−2 − 3an−3.

Since S`(a(x)b(x)) = S`(a(x))S`(b(x)), for all pairs of polynomials, and taking into account
that

Fn(x) = Φn(1 + x+ x2 + x3 + x4) = (1 + x+ x2 + x3 + x4)ϕ(n) +O(x4ϕ(n)−4),

where ϕ(n) stands for Euler’s function, we obtain

S`(Fn(x)) = ϕ(n)S`(x
4 + x3 + x2 + x+ 1) = −ϕ(n), ` = 1, 2, 3.

Besides, it can be easily checked that

S1 S2 S3

x+ 1 −1 1 −1
x2 + 1 0 −2 0
Φ6(x) 1 −1 −2
Φ3(x) −1 −1 2

Now, for each ` = 1, 2, 3 we can express the trace of the `th power of the adjacency
matrix A of G in terms of the sums S` of all factors of φ(G, x). Thus,

TrA = d− a1 + b1 − 3b2 − c1 − c2 −
1

4
T,

TrA2 = d2 + a1 − 2a2 − b1 − b2 − c1 − c2 −
1

4
T,

TrA3 = d3 − a1 − 2b1 + 2c1 − 4c2 −
1

4
T,

where T =
∑

26n6N
n6=3,6

m(n)ϕ(n). From the identity
N∑

n=1

m(n)ϕ(n) = N (see [7]),

T = N −m(1)− 2m(3)− 2m(6).

So, taking into account that b1 = m(3)− 3b2 and c1 = m(6)− 3c2,

TrA = d− 1

4
N +

1

4
m(1) +

3

2
m(3)− 1

2
m(6)− a1 − 6b2 + 2c2,

TrA2 = d2 − 1

4
N +

1

4
m(1)− 1

2
m(3)− 1

2
m(6) + a1 − 2a2 + 2b2 + 2c2,

TrA3 = d3 − 1

4
N +

1

4
m(1)− 3

2
m(3) +

5

2
m(6)− a1 + 6b2 − 10c2.
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Since G has no cycles of length 6 3, we know that TrA` = 0 (` = 1, 2, 3). As a conse-
quence,

4a1 + 24b2 − 8c2 = 4d−N +m(1) + 6m(3)− 2m(6),
−4a1 + 8a2 − 8b2 − 8c2 = 4d2 −N +m(1)− 2m(3)− 2m(6),

4a1 − 24b2 + 40c2 = 4d3 −N +m(1)− 6m(3) + 10m(6).

Applying Gauss reduction method to the previous linear system, it follows that

8a2 + 16b2 − 16c2 = 4d2 + 4d− 2N + 2m(1) + 4m(3)− 4m(6), (5)

−48b2 + 48c2 = 4d3 − 4d− 12m(3) + 12m(6). (6)

Taking into account that N = d4 + d3 + d2 + d, from (5) and (6) we derive that

24a2 = 4d3 + 12d2 + 8d+ 6m(1)− 6N.

Notice that m(1) =
∑N

n=1mn takes its maximum value when all permutation cycles are
short as possible. Moreover, the number of selfrepeats m1 of a (d, k)-digraph is either 0
or k, if k > 3 (see [1]). So, m(1) 6 4 + N−4

2
and, consequently,

24a2 6 4d3 + 12d2 + 8d+ 12− 3N = −3d4 + d3 + 9d2 + 5d+ 12.

Hence, if d > 3 then a2 < 0, which is impossible since a2 is a nonnegative integer.

4 The cyclotomic conjecture for k = 4

This section is devoted to proving the cyclotomic conjecture in the case k = 4, that is, we
show that the polynomial Fn(x) = Φn(1 + x + x2 + x3 + x4) is irreducible in Q[x], when
n > 1 and n 6= 3, 6.

As a first step, we show that the condition of being Fn(x) reducible in Q[x] implies
a divisibility relation by a cyclotomic polynomial. In order to prove this, let us suppose
that Fn(x) is reducible in Q[x] and let us consider a root ε of Fn(x). Denoting

p1(x, z) = 1− z + x+ x2 + x3 + x4, (7)

and taking a suitable primitive nth root of unity ζn, we get

p1(ε, ζn) = 0.

Using properties about the degrees of the algebraic extensions

Q ⊆ Q(ζn) ⊆ Q(ε),

we derive that Fn(x) has an irreducible factor in Q[x] of degree ϕ(n) or 2ϕ(n). We can
assume that ε is a root of such a factor. In particular, ε is an algebraic integer and
[Q(ε) : Q(ζn)] is either 1 or 2.
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If [Q(ε) : Q(ζn)] = 1, we consider the element ε/ε ∈ Q(ε, ε), where denotes the
complex conjugation. By using arguments given in [5] we obtain that ε/ε is a root of
unity and hence the same procedure given for diameter 3 to state the irreducibility of
Fn(x) follows.

Now, assume that [Q(ε) : Q(ζn)] = 2 for all ε such that p1(ε, ζn) = 0. We denote by ε′

the conjugate root of ε over Q(ζn), that is to say, the polynomial p1(x, ζn)/((x−ε)(x−ε′))
is irreducible in Q(ζn)[x]. Changing the root of p1(x, ζn) if necessary, we can assume that
εε′ is not real. Since ε is an algebraic integer and 1− ζn is a unity or a prime element of
Z[ζn], εε′ is also a unity or a prime element of Z[ζn]. Therefore,

α =
εε′

εε′
∈ Z[ζn]

is a unity of Z[ζn] whose conjugates have absolute value 1. Hence, α 6= 1 is a root of unity
of order 2n [15, Lemma 1.6]. Notice that if n is even, α is a root of unity of order n.

Now, we search for a polynomial relation between ζn and α = ββ′, where β = ε/ε and
β′ = ε′/ε′. In order to find such an expression we give first a relation between ζn and β.
We use the following identities:

1 + ε+ ε2 + ε3 + ε4 = ζn,

ε = βε.

From them, and taking into account that ζn = 1/ζn, it can be seen that p2(ε, β, ζn) = 0
where

p2(x, y, z) = 1− z − xyz − x2y2z − x3y3z − x4y4z. (8)

Similarly, p2(ε
′, β′, ζn) = 0. Notice as well that p3(α, β, β

′) = 0 where

p3(y, y
′, w) = w − yy′.

Therefore, the relation between ζn and α we are looking for is R(ζn, α) = 0, where

R1(y, z) = Res(p1(x, z), p2(x, y, z), x), (9)

R2(y
′, z, w) = Res(R1(y, z), p3(y, y

′, w), y), (10)

R(z, w) = Res(R1(y
′, z), R2(y

′, z, w), y′). (11)

This polynomial factorizes as follows

R(z, w) = (z − 1)50q1(z, w)q22(z, w)q23(z, w)q44(z, w), (12)

where q1(z, w) has degree 14 in z and 16 in w, q2(z, w) and q3(z, w) have degree 21 in z
and 24 in w, and q4(z, w) has degree 27 in z and 36 in w.

Proposition 5. Let n > 2 be an integer and Fn(x) = Φn(1 + x+ x2 + x3 + x4). If Fn(x)
is reducible in Q[x] then:
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– If n is even, then there exists an integer k, 1 6 k < n, such that Φn(x) divides one
of the polynomials qi(x, x

k), i ∈ {1, 2, 3, 4}, given in (12).

– If n is odd, then there exists an integer k, 1 6 k < n, such that Φn(x) divides one
of the polynomials qi(x, x

k) or qi(x,−xk), i ∈ {1, 2, 3, 4}, given in (12).

Proof. Since the cyclotomic polynomial Φn(x) is irreducible in Q[x] and it does not divide
x − 1, then when n is even it must divide at least one of the polynomials qi(x, x

k),
i ∈ {1, 2, 3, 4}, 1 6 k < n. When n is odd, α or −α is a root of unity of order n. Hence,
Φn(x) must divide qi(x, x

k) or qi(x,−xk), i ∈ {1, 2, 3, 4}.

Our main goal is to show that Fn(x) is irreducible in Q[x], for n > 1 and n 6= 3, 6. It
is enough to prove that Φn(x) does not divide, for i ∈ {1, 2, 3, 4}, any of the polynomials
qi(x, x

k), 1 6 k < n, when n is even and it does not divide any of the polynomials qi(x, x
k)

or qi(x,−xk), 1 6 k < n, when n is odd. This is equivalent to proving that Φ2n(x) does
not divide any of the polynomials qi(x

2, x`), 1 6 ` < 2n.

Theorem 6. The polynomial Fn(x) is irreducible in Q[x] for n > 1, unless n = 3, 6.

Proof. If Fn(x) is reducible, then taking into account Proposition 5 there exist polynomials
qi(x

2, x`), i ∈ {1, 2, 3, 4}, given by (12) such that the cyclotomic polynomial Φ2n(x) divides
one of them. Now, we show that Φ2n(x) does not divide q1(x

2, x`). To see this, from part
(i) of Lemma 3 in [5] (see also [13]), we know that

Φ2n(x) ≡ Φr(x)ϕ(p
e) (mod pZ[x]),

where p is a prime number dividing 2n with 2n = per and (p, r) = 1. Consequently

Φr(x)ϕ(p
e)−1 | gcd

(
q1(x

2, x`), xq′1(x
2, x`)

)
(mod pZ[x]).

Now, we consider the polynomial

A1(z, w) = 2z
∂

∂z
q1(z, w) + `w

∂

∂w
q1(z, w) ∈ Z[z, w],

that is A1(x
2, x`) = xq′1(x

2, x`). Therefore

Φr(x)ϕ(p
e)−1 | P1(x) (mod pZ[x]), (13)

where P1(x) is the following resultant

P1(x) = Res
(
q1(x

2, w), A1(x
2, w), w

)
.

It can be checked that

P1(x) = 54x264Φ82
1 (x)Φ82

2 (x)Φ12
4 (x)Φ6

3(x)Φ6
6(x)Φ6

12(x)P 2
1,0(x)P1,`(x), (14)

with P1,0(x) a polynomial of degree 36 and P1,`(x) a polynomial of degree at most 60.
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Notice that for those integers n which have a prime factor p such that P1(x) 6= 0
(mod pZ[x]) for all ` (mod p), the degree of P1(x) (mod pZ[x]) provides us an upper
bound K for ϕ(n). Hence, for those values of n such that ϕ(n) > K, Fn(x) is irreducible
in Q[x], and for those n with ϕ(n) 6 K, we can computationally check the irreducibility
of Fn(x) unless n = 3, 6.

The coefficients of P1,0(x) do not depend on ` and its gcd is one. Hence, this polynomial
does not vanish for any prime p. The polynomial P1,`(x) is given by

P1,`(x) =
30∑
i=0

ai(`)x
2i,

where the coefficients ai(`) are polynomials on Q[`] of degree 16 given by the expressions

a0(`) = 232512(`+ 1)16,

a1(`) = −226511(`+ 1)12(9353`4 + 37412`3 + 57248`2 + 39552`+ 10368),

a2(`) = 217510(`+ 1)8(338813683`8 + 2710509464`7 + 9562778864`6

+ 19424004608`5 + 24833262080`4 + 20453500928`3 + 10593286144`2

+ 3152707584`+ 412581888),

...

a29(`) = −226511(`+ 1)12(9353`4 + 37412`3 + 57248`2 + 39552`+ 10368),

a30(`) = 232512(`+ 1)16.

From the first coefficient it turns out that the factors which can vanish P1,`(x) are 2, 5
and those that divide ` + 1. The polynomials aj(`), j = 4, . . . , 26, are not divisible by
` + 1. The greatest common divisor of the remaining divisions of these polynomials by
` + 1 in Z[x] is 1. Thus, there are no primes dividing ` + 1 that vanish P1,`(x). For the
prime p = 2, the polynomial P1,`(x) only vanishes when ` is even. Concerning the prime
p = 5, the polynomial P1,`(x) only vanishes when ` ≡ 4 (mod 5).

Now, if the factorization of n has a prime factor p different from 2 and 5, by using
(13) and taking into account the factorization of P1(x) (mod pZ[x]) given in (14), the
degree of the maximum power Φr(x) that could divide P1(x) (mod pZ[x]) is bounded by
degP1(x)− deg x264 = 368. This is a bound for (ϕ(pe)− 1)ϕ(r). Hence,

ϕ(n) 6 ϕ(2n) = ϕ(pe)ϕ(r) 6 368 + ϕ(r) 6 736.

For these integers n which have a prime factor different from 2 and 5 and such that
ϕ(n) > 736, Fn(x) is irreducible in Q[x]. For those integers n such that ϕ(n) 6 736, it
has been computationally checked that Fn(x) is reducible in Q[x] only when n = 3 and
n = 6. Therefore, the remaining cases to consider are n = 2e5d, with e > 1 or d > 1.

The previous method works as well taking p = 2 in (13) when ` is odd. On the other
hand, if 5 | n and p = 5, then P1(x) = 0 (mod pZ[x]) but the following relation holds

Φr(x)ϕ(p
e)−2 | Q1(x) (mod pZ[x]), (15)
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where Q1(x) is the resultant

Q1(x) = Res
(
q1(x

2, w), B1(x
2, w), w

)
, (16)

being

B1(z, w) = 2z
∂

∂z
A1(z, w) + kw

∂

∂w
A1(z, w).

Since we must consider the cases n = 2e5d, we can apply (15) with p = 5 and we proceed
in the same way as in (13). Nevertheless, the polynomial Q1(x) (mod 5Z[x]) is identically
zero only for ` ≡ 4 (mod 5). Thus, taking into account these remarks, the cases we must
study have been reduced to the following:

i) n = 2e5d, with e > 0, d > 0, ` even and ` ≡ 4 (mod 5),

ii) n = 2e, with e > 1, and ` even.

i) We shall prove that Φ2n(x) (mod 5Z[x]) does not divide q1(x
2, x`) (mod 5Z[x]), for `

even and ` ≡ 4 (mod 5). It is known that Φ2n(x) = Φ2e+1(x)4·5
d−1

(mod 5Z[x]), where

Φ2m(x) (mod 5Z[x]) =


x+ 4 if m = 0,

x+ 1 if m = 1,

(x2
m−2

+ 2)(x2
m−2

+ 3) if m > 2.

We have that

q1(z, w) = q1,1(z, w)2q1,2(z, w)q1,3(z, w)q1,4(z, w) (mod 5Z[z, w]),

where

q1,1(z, w) = w2z − 1,
q1,2(z, w) = w4z4 − 2w4z3 + w4z2 + w3z2 − 2w2z3 + w2z2 − 2w2z + wz2 + z2 − 2z + 1,
q1,3(z, w) = w4z4 − 2w4z3 + w4z2 − 2w3z3 − 2w3z2 − 2w2z3 + 2w2z2 − 2w2z − 2wz2

−2wz + z2 − 2z + 1,
q1,4(z, w) = w4z4 − 2w4z3 + w4z2 − w3z3 − 2w2z3 + w2z2 − 2w2z − wz + z2 − 2z + 1.

So, we will prove that Φ2e+15d(x) (mod 5Z[x]) does not divide q1,i(x
2, x`) (mod 5Z[x]), for

any i ∈ {1, 2, 3, 4}, when e > 0 and e = 0.

• Case e > 0. First, we claim that

gcd
(
Φ2e+1(x) (mod 5Z[x]), q1,1(x

2, x`) (mod 5Z[x])
)

= 1.

Indeed, let γ be a root of Φ2e+1(x) (mod 5Z[x]), that is γ2
e−1

is equal to 2 or 3. Then, γ2
e+1

is the smallest power of γ equal to 1. Therefore, if γ is a root of q1,1(x
2, x`) = x2(`+1) − 1

then 2e+1 | 2(`+ 1), which contradicts that ` is even.
Assume Φ2e+1(x) (mod 5Z[x]) divides q1,2(x

2, x`)q1,3(x
2, x`)q1,4(x

2, x`). Then each irre-
ducible divisor of Φ2e+1(x) (mod 5Z[x]) is a divisor of some of the polynomials q1,i(x

2, x`)
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(mod 5Z[x]), i ∈ {2, 3, 4}, with multiplicity greater than 1. Then, for i ∈ {2, 3, 4} we
consider the resultant

T1,i(x) = Res(q1,i(x
2, w), S1,i(x

2, w), w),

where

S1,i(z, w) = 2z
∂

∂z
q1,i(z, w) + `w

∂

∂w
q1,i(z, w).

When ` = 4 (mod 5), the polynomials T1,i(x) (mod 5Z[x]) are as follows:

T1,2(x) = x20(1 + x)6(2 + x)2(3 + x)2(4 + x)6(1 + x+ x2)2(1 + 4x+ x2)2,
T1,3(x) = x20(1 + x)4(4 + x)4(4 + 2x+ x2)4(4 + 3x+ x2)4,
T1,4(x) = x20(1 + x)6(2 + x)2(3 + x)2(4 + x)6(1 + x+ x2)2(1 + 4x+ x2)2.

Therefore, emust be 1 and Φ4(x)7 (mod 5Z[x]) is the greatest power of Φ4(x) (mod 5Z[x])
which could divide q1,2(x

2, x`)q1,3(x
2, x`)q1,4(x

2, x`). Since

Φ2e+15d(x) = Φ2e+1(x)4·5
d−1

(mod 5Z[x]),

for d > 1 the polynomial Φ2e+15d(x) (mod 5Z[x]) does not divide q1(x
2, x`) (mod 5Z[x]).

For n = 2 · 5 we can check that Fn(x) is irreducible in Q[x].

• Case e = 0. In this case Φ2·5d(x) = (x + 1)4·5
d−1

(mod 5Z[x]). Set ` + 1 = 5km with
m odd and gcd(5,m) = 1. Since ` + 1 = 0 (mod 5) and ` + 1 6 2 · 5d, it is clear that
1 6 k 6 d. The polynomial (x + 1)2·5

k
is the greatest power of x + 1 which divides

q1,1(x
2, x`)2 = (x2(`+1) − 1)2 = (xm − 1)2·5

k
(xm + 1)2·5

k
(mod 5Z[x]). From the following

equalities

Res(q1,1(x
2, w), q1,i(x

2, w), w) = 4x10(x+ 1)2(4 + x)2, 2 6 i 6 4,

we get that (x+1)2·5
k+6 is the greatest power of x+1 dividing q1(x

2, x`). Hence, 4 ·5d−1 6
2 · 5k + 6 and, thus, k = d. So, ` + 1 must be either 5d or 2 · 5d. Since ` is even,
` = 5d−1. Therefore, only for this value of ` the polynomial Φ2·5d(x) can divide q1(x

2, x`).
Nevertheless, since the roots of Φ2·5d(x) satisfy that x5

d
= −1, the polynomial Φ2·5d(x)

should divide
q1(x

2,−1/x) = 25(−1 + x)4(1 + x)6(1− x+ x2),

which leads to a contradiction.

ii) In this case n = 2e, with e > 1 and ` = 2k. We shall prove that Φ2e(x) (mod 5Z[x])
does not divide q1(x, x

k) (mod 5Z[x]). With the same arguments used in the above case,
we obtain that

gcd
(
Φ2e(x) (mod 5Z[x]), q1,1(x, x

k) (mod 5Z[x])
)

= 1.
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Let γ ∈ F52
e−2 such that Φ2e(γ) = 0, where F52e−2 is the finite field with 5e−2 elements.

Since Φ2e(x) = (x2
e−2

+ 2)(x2
e−2

+ 3) is the decomposition in irreducible factors in F5, we
know that F52e−2 = F5(γ) and γ2

e−2
= a, where a is either 2 or 3. Moreover,

Tr(γm) =


ϕ(2e)/2 if gcd(m, 2e) = 2e,

−ϕ(2e)/2 if gcd(m, 2e) = 2e−1,

±aϕ(2e)/2 if gcd(m, 2e) = 2e−2,

0 otherwise,

where Tr denotes the trace TrF
52

e−2 /F5 and the sign of a depends on the class
m

2e−2 (mod 4).

We can assume that e > 5 and, thus, when gcd(m, 2e) | 8 we have Tr(γm) = 0. If

q1,4(γ, γ
`) = 1 +

∑
i>0

aiγ
i = 0,

taking traces we obtain Tr(1) = ϕ(2e)/2 = 0 (mod 5) which is impossible.
If q1,2(γ, γ

`) = 0, taking traces we obtain

Tr(1) + Tr(γ2+`) + Tr(γ2+3`) = 0 (mod 5). (17)

Notice that Tr(γ2+`)Tr(γ2+3`) = 0 (mod 5). From (17), we get that either gcd(2e, 2+`) =
2e−1 or gcd(2e, 2 + 3`) = 2e−1. In the first case, 2 + ` = 2e−1 and γ2−` = −1. In the second
case, 2 + 3` = 2e−1 and γ2+3` = −1. Since Φ1(x) is the unique cyclotomic polynomial
dividing

Res(q1(x,w), x2w + 1, w) · Res(q1(x,w), x2w3 + 1, w),

it follows that q1,2(γ, γ
`) 6= 0.

If q1,3(γ, γ
`) = 0, taking traces we obtain

Tr(1)− 2Tr(γ2+`)− 2Tr(γ2+3`) = 0 (mod 5). (18)

As above Tr(γ2+`)Tr(γ2+3`) = 0 (mod 5). Since Tr(γ2+h`) = Tr(1)/2 (mod 5), h ∈ {1, 2},
is not possible, neither is the equality (18).

Consequently, Φn(x) does not divide q1,i(x, x
`) (mod 5Z[x]), i ∈ {1, 2, 3, 4}, and thus

Φn(x) does not divide q1(x, x
`) (mod 5Z[x]).

The non divisibility with respect to the other factors qi(x
2, x`), i ∈ {2, 3, 4}, can be

proved in a similar way. Indeed, for 2 6 i 6 4, let Pi(x) be the polynomials in Z[x]
obtained as in (14) but from the polynomial qi(z, w) instead of q1(z, w). Let us consider

Ui(x) = Res

(
qi(x,w), x

∂

∂x
qi(x,w) + kw

∂

∂w
qi(x,w), w

)
.

Concerning q2(x
2, x`) and q3(x

2, x`), the polynomials Pi(x) are non identically zero
modulo pZ[x], except for p = 2 with ` even. Therefore, if n has a factor p 6= 2, using

the electronic journal of combinatorics 20(1) (2013), #P75 12



(13), it turns out that Φ2n(x) - q2(x2, x`) and Φ2n(x) - q3(x2, x`) When n = 2e, since the
polynomials U2(x) and U3(x) satisfy Ui(x) 6= 0 (mod 2Z[x]), it turns out that Φn(x) -
q2(x, x

k) and Φn(x) - q3(x, xk).
Regarding q4(x

2, x`), the polynomial P4(x) is non identically zero modulo pZ[x], except
for p = 2 and ` even or p = 5. Moreover, U4(x) 6= 0 (mod 2Z[x]). So, we have only to
consider the case n = 5d, d > 1. In such a case, we can derive that the corresponding
polynomial Q4(x) obtained as in (16) from q4(z, w) is not identically zero (mod 5Z[x]),
unless ` ≡ 4 (mod 5). On the other hand, we have that

q4(z, w) =
10∏
i=1

q4,i(z, w) (mod 5Z[z, w]),

where

q4,1(z, w) = w2z − 1,

q4,2(z, w) = (w2z + 1)2,

q4,3(z, w) = w2z2 − w2z − wz − z + 1,

q4,4(z, w) = w4z3 − w4z2 + w3z2 + 2w2z2 + 2w2z − 2wz + z − 1,

q4,5(z, w) = w4z3 − w4z2 + 2w3z2 + 2w2z2 + 2w2z − wz + z − 1,

q4,6(z, w) = w4z3 − w4z2 − w3z2 + 2w2z2 − 2w2z + wz + z − 1,

q4,7(z, w) = w4z3 − w4z2 + w3z2 + 2w2z2 − 2w2z − wz + z − 1

q4,8(z, w) = w4z3 − w4z2 + w3z2 − 2w2z2 − 2w2z − 2wz + z − 1,

q4,9(z, w) = w4z3 − w4z2 + 2w3z2 − 2w2z2 − 2w2z − wz + z − 1,

q4,10(z, w) = w4z4 − 2w4z3 + w4z2 + w3z3 − w3z2 + 2w2z3 + 2w2z − wz2 + wz + z2 − 2z + 1.

Now, by using a similar argument as the one given for q1(z, w) and n = 5d we obtain
that `+ 1 = 5d, which leads us to a contradiction, since the polynomial

q4(x
2,−1/x) = 5(−1 + x)5x2(1 + x)5(9 + 46x2 + 9x4)

is never a multiple of Φ5d(x).

As we have shown in Theorem 6 the cyclotomic conjecture for k = 4, we can apply
Theorem 4 to prove the nonexistence of almost Moore digraph of diameter k = 4.

References
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