
Decomposition of Triply Rooted Trees

William Y. C. Chen1, Janet F. F. Peng2 and Harold R. L. Yang3

1,2,3Center for Combinatorics, LPMC-TJKLC

Nankai University, Tianjin 300071, P.R. China

1Center for Applied Mathematics

Tianjin University, Tianjin 300072, P.R. China

1chen@nankai.edu.cn, 2janet@mail.nankai.edu.cn
3yangruilong@mail.nankai.edu.cn

Submitted: Dec 28, 2012; Accepted: Apr 9, 2013; Published: Apr 17, 2013

Mathematics Subject Classifications: 05A15, 05A19

Abstract

We give a decomposition of triply rooted trees into three doubly rooted trees.

This leads to a combinatorial interpretation of an identity conjectured by Lacasse in

the study of the PAC-Bayesian machine learning theory, and proved by Younsi by

using the Hurwitz identity on multivariate Abel polynomials. Let [n] = {1, 2, . . . , n}.
We also give a bijection between the set of functions from [n + 1] to [n] and the

set of triply rooted trees on [n], which leads to a symmetry property and a refined

enumeration of functions from [n+ 1] to [n] with respect to the number of elements

in the orbit of n + 1 and the number of periodic points.
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1 Introduction

Lacasse [5] introduced the functions ξ(n) and ξ2(n) in his study of the classical PAC-Bayes

theorem in the theory of machine learning, where

ξ(n) =
n∑

k=0
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)k (
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)n−k
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and

ξ2(n) =
n∑

j=0
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He showed that ξ(n) can be used to give a tighter bound of the Kullback-Leibler divergence

between the risk and the empirical risk on a sample space S of a hypothesis function in

a hypothesis space, whereas ξ2(n) can be used to bound the Kullback-Leibler divergence

between the risk and the empirical risk on S of the joint distribution of two hypothesis

functions in a hypothesis space.

While ξ2(n) is a double sum, based on numerical evidence Lacasse [5] posed the fol-

lowing conjecture stating that ξ2(n) can be reduced to the single sum ξ(n).

Conjecture 1.1 For n ∈ N, we have

ξ2(n) = ξ(n) + n. (1.1)

By applying a multivariate Abel identity due to Hurwitz, Younsi [9] gave an algebraic

proof of this conjecture. Let

An(x1, x2, . . . , xm; p1, p2, . . . , pm) =
∑

k1+k2+···+km=n

(
n

k1, k2, . . . , km

) m∏
j=1

(xj + kj)
kj+pj ,

where p1, p2, . . . , pm are integers. When p1 = p2 = · · · = pm = 0, Hurwitz proved that

An(x1, . . . , xm; 0, . . . , 0) =
n∑

k=0

(
n

k

)
(x1 + x2 + · · ·+ xm + n)n−kαk(m− 1), (1.2)

where αk(r) = r(r+ 1) · · · (r+ k− 1) is the rising factorial, see, for example, Riordan [7].

Younsi [9] observed that ξ(n) = An(0, 0; 0, 0) and ξ2(n) = An(0, 0, 0; 0, 0, 0), and derived

the following expressions for ξ(n) and ξ2(n) by using (1.2)

ξ(n) =
1

nn

n∑
j=0

nj n!

j!
, (1.3)

ξ2(n) =
1

nn

n∑
j=0

nn−j
(
n

j

)
(j + 1)!. (1.4)

Conjecture 1.1 can be easily deduced from (1.3) and (1.4). Other proofs have been found

by Prodinger [6] and Sun [8].

In this paper, we give a combinatorial explanation of relation (1.1). Rewriting (1.1) as

n∑
j=0

n−j∑
k=0

(
n

j

)(
n− j
k

)
jjkk(n− j − k)n−j−k =

n∑
k=0

(
n

k

)
kk(n− k)n−k + nn+1, (1.5)
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we see that it is equivalent to the following form

n∑
j=1

n−j∑
k=0

(
n

j

)(
n− j
k

)
jjkk(n− j − k)n−j−k = nn+1. (1.6)

The right hand side of (1.6) indicates that we need the notion of triply rooted trees,

namely, labeled trees with an ordered list of three distinguished, but not necessarily

distinct vertices. To be more specific, the three distinguished vertices of a triply rooted

tree are called the first, the second and the third root, respectively. It can be easily seen

that the summand on the left hand side of (1.6) can be interpreted as the number of

triples of doubly rooted trees with a given number of vertices in each doubly rooted tree.

Hence relation (1.6) can be deduced from a decomposition of a triply rooted tree into

three doubly rooted trees.

The second result of this paper is a correspondence between the set of functions from

[n + 1] to [n] and the set of triply rooted trees on [n], where n is a positive integer and

[n] = {1, 2, . . . , n}. Let f be a function from [n+ 1] to [n] and let T be the corresponding

triply rooted tree. We find that the orbit of n+1 on f is mapped to the set of ancestors of

the second root in T , and the set of periodic points of f is mapped to the set of ancestors

of the third root in T . Based on this property of our bijection, we deduce a symmetry

property of functions from [n + 1] to [n] with respect to the number of periodic points

and the size of the orbit of n+ 1. Moreover, we obtain a formula for the number of triply

rooted trees for which the second root has i ancestors and the third root has j ancestors.

This formula also gives the number of functions from [n + 1] to [n] such that the size of

the orbit of n+ 1 is i+ 1 and the number of periodic points is j.

2 Decomposition of triply rooted tree

In this section, we give a combinatorial interpretation of Lacasse’s identity by providing

a decomposition of a triply rooted tree into three doubly rooted trees.

Recall that a rooted tree is defined to be a labeled tree with a specific vertex, which

is called the root. Let Rn denote the set of rooted trees on [n]. It is well-known that the

set Rn is counted by nn−1, as shown by Cayley [2]. A doubly rooted tree is defined as a

labeled tree with an ordered list of two distinguished vertices r1 and r2, where we call r1
the first root and r2 the second root. Similarly, a triply rooted tree is a labeled tree with

an ordered list of three distinguished vertices. Notice that the roots are not necessarily

distinct. We denote by Dn (Tn) the set of doubly (triply) rooted trees on [n]. One sees

that |Dn| = nn and |Tn| = nn+1. A bijection from doubly rooted trees to functions from

[n] to [n] was independently obtained by Joyal [4] and Goulden and Jackson [3]. Hence

the right hand side of (1.6) can be interpreted as the number of triply rooted trees on [n].
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On the other hand, let Qn denote the set of triples of doubly rooted trees (D,D′, D′′)

such that the vertex sets of D, D′, D′′ form a weak partition of [n] with D being nonempty.

To be more specific, a triple (X, Y, Z) of subsets of a set S is said to be a weak partition

of S if X, Y , and Z are disjoint and their union equals S. It is obvious that Qn is counted

by
n∑

j=1

n−j∑
k=0

(
n

j

)(
n− j
k

)
jjkk(n− j − k)n−j−k,

which is the left hand side of (1.6). Hence identity (1.6) follows from the following bijec-

tion.

Theorem 2.1 For n > 1, there is a bijection between Qn and Tn.

To present the proof of the above theorem, we recall some terminology. Given two

vertices i and j of a rooted tree T , we say that j is a descendant of i, or i is an ancestor of

j, if i lies on the unique path from the root to j. In particular, each vertex is a descendant

as well as an ancestor of itself. A child of i means a descendant j of i such that (i, j) is

an edge of T . The depth of i is defined to be the number of edges of the unique path

from the root to i. Given two vertices v1 and v2 of T , there is a unique vertex v that is

the common ancestor of v1 and v2 with the largest depth. This vertex is called the least

common ancestor of v1 and v2, see Aho, Hopcroft and Ullman [1]. For example, for the

tree in Figure 2.1, the least common ancestor of 1 and 3 is 5, while the least common

ancestor of 1 and 6 is the root 4.

u4
u2 �
�
� u5TTT

u
6

u
3
�
�
� u

1
T
T
T

Figure 2.1: A rooted tree on [6].

Throughout this paper, we use r1(D) and r2(D) to denote the first root and the second

root of a doubly rooted tree D, respectively, and we use r1(T ), r2(T ) and r3(T ) to denote

the first root, the second root and the third root of a triply rooted tree T , respectively.

Proof of Theorem 2.1. We define a map ϕ from Qn to Tn. Given a triple (D,D′, D′′) of

doubly rooted trees in Qn, we first consider the case when neither D′ nor D′′ is empty.

We merge D and D′ by setting r1(D
′) to be a child of r2(D), and we merge D and D′′

by setting r1(D
′′) to be a child of r2(D). By setting r2(D

′) and r2(D
′′) to be the second

root and the third root of the resulting tree, we obtain a triply rooted tree T .
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For example, Figure 2.2 gives an illustration of a triple of doubly rooted trees and the

corresponding triply rooted tree, where the second root is represented by a solid square,

and the third root is represented by a hollow square.
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Figure 2.2: The merging process when D′ 6= ∅ and D′′ 6= ∅.

We now consider the case when either D′ or D′′ is empty. When D′ = ∅, there is no

need to merge D and D′. Instead, we set r2(D) to be the second root of the resulting tree

in the merging process. Similarly, when D′′ = ∅, we just set r2(D) to be the third root of

the resulting tree in the merging process.

In summary, (r1(T ), r2(T ), r3(T )) is given as follows:

(r1(D), r2(D
′), r2(D

′′)), if D′ 6= ∅, and D′′ 6= ∅;

(r1(D), r2(D), r2(D
′′)), if D′ = ∅, and D′′ 6= ∅;

(r1(D), r2(D
′), r2(D)), if D′ 6= ∅, and D′′ = ∅;

(r1(D), r2(D), r2(D)), if D′ = ∅, and D′′ = ∅.

Figure 2.3 gives an illustration of the merging process when D′ = ∅ and D′′ 6= ∅.

To show that the above process is invertible, we give a description of the inverse

procedure. Given a triply rooted tree T with three roots r1, r2 and r3, assume that w is

the least common ancestor of r2 and r3.

We first consider the case when w 6= r2 and w 6= r3. Find the child x of w such that

r2 is a descendant of x, and the child y of w such that r3 is a descendant of y. Removing

the edges (w, x) and (w, y), we get three trees with three roots r1, x and y. Let D be the

doubly rooted tree with two roots r1 and w, let D′ be the doubly rooted tree with two

roots x and r2, and let D′′ be the doubly rooted tree with two roots y and r3.

When w = r2, then in the previous process, x does not exist, and instead we set D′ = ∅.
Similarly, when w = r3, we set D′′ = ∅.
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Figure 2.3: The merging process when D′ = ∅ and D′′ 6= ∅.

Now we see that in any case the three doubly rooted trees D, D′ and D′′ can be

merged into the triply rooted tree T . That is, the above merging process is invertible.

This completes the proof.

3 Functions from [n + 1] to [n]

In this section, we establish a correspondence between functions from [n + 1] to [n] and

triply rooted trees on [n], which maps the orbit of n + 1 to the set of ancestors of the

second root, and maps the set of periodic points to the set of ancestors of the third root.

By the symmetry between the second and third roots, we deduce a symmetry property of

the number of functions from [n+ 1] to [n] with respect to the number of periodic points

and the size of the orbit of n+ 1.

Given a function f from [n + 1] to [n], the orbit of x on f is defined to be the set

{x, f(x), f 2(x), . . .}. If there exists some j > 1, such that f j(x) = x, then x is called a

periodic point of f . We have the following correspondence.

Theorem 3.1 There is a bijection φ between the set of functions f from [n + 1] to [n]

and the set of triply rooted trees on [n] such that the orbit of n + 1 on f excluding n + 1

itself is mapped to the set of ancestors of the second root of φ(f) and the set of periodic

points of f is mapped to the set of ancestors of the third root of φ(f).

Proof. The map φ can be described as follows. Let f be a function from [n+1] to [n]. We

proceed to construct a triply rooted tree T on [n] based on f . We begin with the functional

digraph Gf of f , that is, a digraph on [n + 1] with arcs (i, f(i)) for 1 6 i 6 n + 1. Let

C1 be the connected component of Gf containing the vertex n+ 1. Consider the longest

path P starting from n+ 1, say,

P : n+ 1 = u0 → u1 → u2 → · · · → uk.
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In other words, k is the smallest integer such that f(uk) equals uj for some j 6 k. Assume

that f(uk) = uj. Removing the arc (uk, uj) and the vertex n + 1 from C1, we get a tree

H rooted at uk.

Let C2 be the digraph Gf \ C1. When C2 = ∅, we set uk, u1 and uj to be the three

roots of H to obtain a triply rooted tree T .

When C2 6= ∅, we see that C2 is a functional digraph. By applying the bijection between

functions and doubly rooted trees, obtained by Joyal [4] and Goulden and Jackson [3],

C2 corresponds to a doubly rooted tree D. Let w1 and w2 be the two roots of D. We

merge the rooted tree H and the doubly rooted tree D by setting the first root w1 of D

as a child of the vertex uj of H. Setting uk, u1 and w2 to be the first, the second and the

third root, respectively, we get a triply rooted tree T , and we set φ(f) = T .

For example, let f be the following function from [13] to [12]

f =

(
1 2 3 4 5 6 7 8 9 10 11 12 13

8 6 8 5 4 12 4 6 12 2 4 2 3

)
.

The functional digraph of f is given in Figure 3.4, where C1 is the functional digraph

on {1, 2, 3, 6, 8, 9, 10, 12, 13} and C2 is the functional digraph on {4, 5, 7, 11}. The longest

s s s s s- - - �

s6 s?@@I@@@ s�

s s
s s�
�
�

�
�� 6

-
�

1 8 6 12 9

3 2 10

4 5

7 11
-s

13

Figure 3.4: The functinal digraph Gf .

path starting from 13 is

P : 13→ 3→ 8→ 6→ 12→ 2,

with f(2) = 6, that is, u1 = 3, uk = 2 and uj = 6 as in the proof. Deleting the arc

(2, 6) and vertex 13, we get a rooted tree H as illustrated in Figure 3.5. By applying the

bijection between functional digraphs and doubly rooted trees, C2 can be mapped to a

doubly rooted tree D with roots 5 and 4 as shown in Figure 3.5, where w1 = 5 and w2 = 4

as in the proof. Merging H and D by adding an edge (6, 5) and setting 2, 3 and 4 to be

the three roots, we get a triply rooted tree T in Figure 3.5.

To prove that φ is a bijection, we give a description of the inverse map. For a triply

rooted tree T ∈ Tn with the three roots r1, r2 and r3, we first find the least common

ancestor of r2 and r3, and we denote it by u0. Suppose that the unique path P from u0 to

r3 in T is u0u1 · · ·ui = r3. Removing the edge (u0, u1) from T , we get two components T1
and T2, where T1 is rooted at r1 and T2 is rooted at u1. Adding n+ 1 to T1 by setting it
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Figure 3.5: An example of the bijection φ.

as a child of r2. Now, T1 can be viewed as a directed graph by making each edge point to

the father. Then we add the arc (r1, u0) to T1 to obtain a connected functional digraph

C1.

Next, we transform T2 rooted at u1 into a doubly rooted tree by setting r3 to be the

second root. Then we get a functional digraph C2 by applying the inverse map of the

bijection of Joyal [4] and Goulden and Jackson [3].

Finally, let G = C1 ∪C2. Observe that G is a directed graph on [n+ 1] such that each

vertex has outdegree one and the vertex n+ 1 has indegree zero. In other words, G is the

functional digraph of a function from [n + 1] to [n]. We see that the above procedure is

the inverse of the map φ.

It remains to prove the properties of φ as stated in the theorem. For a function f from

[n + 1] to [n], an element x is a periodic point in f if and only if it is a vertex in a cycle

in the functional digraph Gf . We see that x is in a cycle if and only if it is an ancestor of

the third root in the triply rooted tree φ(f). Moreover, we observe that each element y

in the orbit of n+ 1 on f other than n+ 1 itself corresponds to an ancestor of the second

root in the triply rooted tree φ(f). This completes the proof.

For example, for the function f in Figure 3.4, there are five periodic points 2, 12, 6, 5, 4,

which are the vertices in the path from the root 2 to the third root 4 in φ(f) as demon-

strated in Figure 3.5. The orbit of 13 consists of 13, 3, 8, 6, 12, 2. The elements 3, 8, 6, 12, 2

correspond to the vertices in the path from the root 2 to the second root 3 in φ(f).

We notice that the bijection φ leads to a symmetry property of functions from [n+ 1]

to [n]. Let Wn,i,j denote the set of triply rooted trees on [n] such that the depth of the
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second root is i and the depth of the third root is j. Let Fn,i,j denote the set of functions

from [n+ 1] to [n] such that the size of the orbit of n+ 1 is i and the number of periodic

points is j. By Theorem 3.1, we see that

|Fn,i+1,j| = |Wn,i−1,j−1|.

By the symmetry between the second roots and the third roots of triply rooted trees, that

is,

|Wn,i,j| = |Wn,j,i|,
we arrive at the following symmetry property of functions from [n+ 1] to [n],

|Fn,i+1,j| = |Fn,j+1,i|. (3.1)

The following theorem gives a formula for Wn,i,j.

Theorem 3.2 For n > 1 and 0 6 i, j 6 n− 1, we have

|Wn,i,j| =
min{i,j}∑

d=0

(i+ j − d+ 1)n!

(n− i− j + d− 1)!
nn−i−j+d−2, (3.2)

where min{i, j} denotes the smaller value between i and j.

Proof. Let Wn,i,j(d) denote the set of triply rooted trees T in Wn,i,j such that d is the

depth of the least common ancestor of the second root and the third root of T . We

proceed to show that Wn,i,j(d) is enumerated by the summand on the right hand side of

(3.2).

Let T be a triply rooted tree in Wn,i,j(d). We denote by P1 the path from the first

root to the second root and denote by P2 the path from the first root to the third root.

Observing that there are exactly k = i + j − d + 1 vertices on P1 and P2, we see the

number of ways to form P1 and P2 equals n!
(n−k)! . Moreover, as we know, there are knn−k−1

forests consisting of k rooted trees on [n] with k given roots. It follows that Wn,i,j(d) is

enumerated by the summand on the right hand side of (3.3). This completes the proof.

Combining Theorem 3.1 and Theorem 3.2, we obtain the following formula for |Fn,i+1,j|.

Theorem 3.3 For n > 1 and 1 6 i, j 6 n, we have

|Fn,i+1,j| =
min{i,j}−1∑

s=0

(i+ j − s− 1)n!

(n− i− j + s+ 1)!
nn−i−j+s. (3.3)
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