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Abstract

In this note, using the derangement polynomials and their umbral representation,
we give a simple proof of an identity conjectured by Lacasse in the study of the PAC-
Bayesian machine learning theory.
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1 Introduction

In his thesis [4], Lacasse introduced the functions ξ(n) and ξ2(n) in the study of the
PAC-Bayesian machine learning theory, where
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Based on numerical verification, Lacasse presented the following conjecture.

Conjecture 1. For any integer n > 1, there holds

ξ2(n) = ξ(n) + n. (1)

Recently, by applying a multivariate Abel identity due to Hurwitz, Younsi [9] gave
an algebraic proof of this conjecture. Later, using a decomposition of triply rooted trees
into three doubly rooted trees, Chen, Peng and Yang [1] gave it a nice combinatorial
interpretation. A very short proof was also obtained by Prodinger [5], based on the study
of the tree function, with links to Lambert’s W-function and Ramanujan’s Q-function.

In this note, using the derangement polynomials and their umbral representation, we
provide another simple proof of (1).
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2 The derangement polynomials and the proof of (1)

Recall that the derangement polynomials {Dn(λ)}n>0 are defined by

Dn(λ) =
n∑
k=0

(
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k

)
Dkλ

n−k. (2)

where Dn(1) = n! and Dn(0) = Dn is the n-th derangement number, counting permuta-
tions on [n] = {1, 2, . . . , n} with no fixed points. The derangement polynomials Dn(λ),
also called λ-factorials of n, have been considerably investigated by Eriksen, Freij and
Wästlund [2], Sun and Zhuang [8]. They have a basic recursive relation [2] and an Abel-
type formula [8],
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and obey the following property [8],
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Dk(λ)Dn−k(µ+ 1) = (λ+ µ− 1)n+1 + (n− λ− µ+ 2)Dn(λ+ µ). (5)

Denote by D the umbral operator defined by Dn = Dn for n > 0 (See [3, 6, 7] for more
information on the umbral calculus), then by (2) Dn(λ) can be represented as

Dn(λ) = (D + λ)n.

Setting λ = 0, µ = n+ 1 in (5), we have
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which proves (1), if one notices that ξ(n) and ξ2(n), by (4), can be rewritten as
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Remark 2. By the nontrivial property of D [8],

(D + λ)(D + λ+ n+ 1)n = (n+ λ)n+1,

one can get another expression for ξ2(n),
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This expression has been obtained by Younsi by using the Hurwitz identity on multivariate
Abel polynomials and plays a critical role in his proof.
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