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Abstract

In this paper we study products and sums divisible by central binomial coeffi-
cients. We show that

P
2(2n+1)< "> ‘ (g") <3n> for all m =1,2,3,. ...
n n n

Also, for any nonnegative integers k and n we have
2k An+2k+2\ 2n+k+1\[/2n—-k+1
k 2n+k+1 2k n

()2 (),

where C,,, denotes the Catalan number ﬁ(%ﬁ:) = (ann) — (nzfl) On the basis of

these results, we obtain certain sums divisible by central binomial coefficients.

and

Keywords: central binomial coefficients; divisibility; congruences

1 Introduction

Central binomial coefficients are given by (2:) with n € N ={0,1,2,...}. The Catalan
numbers

o, = <2n>:(2”)—(2”) (n=0,1,2,...)
n+1\n n n+1
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play important roles in combinatorics (cf. R. P. Stanley [13, pp. 219-229]). There are many
sophisticated congruences involving central binomial coefficients and Catalan numbers
(see, e.g., [15, 18, 19]).

In 1998 N. J. Calkin [5] proved that (*") | Zzzfn(—l)k(ni‘k)m for any m,n € Z*. See
also V.J.W. Guo, F. Jouhet and J. Zeng [9], and H. Q. Cao and H. Pan [6] for further
extensions of Calkin’s result.

In this paper we investigate a new kind of divisibility problems involving central bi-
nomial coefficients.

Our first theorem is as follows.

Theorem 1. (i) For any positive integer n we have

oo (2)| ()

(ii) Let k and n be nonnegative integers. Then
2k dn+2k+2\ (2n+k+1\[(2n—k+1 2)
k n+k+1 2k n

(2:) ' n+ 1) (2:;) . (n +2kl; + 1>_ 8

In view of (1) it is worth introducing the sequence

_ GE) _
S, = o 1) () (n=1,2,3,...).

and

Here we list the values of S, ..., Sg:

5, 231, 14568, 1062347, 84021990,
7012604550, 607892634420, 54200780036595.

The author generated this sequence as A176898 at N.J.A Sloane’s OEIS (cf. [16]). By
Stirling’s formula, S,, ~ 108" /(8ny/nm) as n — +o00. Set Sy = 1/2. Using Mathematica

we find that
i St — sin(2 arcsin(6v/3x)) (0 e L)
k=0

8V 3x 108
and in particular

Sk
£ 108F 8

. Sy 3V3
>

Mathematica also yields that

(2k +3)108% 256

i Sy 273

k=0
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It would be interesting to find a combinatorial interpretation or recursion for the sequence

{Sn}n>1~
One can easily show that S, = 15 — 30p 4+ 60p* (mod p?) for any odd prime p. Below
we present a conjecture concerning congruence properties of the sequence {5, },>1.

Conjecture 2. (i) Let n € ZT = {1,2,3,...}. Then S, is odd if and only if n is a power
of two. Also, 35, =0 (mod 2n + 3).
(ii) For any prime p > 3 we have

% Se [0 (modp) ifp=+1 (mod 12),
=10 8k —1 (mod p) if p==+5 (mod 12).

Remark 3. Part (i) of Conjecture 2 might be shown by our method for proving Theorem

1(1).
Our following conjecture is concerned with a companion sequence of {S, },,>o.

Conjecture 4. There are positive integers 17, 15, T5, ... such that

00 2
cos( arccos(6\/_ x))
S, 21 T
kz_; - Z o 12

for all real z with |z| < 1/(6v/3). Also, T, = —2 (mod p) for any prime p.
Here we list the values of T}, ..., Tg:

1, 32, 1792, 122880, 9371648,
763363328, 65028489216, 5722507051008.

In 1914 Ramanujan [12] obtained that

> &

<2k;> 2
G
k:O

S 200

10
= (=2%)"

and

(See also [2, 3, 4] for such series.) Actually the first identity was originally proved by G.

Bauer in 1859. Both identities can be proved via the WZ (Wilf-Zeilberger) method (cf.

M. Petkovsek, H. S. Wilf and D. Zeilberger [11], and Zeilberger [21] for this method). For

WZ proofs of the two identities, see S. B. Ekhad and D. Zeilberger [7] and Guillera [8].

van Hamme [20] conjectured that the first identity has a p-adic analogue. This conjecture

was first proved by E. Mortenson [10], and recently re-proved in [22] via the WZ method.
On the basis of Theorem 1, we deduce the following new result.
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Theorem 5. For any positive integer n we have

4(2n +1) (25) zn:(élk +1) (2:)3(—64)"—k

4(2n + 1) ( )

Now we pose two more conjectures.

and

k=

Conjecture 6. (i) For any n € Z* we have

-1

3

k

2 2n
8n n =0

(ii) Let p be an odd prime. If p # 3 then

(p—1)/2 396

k=0 3

where By, By, Bs, ... are Bernoulli numbers. If p # 5 then
p—1
k=0

where H, | = Y"1 1/k.

Remark 7. . Note that a; = 1 and

on —1\°
4(2n 4+ 1)%an41 + na, = (2050 + 160n + 32)( " ) forn=1,2,....
n

Z (20k + 3) (2k> (;l:)(—w)"—k

2k\ °
— 205k2+160k+32)(—1)”—1—k( ) €Z".

2k\ °
> (205K + 160k + 32)(—1)’“( k) = 32p° + —p°B,_3 (mod p°),

2%\ °
> (205K + 160k + 32)(-1)’“( k) = 32p® + 64p*H, 1 (mod p*),

The author generated the sequence {a,},~o at OEIS as A176285 (cf. [16]). In 1997 T.

Amdeberhan and D. Zeilberger [1] used the WZ method to obtain

> k(205k% — 160k + 32)
Z 2k\ °
k=1 (k)

Conjecture 8. (i) For any odd prime p, we have

= —2(3).

k k 2

=0
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p—1 2 4
28k 18k‘ 3 [ 2k 3k 7
+ + ( ) ( ) = 3p° — —p5Bp_3 (mod pG),



and

(p—1)/2 2 4
28k* + 18k + 3 ( 2k 3k 9 -1\ 4, 5
=3 6 — E, d
2 Ty (F) () =9 w0 () pims o)
where Ey, E1, Es, ... are Euler numbers.

(ii) For any integer n > 1, we have

n
k=0

Also,
S (28k2 — 18k + 3)(—64)*

2k\4 3k B
L RG) ()
Remark 9. The conjectural series for ((3) = Y7 1/n* was first announced by the author
in a message to Number Theory Mailing List (cf. [17]) on April 4, 2010.

—14¢(3).

[e’e)
k=

For more conjectures similar to Conjectures 6 and 8 the reader may consult [14] and
[16].

In the next section we will establish three auxiliary inequalities involving the floor
function. Sections 3 and 4 are devoted to the proofs of Theorem 1 and Theorem 5
respectively.

2 Three auxiliary inequalities

In this section, for a rational number x we let {x} = 2 — || be the fractional part of z,
and set {},, = m{xz/m} for any m € Z*.

Theorem 10. Let m > 1 be an integer. Then for any n € Z we have
6 2 2 1 3
)2 ) ) ) 0
m m m m m
Proof. Let A,,(n) denote the left-hand side of (6) minus the right-hand side. Then

o=} 2 (2] -4 2 (2}

which only depends on n modulo m. So, without any loss of generality we may simply
assume that n € {0,...,m — 1}. Hence A,,(n) > 0 if and only if

G 2

(Note that 2n + (2n+1)+3n — (n+ 1) = 6n.)
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(6) is obvious when n = 0. If 1 < n < m/2, then {2n/m} = 2n/m > (n + 1)/m and
hence (7) holds. In the case n > m/2, (7) can be simplified as

3n+{3—n} > 9

m m
which holds since 3n > m + m/2.
By the above we have proved (6). O
Theorem 11. Let m € Z" and k,n € Z. Then we have
4 1 — 1
{ n+2k+2J B {2n+k+ J +o {ﬁJ I L%J > {EJ N {n k+ J ®)
m m m m m m
m/2 (mod m) in which case the right-hand side of the

unless 2 | m and k = n+ 1
inequality equals the left-hand side plus one.

Proof. Since
An+2k+2)—2n+k+1)+2k—-2(2k)=n+ (n—k+1),

(8) has the following equivalent form:
4 2 2 2 1 2 — 1
{n+ k+ }_{n+k+ }+2{£}_2{_/€}<{2}+{n k + } ()
m m m m m m
Note that this only depends on k and n modulo m. So, without any loss of generality, we

may simply assume that k,n € {0,...,m — 1}.
Case 1. k <m/2 and {2n+ k + 1}, < m/2.
In this case, (9) can be simplified as
n+ 2k {n—k+1} {2n+k+1}
+ > T
m m m
which is true since the left-hand side is nonnegative and (n 4+ 2k) 4+ (n —k+1) = 2n +

k+ 1 (mod m).
Case 2. k <m/2 and {2n+ k + 1}, = m/2.

In this case, (9) can be simplified as
n+ 2k {n—k—i—l} {Qn—l—k:-I—l}
te——— 29— ¢ — L,
m m m

which holds trivially since the right-hand side is negative.
Case 3. k> m/2 and {2n+ k + 1},, < m/2.

In this case, (9) can be simplified as
n+ 2k n—k+1 2n+k+1
i ——— 22+ — .
m m m
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Since (n 4+ 2k) + (n —k+ 1) = 2n + k + 1, this is equivalent to
n+2k+{n—k+1}, > 2m.
If Kk >n+1, then
n+2k+{n—k+1lln=n+2k+n—k+1+m)=2n+k+1+m=2m

since 2n+k+1>k>m/2 and {2n+ k+ 1}, < m/2.
Now assume that £ < n + 1. Clearly

n+2k+{n—k+1}p,=n+2k+(n—-k+1)=2n+k+1>3k—1.

If kK >m/2then3k—12>3(m+1)/2—1>3m/2. If k < nthen 2n+k+1 > 3k > 3m/2.
So, except the case k =n+ 1 =m/2 we have

n+2k+{n—k+1},=2n+k+1>3m/2

and hence n + 2k +{n —k+ 1}, =2n+ k+ 1 > 2m since {2n + k + 1}, < m/2.
When k£ =n+ 1 =m/2, the left-hand side of (9) minus the right-hand side equals
m—2_m/2—1+2m/2_m/2—1 _
m m m m

Case 4. k> m/2 and {2n + k + 1}, = m/2.
In this case, clearly m # 1, and (9) can be simplified as

n + 2k {n—k‘+1} {Qn—l—k—l—l}
+ >144 0

1.

m m m

which is equivalent to
n+2k+{n—k+1}, >m.

If k<n+1, then

3
n—|—2k+{n—k+1}m:n—|—2k+(n+1—k3):2n—|—k+1>3k—12Tm—1>m.

If £k >n+1, then
n+2k+{n—k+1tn=n+2k+n+1—-k)+m=2n+k+1+m>m.
In view of the above, we have completed the proof of Theorem 11. n

Theorem 12. Let m € Z" and k,n € Z. Then we have
2 2 2
R R
m m m m
22L£J B {2n+1J N {n—k—i—lJ’
m m m

unless 2 | m and k = n+ 1 = m/2 (mod m) in which case the right-hand side of the
wnequality equals the left-hand side plus one.

(10)
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Proof. Since
2n+2k—(n+k)+2k—202k)=2n—2n+ 1)+ (n—k+1),
(10) is equivalent to the following inequality:
2n + 2k n+k k 2k
— +24—p—23—
m m m m
gg{ﬁ}_{2n+1}+{n_k+1}.
m m m
As (11) only depends on k and n modulo m, without loss of generality we simply assume
that k,n € {0,...,m —1}.

Case 1. k <m/2 and {n+ k},, < m/2.
In this case, (11) can be simplified as

2n + 2k {n—k+1} {2n+1} {n—i—k:}
+ > +
m m m m

2n+2k:_ n+k}+{n—k—|—1}>0

m m m

(11)

which holds since

and 2n+2k —(n+k)+(n—k+1) =2n+1.
Case 2. k <m/2 and {n+ k}, > m/2.
In this case, (11) can be simplified as

2n + 2k {n—k‘—l—l} {Zn—i—l} {n+k}
+ > + -1
m m m m

which holds since

2n+2k>n+k>{n+k} and {n—k+1}>0>{2n+1}_1‘
m m m m m

Case 3. k> m/2 and {n+ k},, < m/2.
In this case, we must have n + k& > m and hence {n + k},, = n + k —m. Thus (11)

can be simplified as
n+k—m {n—k—l—l} {2n+1}
+ =
m m m

which holds trivially since n +k —m+ (n — k +1) =2n+ 1 (mod m).
Case 4. k> m/2 and {n + k},, > m/2.
In this case, (11) can be simplified as

2n + 2k {n—l—k‘} {n—k:—l—l} {2n+1}
— F— 21+
m m m m
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which is equivalent to

2(n+k)_{n+k:}+{n——k3+1}>l (12)

m m m

since 2n +2k — (n+k)+(n—k+1) =2n+ 1.
Clearly (12) holds if n + %k > m. If n+ k < m and k > n+ 1, then the left-hand side
of the inequality (12) is

n+k n+1l-%k 2n +1
+ +1=
m m m

+1>1.

Now assume that n +k < m and k < n + 1. Then (12) is equivalent to 2n +1 > m.
Ifk<nthen2n+1>2k>m. fk=n+1#m/2, thenk=n+12> (m+1)/2 and
hence 2n+1=2(n+1)— 1> m.

When k£ =n + 1 =m/2, the left-hand side of (11) minus the right-hand side equals

+2m/2_2m/2—1+m—1:
m m m m m

—2 —1
m _m 1

Combining the discussion of the four cases we obtain the desired result. O]

3 Proof of Theorem 1

For a prime p, the p-adic evaluation of an integer m is given by
vy(m) =sup{a € N: p* | m}.

For a rational number x = m/n with m € Z and n € Z*, we set v,(z) = v,(m) — vp(n)
for any prime p. Note that a rational number x is an integer if and only if v,(z) > 0 for
all primes p.

Proof of Theorem 1. (i) Fix n € Z*, and define A,,(n) for m > 1 as in the proof of
Theorem 10. Observe that

GG nl(6n)!
n+1)(*")  (2n)!(2n+1)!(3n)!

Q=
So, for any prime p we have
vp(Q) = Ayi(n) 20

i=1

by Theorem 10. Therefore @) is an integer.
Choose j € Z' such that 277! <n <2/, As2n+1<2(2 — 1)+ 1 < 271 we have

n 6n 2n 2n+1 3n
bg‘HJjL 941 | |9il | | 9i+1 | 9i+1

J J
[ - 5 2o
2 925+1 2i+1 27+1
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Therefore

and hence @ is even. This proves (1).
(i) (2) and (3) are obvious in the case k = 0. If k > n + 1, then

k1 _ (ntkt1)
2k N 2k N
and hence (2) and (3) hold trivially. Below we assume that 1 < k < n+ 1.
Recall that for any nonnegative integer m and prime p we have

53]

Since
(Gern) Cr ) () (4n + 2k + 2)!(k!)?
(%) T @n+k+ D220 —k+ 1)
and
(2n+ D)) Cor (M) (204 D20 + 2k)!(K!)?
(%) (nh2(n + k)((2k))2(n — k + 1)

it suffices to show that for any prime p we have

o0

ZC’pi (n,k) >0 and ZDpi(n, k) >0,

i=1 i=1

where

cani [ 23] (21 o] 2

m m m m

-l =

i -[53] ] o[ 8] o2
m m m m
. EJ‘F fnleJ B {n—k:—l—lJ‘
m m m
(a) By Theorem 11, Cji(n,k) > 0 unless p = 2 and k = n+1 = 2! (mod 2) in

which case Cyi(n, k) = —1. Suppose that k = n +1 = 27! (mod 2), k = 271ky and
n+1=2"1ng, where 1 < ky < ng and ky and ng are odd. If i > 2, then

and

021—1(71,]6) :4n0+2k0 —1- (QHQ—I—/{?O— 1) —|—2]{30 —4k0— (n() — 1) — (TLQ —k‘o) =1
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and hence Cyi—1(n, k) + Coi(n,k) = 14 (—1) = 0. So it remains to consider the case
k=n+1=1 (mod 2).

Assume that & is odd and n is even. Write k+1 = 27k; and n = 2n, with ki, n; € Z*
and 2 1 k;. Then it is easy to see that

4 2ny — 27 4 207k — 1
Coj+1 (n, k’) = L%J + ki — L n ‘;j ( 1 )J

kq 2j/€1 —1 nq n+1— 2]'71]{31
HM—?[TJ—W—[ % J

4 oy — 27| k41
:{ﬂJHﬁ—{"l : J— Lk —1—2(k —1)

27 27 2
ny ng+ 142771 ky+1
B LZJ a { 29 J T3
14 {nl +(ny+1+ 2jf1) + (2ny — 2j1)J
23

nq n+ 1+ 271 2ng — 271
_LgJ_ Y Y

1

WV

and hence Cy(n, k) + Coi+1(n, k) = 0.

By the above, we do have > .° Cli(n, k) > 0 for any prime p. So (2) holds.

(b) By Theorem 11, D,i(n,k) > 0 unless p = 2 and k = n+ 1 = 2! (mod 2°) in
which case Dqi(n, k) = —1. So, to prove (2) it suffices to find a positive integer j such
that Doj(n, k) > 1.

Clearly there is a unique positive integer j such that 271 < n + k& < 27. Note that
k< (n+k)/2<271 and

2 1
Dys(n k) =1+ L nr J > 1
27
This concludes the proof of (3).
The proof of Theorem 1 is now complete. O]

4 Proof of Theorem 5

Proof of Theorem 5. (i) We first prove (4). For k,n € N define

(1) (dn +1) 20\ Coi") ()
e () 0

(—1)"*F(2n — 1)? (2::12)2 (2(n g k:)) (nlekJrk)
2(n — k)43(n—1~k n—1+k (2}5) :
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F(n, k) =

and

G(n, k) =



Clearly F'(n,k) = G(n,k) =0if n < k. By [7],
Fn,k—1)—F(n, k) =Gn+1,k) — G(n, k)

for all k € Z* and n € N.
Fix a positive integer N. Then

N N N
> F(n,0)=F(N,N)=Y F(n,0)— ) F(n,N)
n=0 n=0 n=0
N N N
=> <ZF(n,k— 1) — ZF(n,k)>
k=1 n=0 n=0
N N N
=> Y (Gn+1,k) = G(n,k))=> G(N+1,k)
k=1 n=0 k=1
Note that N N
An+1 (2n\°
F(n,0) = n( )
; ; (—64)" \ n
and AN +1 2N\ (4N\ (4N +1)(2N +1) (2N
+ + +
o - S () () - R (e
Also,
N 2 N+k+1
(2N + 1) 2 N+k+1 IN ( )
ZGN+1k Z 43Nk; <N) CN sk (32)
k=1 k=1 k
_2@N+1)(R) i et OV A D) O (T)
2k ’
(—64)¥ k=1 (k)
and

(%) Cna ("77) :<2N - 1) (2]\7 + 2) N+1

(?) N -1 N+1 2

- (21]VV—_11) (2}]\;[;1) (N+1)
- (o )eren (%)
=2(2N +1) (2]<]v_—11) =0 (mod 2).

So, with the help of (3) we see that SN (4n + 1) (2:)3(—64)N_” is divisible by 4(2N +
DY)
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(ii) Now we turn to the proof of (5).
For n, k € N, define

F(n, k) = C— . o
b i &

and

(=0t n(C) Gas) Co D )

A5n—4—k ()

Clearly F'(n,k) = G(n,k) =0 if n < k. By [22],
F(n,k—1)—F(n,k)=G(n+1,k) — G(n, k)

for all k € Z* and n € N.
Fix a positive integer N. As in part (i) we have

G(n, k) =

()" om -2k +3) () G Co) ()

N N
> F(n,0)=F(N,N)=Y G(N+1,k)
n=0 k=1
Observe that v N
20n + 3 /2n\? [4n
F p—
> ren0 =3 2 () ()
n=0 n=0
and 18N + 3 /6N\ /3N
+
F(N N)=—"_"° .
o = 252 00 O3
Also,
N 2 N AN+2k+2\ (2N +k+1
2(2N+1 4)+ 1(2N+k+1)( %
Z GIN +1,k) = —210)N Z (Qk)
k=1 k=1 k
Note that
(i) (5 () (AN 48) (2N 2y (2N =1
3 N + 1 2 N-1/)~ '

Applying (2) we see that (—20)V Zgﬂ G(N + 1,k) is a multiple of 4(2N + 1)(215) By

(1), (—210)N% (g%) (3]3[)

is divisible by 8(2N + 1 (2]3[ Therefore

i 20n + 3 (2:)2 (;LZ) (—210)V-

is a multiple of 4(2N + 1)(N).

Combining the above, we have completed the proof of Theorem 5.
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