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Abstract

Lying in order to manipulate the Gale-Shapley matching algorithm has been
studied by Dubins and Freedman (1981) and by Gale and Sotomayor (1985), and
was shown to be generally more appealing to the proposed-to side (denoted as the
women in Gale and Shapley’s seminal paper (1962)) than to the proposing side
(denoted as men there). It can also be shown that in the case of lying women, for
every woman who is better off due to lying, there exists a man who is worse off.

In this paper, we show that an even stronger dichotomy between the goals of
the sexes holds, namely, if no woman is worse off then no man is better off, while a
form of sisterhood between the lying and the “innocent” women also holds, namely,
if none of the former is worse off, then neither is any of the latter. These results
are robust: they generalize to the one-to-many variants of the algorithm and do not
require the resulting matching to be stable (i.e. they hold even in out-of-equilibria
situations). The machinery we develop in our proofs sheds new light on the structure
of lying by women in the Gale-Shapley matching algorithm.

This paper is based upon an undergraduate thesis (2007) by the first author.

Keywords: matching; manipulation; out-of-equilibrium; unstable

1 Background

1.1 The Gale-Shapley Algorithm

In order to standardize the notation used throughout this paper, and for sake of self-
containment, let us quickly recap the scenario introduced in [3] and the Gale-Shapley
Algorithm introduced there:

∗Research supported in part by I.S.F. grant 0398246 and BSF grant 2010247.
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Let W and M be equally-sized finite sets of women and men, respectively. Let each
member of W (resp. M) have a strict order of preference over the members of M (resp.
W ).

Definition 1 (Matching). A one-to-one map between W and M is called a matching.

Definition 2 (Stability). A matching is said to be unstable under the given orders of
preference if there exist two matched couples (w,m) and (w̃, m̃) such that w prefers m̃
over m and m̃ prefers w over w̃. A matching that is not unstable is said to be stable.

Definition 3 (The Gale-Shapley Algorithm [3]). The following algorithm is henceforth
referred to as the Gale-Shapley algorithm: The algorithm is divided into steps, to which
we refer as nights. On each night, each man serenades under the window of the woman he
prefers most among all women who have not (yet) rejected him, and then each woman,
under whose window more than one man serenades, rejects every man who serenades
under her window, except for the man she prefers most among these men. The algorithm
stops on a night on which no man is rejected by any woman, and then each woman is
matched with whoever has serenaded under her window on this night.

Theorem 4 ([3]). The Gale-Shapley algorithm stops and yields a stable matching between
W and M (in particular, such a matching exists), and no stable matching is better for
any man m ∈M .

Generalizations of this algorithm, for scenarios including one-to-many matchings, pref-
erence lists that do not include all the members of the opposite sex (“blacklisting”), and
mismatched quotas, are also presented in [3]. We discuss these variants in Section 3.

1.2 Previous Results

Theorem 4 states that the stable matching given by the Gale-Shapley algorithm is optimal
(out of all stable matchings) for each man. A somewhat reverse claim holds regarding the
women:

Theorem 5 ([10]). No stable matching is worse for any woman w ∈ W than the matching
given by the Gale-Shapley algorithm.

The benefits of the Gale-Shapley matching algorithm for the men are demonstrated
even further in [2], where it is shown that no man can get a better match by lying about
his preferences (i.e. manipulate the algorithm by declaring a false order of preference,
assuming the algorithm is run according to the “true” preferences of all women and all
other men) and, moreover, that no nonempty subset of the men can all get better matches
by lying in a coordinated fashion.1

These observations led to the analysis of the profitability of lying by women in [4],
where it is proven that if more that one stable matching exists, then at least one woman

1The interested reader is referred to [1] for an even stronger non-manipulability theorem, and to [7]
for the study of lying by men in a probabilistic setting.
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can get a better match by lying about her preferences. It is furthermore shown in [12] that
in this case, such a woman can get a better match merely by truncating her preference
list (i.e. blacklisting a suffix of her preference list; see Section 3.2). However, as observed
in [6, p. 65], there appear to be no systematic results on the possibility that women may
benefit by permuting their preference lists in some way (without blacklisting any man).
The analysis presented in this paper constitutes a contribution in this direction.

It is easy to show that any woman who is better off as a result of someone’s lie (whoever
that liar or those liars may be and whatever their lie may be) is matched (due to the lie)
to someone who is now worse off. (Indeed, if they were both better off, then the original
match could not be stable.) In other words, for every woman who is better off, some man
is worse off. In the next section, we show that an even stronger dichotomy between the
goals of the sexes holds, namely, if no woman is worse off then no man is better off, while
a form of sisterhood between the lying and the “innocent” women also holds, namely,
if none of the former is worse off, then neither is any of the latter. The machinery we
develop in order to prove these results sheds new light on the structure of lying by women
in the Gale-Shapley matching algorithm.

2 Monogamous Matchings

2.1 The Theorem

Let W and M be equally-sized finite sets of women and men, respectively. Let each
member of these sets be endowed with a strict order of preference regarding the members of
the other set. These will be referred to as the true preferences, the run of the Gale-Shapley
algorithm according to these preferences will be denoted by OA (original algorithm), and
the resulting matching will be referred to as the original matching.

Assume that a subset of the women, denoted by L (for liars), declare false orders of
preference for themselves. Denote by NA the run of the Gale-Shapley algorithm according
to these false preferences for the members of L, and according to the real preferences of
other members of W (referred to, henceforth, as innocent) and of all the members of M .
Call the resulting matching the new matching.

Definition 6 (Improvement / Worsening). A person p ∈ W ∪ M is said to be better
off (resp. worse off ) if p prefers, according to their true order of preference, their match
according to the new matching (resp. the original matching) over their match according
to the original matching (resp. the new matching).

Let us now phrase our main result for the above conditions.

Theorem 7 (Sisterhood2). Under the above conditions, if no lying woman is worse off,
then:

2Theorem 7, along with its proof that we present in Section 2.4, was discovered by the first author
while participating in a freshman undergraduate course taught by the second author, in 2004.
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(a) No woman is worse off.

(b) No man is better off.

2.2 Proofs for a Special Case

Definition 8 (Personally-Optimal Lie). A woman l ∈ L is said to be lying in a personally-
optimal way if, all other orders of preference being the same, there is no other order of
preference she can declare that would result in her being even better off, i.e. her being
matched with a man she (truly) prefers over the man matched to her by the new matching.

Theorem 7 is easily provable in the special case in which all women in L lie in a
personally-optimal way, as it is possible to show that in this case, the new matching is
stable under the true preferences, and thus, by Theorems 4 and 5, no woman is worse
off, and no man is better off, than under the original matching. Nonetheless, we show in
Section 2.3 that in some cases, when liars may coordinate their lies, it may be rational to
lie in a non-personally-optimal way, and that in these cases the resulting matching might
be unstable under the true preferences.

We note that if we examine a “lying game” between the members of L, where a player’s
strategy is a declaration of a specific order of preference for herself, and the utility for
each player is determined by the ranking of her new match according to her true order of
preference, then in this game, all lies are personally optimal if and only if the set of lies
constitutes a Nash equilibrium. Indeed, the general proof we give below holds even when
lies need not be personally optimal, i.e. in out-of-equilibria situations.

Roth (private communication, Dec. 2007) suggested the following sketch of a proof to
part (a) of Theorem 7:

• If women can do better than to state their true preferences, they can do so by trun-
cating their preferences (i.e. by each of them blacklisting a suffix of her preference
list; blacklisting is discussed in Section 3.2).

• Truncating preferences is the opposite of extending preferences (as discussed in [12]
in the context of adding new players).

• When any woman extends her preferences, it harms the other women.

While this also proves Theorem 7 in the special case discussed above (in which all
women lie in a personally-optimal way), it appears not to prove Theorem 7 itself (i.e.
with no additional assumptions), as while it is true that if a woman can do better than
to state her true preferences then she can do better by truncating them (and even more
so, there always exists a truncation of her true preferences that constitutes a personally-
optimal lie for her), it turns out that there may exist some man whom she can secure for
herself by submitting false preferences, but not by truncating her true preferences. This
is illustrated by an example in the next section.

the electronic journal of combinatorics 20(2) (2013), #P12 4



2.3 When a Lie Need Not be Optimal

As is observed in Section 2.2, Theorem 7 is easily provable if each lying woman lies in a
personally-optimal way, or, more generally, if the new matching is stable under everyone’s
true preferences. Before continuing to the general proof of this theorem, let us first give
an example of a scenario with the following properties:

1. No woman can do better by lying alone (while all others tell the truth).

2. In every conspiracy by more than one woman to lie so that none of them is worse
off and at least one of them is better off, there exists a woman who does not lie in
a personally-optimal way. In other words, it is rational to lie in a non-personally-
optimal way.

3. The resulting matching is not stable under the true preferences and can not be
achieved by simply truncating women’s true preference lists (even if that is allowed).

This example includes four women (w1, . . . , w4) and four men (m1, . . . ,m4). The orders
of preference of the women fulfill:

• w1: First choice: m3, second choice: m1.

• w2: First choice: m3, second choice: m1.

• w3: Prefers m2 over m1 and prefers m1 over m3.

• w4: Any order of preference.

The orders of preference of the men fulfill:

Man 1st choice 2nd choice 3rd choice 4th choice

m1 w1 w3 w2 w4

m2 w2 w3 any any
m3 w3 w2 w1 w4

m4 w1 w4 any any

Let us examine OA:

Night

Window
w1 w2 w3 w4

1 m4,m1 m2 m3

2 m1 m2 m3 m4
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It is clear from this examination that any conspiring subset of the women wishing
to alter the outcome (when truncating preference lists is not allowed) has to include w1.
Also, it may be verified that w1 cannot lie alone (while all others tell the truth) and
become better off. Indeed, in order to become better off, w1 has to be matched, under the
new matching, with m3, and since he prefers w2 over her, this entails his rejection by w2,
but since he is the first choice of w2, this means w2 has to lie and declare that she prefers
another man over him. Let us assume, then, that L = {w1, w2}. (It can be verified that
the result would not change even if we admit more women to L.)

It can easily be verified that, given the true orders of preference for everyone except
w1 and w2, there exists exactly one combination of false orders of preference for these two
women (up to changes in their preferences regarding men who do not reach their windows
as long as everyone else tells the truth) that causes them both to be better off:

• w1 must declare she prefers m3 over m4 and m4 over m1.

• w2 must declare she prefers m1 over m3 and m3 over m2.

Let us examine NA under these false orders of preference:

Night

Window
w1 w2 w3 w4

1 m4,m1 m2 m3

2 m4 m2 m1,m3

3 m4 m2,m3 m1

4 m4 m3 m1,m2

5 m4 m1,m3 m2

6 m3,m4 m1 m2

7 m3 m1 m2 m4

Indeed, w1 and w2 are both better off (and, as Theorem 7 states, no other woman is
worse off, and even the innocent w3 is better off as well). However, this lie is clearly not
personally optimal for w2, since she could declare any order of preference under which her
first choice is m3, and become even better off by being matched with him. Nonetheless, if
she tried to do so (either by telling the truth, or by lying), then w1 would become worse
off, and in this case it would be better for w1 to tell the truth, which, as stated above,
would cause the new matching to be identical to the old matching, and hence would
cause w2 to be matched with m2, ending up in a worse situation than had she lied in the
above-described non-personally-optimal way.

It should be noted that the resulting new matching is neither stable under the original
preferences (as w2 and m3 truly prefer each other over their respective matches) nor can it
be achieved by simply truncating the preference lists of w1 and w2 (as any such truncation
will result in w2 either having a blank list or a list with m3 as her first choice), giving, as
promised, an example in which the proofs from the previous section do not hold.
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We conclude the analysis of this example by noting that in the above-described lying
game between w1 and w2, the utility for each of the players given these lying strategies
is higher than her utility in any Nash equilibrium, and this is the only pair of strategies
(up to the degrees of freedom discussed above) with this property. (Moreover, the utility
of w1 is higher in the resulting unstable matching than in any stable matching, since she
is matched with m1 in every stable matching, as can be verified by obtaining the women-
optimal stable matching by running the algorithm with the women serenading under the
men’s windows.)

2.4 A General Proof

Before proving the general case of Theorem 7, let us first introduce some notation: For
each person p ∈ W ∪M , let us denote the person from the opposite sex matched with p
under the original matching (resp. new matching) by O(p) (resp. N(p)).

Lemma 9. If a man m ∈ M never serenades under the window of a woman w ∈ W
during NA (resp. OA), then m prefers N(m) (resp. O(m)) over w.

Proof. Since m approaches women according to his order of preference, and since he never
reaches w’s window during NA (resp. OA), then he must end up being matched, under the
new (resp. old) matching, to a woman he prefers over w, and by definition, that woman
is N(m) (resp. O(m)).

By the following Lemma, we need only prove part (b) of Theorem 7.

Lemma 10. If a woman w ∈ W is worse off, then O(w) is better off.

Proof. Since w is worse off, w prefers O(w) over N(w) according to her true order of
preference. Since it is given that no liar is worse off, then w is not a liar, and therefore
she declared that she prefers O(w) over N(w) also during NA. Therefore, since w prefers
N(w) over any other man who serenades under her window during NA, it follows that
O(w) could not have serenaded under her window on any night during NA. Thus, by
Lemma 9, O(w) prefers N(O(w)) over w = O(O(w)), making O(w) better off.

We now present a key definition underlying the proof of Theorem 7, and follow with
phrasing and proving a sequence of lemmas shedding new light on the structure of lying
by women in the Gale-Shapley algorithm and culminating with the proof of Theorem 7.

Definition 11 (Rejecter). A woman w ∈ W is said to be a rejecter if she rejects N(w)
during OA. In this case, let the man who serenades under her window on the night of
OA on which she rejects N(w), but whom she does not reject on that night (and whom,
therefore, she prefers over N(w)), be denoted by B(w).

Lemma 12. If a man m ∈M is better off, then N(m) is a rejecter.
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Proof. Since m is better off, he prefers N(m) over O(m). Therefore, since m approaches
women according to his order of preference, m would not serenade under O(m)’s window
before first having been rejected by N(m). Now, since m serenades under O(m)’s window
during the last night of OA, it follows that he must have been rejected by N(m) on
some earlier night during OA. Since N(m) rejects m = N(N(m)) during OA, she is a
rejecter.

Lemma 13. If a woman w ∈ W is a rejecter, then she is worse off.

Proof. By induction and transitivity, w prefers O(w) over any man she rejects during OA
and therefore, being a rejecter, over N(w). Thus, w is worse off.

Lemma 14. If a woman w ∈ W is a rejecter, then B(w) prefers N(B(w)) over w.

Proof. By Lemma 13, w is not a liar, and as such, her order of preference during NA is
her true order of preference. Since w is a rejecter, she prefers B(w) over N(w). Therefore,
as w truly prefers N(w) over any other man who serenades under her window during NA,
it follows that B(w) could not have serenaded under w’s window during NA. Thus, by
Lemma 9, B(w) prefers N(B(w)) over w.

Lemma 15. If a woman w ∈ W is a rejecter, then

1. N(B(w)) is a rejecter.

2. During OA, w rejects N(w) on a strictly later night than the night on which N(B(w))
rejects B(w).

Proof. Throughout this proof, for the sake of conciseness, wherever we discuss whether
a rejection or serenading occurred, or when it occurred, we always refer to OA. Since
w is a rejecter, then according to Lemma 14, B(w) prefers N(B(w)) over w. Also note
that by definition of B(w), B(w) serenades under w’s window on some night. By these
two observations, and since B(w) approaches women according to his order of preference,
N(B(w)) rejects B(w), and does so on a night strictly earlier than any night on which
B(w) serenades under w’s window. Since N(B(w)) rejects B(w) = N(N(B(w))), then
she is a rejecter. Moreover, since, by definition of B(w), w rejects N(w) on a night on
which B(w) serenades under her window as well, then this night is a strictly later night
than the night on which N(B(w)) rejects B(w).

To complete the proof of Theorem 7, assume for a contradiction that there exists a
better-off man m ∈ M . Let us denote w1 = N(m), and by Lemma 12, w1 is a rejecter.
Now, for each i ∈ N, assume by induction that wi is a rejecter and set wi+1 = N(B(wi)).
By Lemma 15, wi+1 is a rejecter. Moreover, by that lemma, during OA, wi rejects N(wi)
on a night strictly later than the night on which wi+1 rejects B(wi) = N(N(B(wi))) =
N(wi+1).

From finiteness of W , there must exist i < j such that wi = wj, but by induction,
since i < j, then during OA, wi rejected N(wi) on a night strictly later than the night on
which wj rejected N(wj) — a contradiction.

Corollary 16. Under the conditions of Theorem 7, every newly-matched couple (w,m)
consists of a better-off woman and a worse-off man.
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3 Generalizations

3.1 Polygamous Matchings

In [3], a one-to-many version of the algorithm is specified and proposed as a way to assign
students to colleges: On each algorithm-step, the students apply to their favorite college
among those that have not yet rejected them, and then each college rejects all applicants
except for the most preferred ones, according to its quota. It is proven there that the
resulting matching is stable and that it is optimal (within all stable matches) for each
applicant. It can also be shown that it is the worst3 (within all stable matches) for each
college.

In [11], it is noted that the assignment of medical interns to hospitals in the USA had
been performed using a similar algorithm since 1951, however, in this algorithm the roles
were switched and the hospitals were the ’proposers’. The resulting matching is thus the
worst for each intern and optimal (within all stable matches) for each hospital in a strong
sense: if some hospital has quota n, then it is matched with the n interns it prefers most
out of the set of all interns matched with it in any stable matching.

In this section, we prove a generalization of Theorem 7 for these scenarios. In order
to ease the transition from the previous section, we maintain the notation of women and
men, and refer to the above scenarios as the polygamous scenarios. We first redefine our
notation for these scenarios. Let W and M be finite sets of women and men, respectively,
and let each person be endowed, as before, with a strict order of preference with regards
to the members of the opposite sex. For each person p ∈ W ∪M , define np to be the quota
of this person, i.e. the number of spouses from the opposite sex this person seeks. As our
goal is the generalization of both algorithms described above, the reader may assume,
for ease of readability, that either all women are monogamous (∀w ∈ W : nw = 1) or
all men are monogamous (∀m ∈ M : nm = 1), however the rest of this paper holds
verbatim even if this is not the case. (If both the women and men are monogamous, we
are reduced to the scenario given in the previous section.) We also assume for now that∑

w∈W nw =
∑

m∈M nm. (This guarantees that when the algorithm stops, each person p
is matched with exactly np people of the opposite sex — this reduces in the monogamous
case to W and M being of identical size.)

Definition 17 (Matching (Polygamous Case)). A map between W and M, mapping each
p ∈ W ∪M to exactly np members of the set p does not belong to, is called a matching.

The definition of instability of a matching requires another detail, which was inferred
from the other requirements in the monogamous scenario.

Definition 18 (Stability (Polygamous Case)). A matching is said to be unstable under
the given orders of preference if there exist two matched couples (w,m) and (w̃, m̃) such
that:

3See the discussion following Definitions 19 and 20 below for the precise meaning of worst in this
context.
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1. w is not matched with m̃.

2. w prefers m̃ over m.

3. m̃ prefers w over w̃.

As before, a matching that is not unstable is said to be stable.

On each night of the polygamous algorithm, each man m ∈ M serenades under the
windows of the nm women that he prefers most out of all women who have not (yet)
rejected him, and then each woman w ∈ W , under whose window more than nw men
serenade, rejects each of these men, except for the nw men she prefers most among them.

Now, as before, assume that a subset of the women, denoted L, declare false orders
of preference for themselves. For a person p ∈ W ∪M , let us denote the set of people of
the opposite sex matched with p under the original matching (resp. the new matching) by
O(p) = {op1, . . . , opnp

} (resp. N(p) = {np
1, . . . , n

p
np
}) such that p prefers opi over opi+1 (resp.

prefers np
i over np

i+1).
Before we formulate the polygamous version of Theorem 7, we have to redefine the

circumstances under which a person is said to be better, or worse, off. It should be noted
that while in the monogamous scenario each person’s order of preference yields a full
order on the set of possible matches for that person (i.e. people of the opposite sex), in
the polygamous case each person’s order of preference yields a partial order on the set
of possible matches for that person (i.e. np-tuples of people of the opposite sex). This
introduces an asymmetry between the following two definitions, which did not exist in
the monogamous scenario.

Definition 19 (Improvement (Polygamous Case)). A person p ∈ W ∪M is said to be
weakly better off (resp. weakly worse off ) if for each 1 6 i 6 np, p does not prefer opi over
np
i (resp. does not prefer np

i over opi ).

Definition 20 (Worsening (Polygamous Case)). A person p ∈ W ∪M is said to have
gained only worse matches if p prefers every member of O(p) over every member of
N(p) \O(p).4

We note that by [6, Theorem 1.6.4], for every person p, the relation “p has gained
only worse matches in . . . over . . . ” defines a total order over the equivalence classes of
stable matchings (where the set of stable matchings is partitioned into equivalence classes
according to the set of spouses to which p is matched). Moreover, that theorem may be
used to show that in fact, if we restrict ourselves to stable matchings, having gained only
worse matches is equivalent to being weakly worse off, and thus dual to being weakly
better off. Nonetheless, as pointed out above, one of the main contributions of our study
is in dealing with the case in which the new matching need not be stable. Thus, we do not
assume any duality/equivalence between Definitions 19 and 20. Indeed, it is possible to
show by means of a simple example that it may be possible for a woman to lie in a manner

4Note that this condition is met in the special case in which N(p) = O(p).

the electronic journal of combinatorics 20(2) (2013), #P12 10



that makes her better off (i.e. weakly better off with N(w) 6= O(w)) without preferring
every member of N(w) over every member of O(w) \N(w) and without preferring every
member of N(w) \ O(w) over every member of O(w). We now proceed to reformulate
Theorem 7 for the polygamous scenario.

Theorem 21 (Sisterhood (Polygamous Case)). Under the above conditions, if all lying
women are weakly better off, then:

(a) All women are weakly better off.

(b) All men have gained only worse matches.

The special case of Theorem 21, in which all women are polygamous and men are
monogamous, can be easily proven by reduction to the conditions of Theorem 7 by “repli-
cating” each polygamous woman w ∈ W into nw distinct monogamous women {(w, i)}nw

i=1,
each having the same order of preference as w. For each man m ∈ M , replace w on his
list of preferences with these women, in such a way that he prefers (w, i) over (w, i + 1)
for all i. A reduction along these lines was used in [2] to generalize certain properties
of the monogamous scenario to the polygamous-women scenario and it was shown there
that the men matched with (w, 1), . . . , (w, nw) by the monogamous algorithm are exactly
those matched with w by the polygamous algorithm. Furthermore, in the notations of
this paper, it can be shown that the man matched with (w, i) by OA is owi , and by NA
— is nw

i . This yields that w is weakly better off if and only if none of the monogamous
women (w, i) is worse off. Thus, the reduction is complete, as it is clear that since all men
are monogamous, if a man is not better off under the reduction, then he has only gained
worse matches before the reduction.

Unfortunately, replicating each man in a similar manner would not yield a proof for
even the monogamous women / polygamous men scenario as easily, for it is possible for a
woman w to be weakly better off before the reduction by maintaining the same match m,
but to be worse off under the reduction because her match is e.g. (m, 2) instead of (m, 1).
Also, every replicated monogamous man not being better off under the reduction does not
necessarily imply that every polygamous man has gained only worse matches before the
reduction. To make things even worse, in the general case where both men and women
may be polygamous, running the monogamous algorithm after such a replication does
not even produce the same matching as would be produced by the polygamous algorithm,
as it may lead to situations such as a couple matched to each other with “multiplicity”
greater than 1.

Indeed, in order to prove Theorem 21 in its general form we now retrace our steps
and revisit the inner workings of the proof of Theorem 7, rewriting it to allow for the
generalizations we introduced. As before, we begin with a lemma establishing that we
need only prove part (b) of Theorem 21.

Lemma 22. If a woman w ∈ W is not weakly better off, then there exists m ∈ O(w) who
has not gained only worse matches.
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Proof. Since it is given that all liars are weakly better off, if follows that w is not a liar,
and therefore her order of preference during NA is her true order of preference. Since w
is not weakly better off, there exists 1 6 i 6 nw such that w prefers owi over nw

i and thus
prefers ow1 , . . . , o

w
i over nw

i . By induction and by definition of the polygamous algorithm,
there are exactly i − 1 men who serenade under w’s window during NA and that she
(truly) prefers over nw

i (these are nw
1 ,. . . ,nw

i−1), so by the pigeonhole principle, there exists
1 6 j 6 i such that owj does not serenade under w’s window during NA. Therefore, since
owj approaches women according to his order of preference, owj prefers all women in N(owj )
over w. Since |N(owj )| = nowj

= |O(owj )|, and since w ∈ O(owj )\N(owj ), it follows that there

exists w̃ ∈ N(owj ) \O(owj ) and as stated, owj prefers her over w, and hence (as w ∈ O(owj ))
owj has not gained only worse matches.

Before continuing, we now refine the definition of a rejecter for the polygamous sce-
nario.

Definition 23 (Rejecter (Polygamous Case)).

1. A woman w ∈ W is said to be a rejecter if she rejects any of the members of N(w)
during OA. We denote the set of all such rejected members of N(w) by R(w).

2. A man m ∈M is said to be a rejectee if there exists a rejecter w ∈ N(m) such that
m ∈ R(w).

Similarly to the proof of Theorem 7, a key role in the proof of Theorem 21 is played
by a man B(w,m) for whom, in a sense, w rejected m. We defer the precise definition of
this man to Lemma 26.

Lemma 24. If a man m ∈M has not gained only worse matches, then he is a rejectee.

Proof. Since m has not gained only worse matches, there exist w ∈ O(m) and w̃ ∈ N(m)\
O(m) such that m prefers w̃ over w. Since w ∈ O(m), it follows that m serenades under
w’s window during OA. Since m approaches women according to his order of preference,
he would never serenade under w’s window during OA without having serenaded on the
same night, or on a previous night, under w̃’s window. However, since m is not matched
with w̃ at the end of OA, it must hold that w̃ rejects him during OA and therefore, by
definition, m ∈ R(w̃), and thus m is a rejectee.

Lemma 25. If a woman w ∈ W is a rejecter, then she is not weakly better off.

Proof. Since w is a rejecter, there exists r ∈ R(w). By definition of R(w), there exists
1 6 i 6 nw such that nw

i = r. Since, by definition of R(w), w rejects r during OA, and
since, by induction and transitivity, w prefers each member of O(w) over each man she
rejects during OA, it follows that she prefers owi over r = nw

i , and is, thus, not weakly
better off.

Lemma 26. If a woman w ∈ W is a rejecter, then for each r ∈ R(w) there exists a man
B(w, r) such that
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1. B(w, r) serenades under w’s window during OA on the night on which she rejects
r, but B(w, r) is not rejected by her on that night.

2. B(w, r) prefers each member of N(B(w, r)) over w.

(If more than one such man exists, define B(w, r) to be one of these men, arbitrarily.)

Proof. By Lemma 25, w is not a liar, and as such, her order of preference during NA is
her true order of preference. Let B be the set of all men who serenade under her window
on the night during OA on which she rejects r, but who were not rejected by her on that
night. By definition of the Gale-Shapley algorithm, w prefers each member of B over r,
and |B| = nw. Since w does not reject r during NA (since r ∈ N(w)), and since the
order of preference of w during NA is her true order of preference, it follows that not all
members of B serenade under her window during NA (for she is matched under NA to the
set of the nw men that she prefers most out of all the men who serenade under her window
during NA). Define, therefore, B(w, r) to be a member of B who does not serenade under
w’s window during NA. Since B(w, r) does not serenade under w’s window during NA,
and since he approaches women according to his order of preference, it follows that he
prefers each member of N(B(w, r)) over w.

Lemma 27. If a woman w ∈ W is a rejecter, then for each r ∈ R(w) there exists a
woman w̃ ∈ N(B(w, r)) such that

1. w̃ is a rejecter.

2. B(w, r) ∈ R(w̃)

3. During OA, w rejects r on a strictly later night than the night on which w̃ rejects
B(w, r).

Proof. Once again, throughout this proof, for the sake of conciseness, wherever we discuss
whether a rejection or serenading occurs, or when it occurs, we always refer to OA. Since
w is a rejecter, then by Lemma 26, B(w, r) serenades under w’s window (on the night on
which she rejects r) and B(w, r) prefers each member of N(B(w, r)) over w. Hence, as
B(w, r) approaches nB(w,r) women each night according to his order of preference, and as
|N(B(w, r))| = nB(w,r), it follows that B(w, r) serenades on earlier nights under each of
the windows of N(B(w, r)) and is rejected by at least one of them on a night strictly earlier
than any night on which he serenades under w’s window — let us denote such a woman
by w̃. Since w̃ rejects B(w, r) (with whom she is matched under the new matching), it
follows that she is a rejecter and that B(w, r) ∈ R(w̃). Moreover, since, by definition of
B(w, r), w rejects r on a night on which B(w, r) serenades under her window as well, then
this night is a strictly later night than the night on which w̃ rejects B(w, r).

To complete the proof of Theorem 21, assume for a contradiction that there exists a
man m1 ∈ M who has not gained only worse matches. By Lemma 24, m1 is a rejectee,
therefore there exists a rejecter w1 ∈ N(m1) such that m1 ∈ R(w1). Now, for each i ∈ N,
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assume by induction that wi is a rejecter and that mi ∈ R(wi) and set, by Lemma 26,
mi+1 = B(wi,mi). By Lemma 27, there exists a rejecter wi+1 ∈ N(mi+1). Moreover, by
that lemma, during OA, wi rejects mi on a night strictly later than the night on which
wi+1 rejects mi+1.

From finiteness of W ×M , there must exist i < j such that wi = wj and mi = mj,
but by induction, since i < j, then during OA, wi rejects mi on a night strictly later than
the night on which wj rejects mj — a contradiction.

3.2 Blacklists and Mismatched Quotas

As mentioned before, in [3] it is not required that the sum of the quotas of all colleges be
the same as the number of applicants, resulting in some colleges not fulfilling their quotas
or some applicants not being accepted to any college. (In the monogamous scenario, for
instance, this translates to W and M not necessarily being of equal size, a variant first
explicitly studied in [9].) Moreover, it is allowed for a college to remove some of the
students from its preference list, indicating that the college is unwilling to accept these
candidates even if it means that its quota is not met. Similarly, applicants are allowed to
remove some of the colleges from their preference lists, indicating their unwillingness to
attend these colleges even at the risk of not being accepted to any college.

The modified algorithm-step for this scenario (in the notations used throughout this
document) is that if, by a certain night, the number of women who have not blacklisted
or (yet) rejected a man m ∈M , and are not blacklisted by him, is less than nm, then on
that night he serenades under the windows of all these women. (Otherwise, if there are at
least nm such women, then he serenades, as before, under the windows of the nm women
that he prefers most out of them.)

Let us adjust our notations for this scenario, and then prove that the appropriate
generalization of Theorems 7 and 21 still holds under it.

Definition 28 (Matching (General Case)). A map between W and M, mapping each
p ∈ W ∪M to at most np members of the set p does not belong to, is called a matching.

Definition 29 (Stability (General Case)). A matching is said to be unstable under the
given orders of preference if either of the following hold.

• The conditions of Definition 18 are met.

• There exists a matched couple (w,m) and a woman (resp. man) p such that all of
the following hold.

1. p is matched with less than np spouses.

2. p has not blacklisted m (resp. w).

3. m (resp. w) prefers p over w (resp. m).

• There exist a woman w and a man m, neither of whose quotas are filled, and neither
of whom has blacklisted the other.
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Once again, a matching that is not unstable is said to be stable.

For a person p ∈ W ∪M , let us define O(p) and N(p) as before, and for each 1 6 i 6
|O(p)| (resp. 1 6 i 6 |N(p)|), let us define opi (res. np

i ) as before as well.

Definition 30 (Improvement (General Case)). A woman w ∈ W is said to be weakly
better off if the following conditions hold.

1. N(w) contains none of the men blacklisted by w.

2. |O(w)| 6 |N(w)|

3. For each 1 6 i 6 O(w), w does not prefer owi over nw
i .

If, in addition, either for some 1 6 i 6 O(w), w prefers nw
i over owi (w has improved her

matches), or |O(w)| < |N(w)| (w has gained matches), then w is said to be better off.

The definition of a man having gained only worse matches remains unchanged. Specif-
ically, it should be emphasized that this definition does not require that |N(m)| 6 |O(m)|.
Nonetheless, we show in Corollary 32 that under the above conditions the inverse is an
impossibility. Similarly, the same corollary shows that under the above conditions, a
woman may not be better off due to gaining matches, but only due to improving matches.
It should also be noted that, by definition of the Gale-Shapley algorithm, it is not possible
for any person declaring their true preferences to be matched, under the new matching,
to any person blacklisted by them. As we now show, a generalized version of Theorems 7
and 21 for this general scenario can be proven by way of reduction to Theorem 21.

Corollary 31 (Sisterhood (General Case)). Theorem 21 holds under the above conditions.

Proof. We prove Corollary 31 by reducing to the conditions of Theorem 21 by introducing,
for each person p, np new monogamous people of the opposite sex ∅p1, . . . , ∅pnp

, each of whom
prefers p the most (the rest of their orders of preference can be arbitrary). The original
(resp. new) order of preference for p will now be: first, all of the original people of the
opposite sex who are not originally (resp. newly) blacklisted by p, ordered according to
her or his given original (resp. new) order of preference, then ∅p1, . . . , ∅pnp

in this order,
and then, in an arbitrary order, the original (resp. new) blacklist of p and the people
newly-introduced for the other people of the same sex as p. It is straight-forward to verify
that the quotas of all women (original and newly-introduced) match the quotas of all
men (original and newly-introduced). It is left for the reader to verify that the old (resp.
new) matching before the reduction is identical to the old (resp. new) matching under
the reduction, after the newly-introduced people have been removed from it, that each of
the original women is weakly better off before the reduction iff she is weakly better off
under the reduction, and that if an original man has gained only worse matches under
the reduction, then he has also gained only worse matches before the reduction.

Corollary 32. Under the conditions of Corollary 31, |N(p)| = |O(p)| for each person
p ∈ W ∪M .
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Proof. Observe that for each person p ∈ W ∪M , their old (resp. new) matches under the
reduction are their old (resp. new) matches before the reduction, “padded” by as many
people as needed from the top of ∅p1, . . . , ∅pnp

to fulfill their quota of np matches. Assume,
for a contradiction, that there exists a man m ∈ M such that (before the reduction)
|N(m)| > |O(m)|. Let o = |O(m)| (before the reduction), then under the reduction, m is
matched with ∅pnp−o under the original matching, but not under the new matching. Recall
that ∅np−o prefers p the most, so she is not weakly better off — a contradiction. We have
thus shown that for each man m ∈ M , |N(m)| 6 |O(m)|. Since all women are weakly
better off, for each woman w ∈ W we have |N(w)| > |O(w)|. Thus, by both of these, we
have ∑

w∈W

N(w) >
∑
w∈W

O(w) =
∑
m∈M

O(m) >
∑
m∈M

N(m) =
∑
w∈W

N(w),

which yields that all expressions in this sequence of inequalities are actually equal. Since
for every woman w ∈ W , |N(w)| > |O(w)|, (resp. for every man m ∈ M , |N(m)| 6
|O(m)|,) and since summing over all women (resp. all men) we get an equality, it follows
that the equality holds for each woman (resp. each man) separately.

It should be noted that in [5], Corollary 32 is proved using an entirely different ap-
proach for the special case of the monogamous scenario in which the new matching is
stable, and in [12], it is proved also for the polygamous scenario where the new matching
is stable. Corollary 32 generalizes these results, as it does not require stability of the new
matching.

Corollary 33. Under the conditions of Theorem 7, if |L| = 1 and the lying woman is
better off, then so is some innocent woman too.

Proof. Since the liar is better off, she is newly matched with some man to whom she was
not originally matched, and since the number of matches for this man remains the same,
he is no longer matched with some woman to whom he was originally matched, and hence
the set of matches for that woman has changed, and thus, since she is weakly better off,
she is better off.

4 Summary and Open Problems

Throughout this paper, we have shown that even in very general scenarios, a form of
sisterhood exists in the Gale-Shapley matching algorithm, both in terms of women not
harming each other, and in terms of them not helping any man.

Examining Definitions 19 and 20, one may find that having gained only worse matches
is stronger than (i.e. a special case of) being weakly worse off (which, in turn, is the dual
of being weakly better off). In other words, in the scenarios discussed in this paper, in a
sense, the minimum possible damage to a man is greater than the minimum possible gain
by a woman. It would be interesting to establish whether, under various conditions, the
overall damage to men is, in any sense, usually greater that the overall gain for women
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(and thus resulting in damage to the entire population as a whole, which contrasts with
the sisterhood that exists amongst the women).

The example given in Section 2.3 (as well as other examples given in the first author’s
undergraduate thesis (2007), upon which this paper is based) had to be crafted very
delicately. It would be interesting to establish whether, when the orders of preference are
determined by a random model, lies can be very beneficial (either for the lying women,
or for their innocent colleagues), or whether the utility gained from such a lie is usually
relatively small.5 Furthermore, in many of these examples, and in many examples from
the literature, the preferences of every person differ greatly from those of each of their
colleagues. In the real-world scenario of colleges and applicants, however, it is reasonable
to expect the preferences of many applicants to be similar, and the same applies to the
preferences of many colleges. There will always be differences, but it seems that they
are likely to be local, such as a permutation on colleges that are adjacent to each other
in the order of preference. It seems unlikely, for example, for a certain college to be
highly rated by half of the applicants and poorly rated by the rest. (All this applies to
the preferences of colleges as well, naturally.) It would be interesting to try and build
a probabilistic model along these lines, that matches the observed behaviors by medical
interns and colleges throughout the years, and to check the questions raised above under
such a model. In addition, since in the real world the information each player has is not
perfect, it could be interesting to check whether, given only knowledge of a statistical
model for the preferences of the rest of the players (and possibly full knowledge of the
preferences of just a few players), there exist strategies (for individual players, or for small
sets of players) that are expected to be better for these players than telling the truth.
It could also be interesting to check what happens if such strategies are simultaneously
applied by more than one conspiring set of players.

Acknowledgements

We would like to thank Sergiu Hart for useful conversations and for providing us with
references to the literature. We would like to thank the anonymous referee for references
to the literature as well as for careful reading and many helpful remarks regarding the
presentation.
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the preference lists of the women and the men, the number of women who can benefit from lying with
no accomplices is small.
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