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Abstract

In this paper, we give combinatorial proofs and new generalizations of q-series

identities of Dilcher and Uchimura related to divisor function. Some interesting

combinatorial results related to partition and arm length are also presented.
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1 Introduction

In [6], Uchimura proved the following q-series identity

∞
∑

k=1

(−1)k−1 q
k(k+1)

2

(q; q)k(1− qk)
=

∞
∑

k=1

qk

1− qk
, (1)

where (a; b)k = (1 − a)(1 − ab)(1 − ab2) · · · (1 − abk−1). In fact the identity (1) has been
known 100 years before ([3]). Moreover, it is obtained also as specialization of basic
hypergeometric series (see [2] section 12 on page 34). And, this identity is an infinite
version of the following q-series identity called Problem 6407 in American Mathematical
Monthly [7].

m
∑

k=1

(−1)k−1

[

m

k

]

q
k(k+1)

2

1− qk
=

m
∑

k=1

qk

1− qk
.

Here

[

m

k

]

is a q-binomial coefficient. Many authors have generalized these identities

(see e.g. [8]). In this paper, we translate these identities and Dilcher’s generalization [1]
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into combinatorics of partitions, and give a combinatorial proof of them. For example,
we transform (1) as

∑

λ∈SP

(−1)ℓ(λ)−1λℓ(λ)q
|λ| =

∞
∑

n=1

σ0(n)q
n.

It is a q-series identity about strict partitions and a divisor function.

The generalizations of (1) we give in this paper are the following.

∞
∑

k=1

(−1)k−1 bkq
k(k−1)

2
+mk

(bq; q)k(1− qk)m
=

∞
∑

j1=1

bj1qj1

1− qj1

j1
∑

j2=1

qj2

1− qj2
· · ·

jm−1
∑

jm=1

qjm

1− qjm
,

t
∑

k=1

(−1)k−1 b
kq

k(k−1)
2

+mk

(1− qk)m

[

t

k

]

q,b

=
t

∑

j1=1

bj1qj1

1− qj1

j1
∑

j2=1

qj2

1− qj2
· · ·

jm−1
∑

jm=1

qjm

1− qjm
.

As a by-product of their proofs, we obtain some combinatorial results.

2 Young diagrams

Definition 1. Let n be a positive integer. A partition λ of n is an integer sequence

λ = (λ1, λ2, . . . , λℓ)

satisfying λ1 > λ2 > . . . > λℓ > 0 and
ℓ

∑

i=1

λi = n. We call ℓ(λ) := ℓ the length of λ,

and each λi a part of λ. We let P and P(n) denote the set of partitions and the set of
partitions of n.

Definition 2. A partition λ is said to be strict if λ1 > λ2 > . . . > λℓ > 0. We let SP
and SP(n) denote the set of partitions and the set of partitions of n.

Definition 3. Let λ = (λ1, λ2, . . . , λℓ) be a partition. The Young diagram of λ is defined
by

Y (λ) := {(i, j) ∈ N× N | 1 6 i 6 ℓ, 1 6 j 6 λi}.

We call (i, j) ∈ Y (λ) the (i, j)-cell of λ. And the set of the corners of λ is defined by

C(λ) := {(i, j) ∈ Y (λ) | (i+ 1, j), (i, j + 1) 6∈ Y (λ)}.

We put c(λ) := ♯C(λ), the number of the corners of λ.

Definition 4. Let (i, j) ∈ Y (λ), The (i, j)-hook length of λ is defined by

hij(λ) := ♯{(i′, j′) ∈ Y (λ) | i′ = i, j′ > j or j′ = j, i′ > i }

And we put aij(λ) := λi− j+1, the (i, j)-arm length of λ. We remark that our definition
of arm length aij is different by 1 from the usual definition [4].
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3 q-series identity for the divisor function

Theorem 5 (Uchimura’s identity).

∞
∑

k=1

(−1)k−1 q
k(k+1)

2

(q; q)k(1− qk)
=

∞
∑

k=1

qk

1− qk
,

where (a; b)k = (1− a)(1− ab)(1− ab2) · · · (1− abk−1).

Remark that the right-hand side is computed as

∞
∑

k=1

qk

1− qk
=

∞
∑

k=1

(qk + q2k + q3k + · · · ) =
∞
∑

n=1

σ0(n)q
n,

where σ0(n) is the number of positive divisors of n. We now translate this identity into a
language of Young diagrams. Then we are able to prove this identity combinatorially.

Figure 1.

k

k

i

+ +
k

A B C

A B C

=

Looking at each term of the left-hand side, q
k(k+1)

2 is translated into the stairs B in Figure

1. Since
1

(q; q)k
is the generating function of partitions whose lengths are at most k, this

term corresponds to C in Figure 1. The leftover
1

1− qk
is the generating function of
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rectangular Young diagrams whose vertical lengths are equal to k. This part corresponds
to A in Figure 1. Therefore the left-hand side of the identity is an alternating sum over
k > 1 of A+B+C. As is noted in Figure 1, the “sum” A+B+C is a strict partition. For
a strict partition λ, we count the number of tuples (A,B,C) such that A + B + C = λ.
Let λ be a fixed strict partition of length k. One can embed the stairs B into λ in λk

ways. For each embedding the rectangle A and the partition C are uniquely determined,
respectively. Therefore there are λk tuples (A,B,C), such that A+B+C = λ. Summing
up over k, Theorem 5 reads

∑

λ∈SP

(−1)ℓ(λ)−1λℓ(λ)q
|λ| =

∞
∑

n=1

σ0(n)q
n. (2)

The proof of this identity will follow from the next combinatorial theorem.

Theorem 6. For any positive integers n and k,

♯{λ ∈ SP(n) | λ1 > k > λ1 − λℓ(λ), ℓ(λ); odd}

− ♯{λ ∈ SP(n) | λ1 > k > λ1 − λℓ(λ), ℓ(λ); even}

=

{

1 (k | n)
0 (k ∤ n).

Example. Let n = 5. We draw Young diagrams Y (λ) of all strict partitions of 5, and
write arm length a1j(λ) in (1, j)-cell for 1 6 j 6 λℓ(λ).

Figure 2.

5 4 3 2 1 4− − 3 2

= {5, 1}.

Here the numbers are regarded as variables. Numbers 5 and 1 are the positive divisors of
5. We remark that it is check about Theorem 6 in all positive integer k at the same time.

Proof of Theorem 6.

We consider the set of strict partitions of n such that a1,j = k for some 1 6 j 6 λℓ(λ):

D(n, k) := {λ ∈ SP(n) | λ1 − λℓ(λ) < k 6 λ1}.

We divide these strict partitions into two classes A and B:

A = {λ ∈ D(n, k) | k ∤ λifor any i}, B = {λ ∈ D(n, k) | k | λifor some i}.

We consider a map between them that changes the length by 1.

αk : A → B, αk(λ) = λ′,

where λ′ ∈ B is defined in the following steps:
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Step 1. Append 0 in the tail of λ to get {λ1, . . . , λℓ+1}.

Step 2. Subtract k from max{λ1, . . . , λℓ+1}, and add k to λℓ+1.

Step 3. Repeat Step 2 till max{λ1, . . . , λℓ+1} −min{λ1, . . . , λℓ+1} gets less than k.

Step 4. From the resulting composition we have the partition λ′ = (λ1, . . . , λℓ+1) by
arranging parts.

Example. Let n = 13, k = 4.

D(13, 4) = {(13), (8, 5), (7, 6), (6, 4, 3)}.

And we divide these partitions

A = {(13), (7, 6)}, B = {(8, 5), (6, 4, 3)}.

Then the map α4 looks

λ = (13) → {13, 0} → {9, 4} → {5, 8} → (8, 5) = α4(λ),

µ = (7, 6) → {7, 6, 0} → {3, 6, 4} → (6, 4, 3) = α4(µ).

When k = 4, the pair of λ = (8, 4, 1) seems not to exist. However, the partition λ is not
an element of D(13, 4) primarily.

By the above construction, we have ℓ(λ′) = ℓ(λ) + 1, and

♯{i | λi ≡ j(mod k), 1 6 i 6 ℓ} = ♯{i | λ′
i ≡ j(mod k), 1 6 i 6 ℓ}

for 1 6 j 6 k − 1. The partition that αk can not pair up is (λ1, . . . , λℓ) ≡ (0) (mod k).
Therefore λ = (n) is left when n is a multiple of k.

We add in the proof that the identity and proof equivalent to Theorem 6 appears in
[5]. Moreover, the identity which generalized σ0 to σn in Theorem 5 appears there.
Proof of theorem 5.

Sum of the left-hand side of Theorem 6 over k is

∞
∑

k=1

♯{λ ∈ SP(n) | λ1 > k > λ1 − λℓ(λ), ℓ(λ); odd}

−
∞
∑

k=1

♯{λ ∈ SP(n) | λ1 > k > λ1 − λℓ(λ), ℓ(λ); even}

=
∑

λ∈SP(n)

(−1)ℓ(λ)−1λℓ(λ).
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And sum of the right-hand side is
∑

k|n

1 = σ0(n).

They are the coefficients of qn in (2).

Theorem 5 is the generating function for the total sum of Theorem 6. Taking the
sum over k from 1 to m for Theorem 6, we have the following identity of the generating
function.

Theorem 7 (Problem 6407).

m
∑

k=1

(−1)k−1

[

m

k

]

q
k(k+1)

2

1− qk
=

m
∑

k=1

qk

1− qk
,

where the q-binomial coefficient is defined as
[

m

k

]

=
∑

λ ∈ P
λ1 6 m− k, ℓ(λ) 6 k

q|λ|.

We draw the same figure as Figure 1. The Young diagram C in Figure is restricted
that the first row is at most m − k. Then, there are new restriction a1j 6 m on the
left-hand side of identity. Here Theorem 7 reads

∑

λ∈SP

∑

j6λℓ,a1,j6m

(−1)ℓ(λ)−1q|λ| =
∞
∑

n=1

∑

k|n,k6m

qn. (3)

Proof. Sum of the left-hand side of Theorem 6 over 1 6 k 6 m is

m
∑

k=1

♯{λ ∈ SP(n) | λ1 > k > λ1 − λℓ(λ), ℓ(λ) : odd}

−
m
∑

k=1

♯{λ ∈ SP(n) | λ1 > k > λ1 − λℓ(λ), ℓ(λ) : even}

=
∑

λ∈SP(n)

∑

j6λℓ,a1,j6m

(−1)ℓ(λ)−1.

Corollary 8. For n = 2(2m+ 1),
∑

λ∈SP(n)

♯{h1,j(λ) | 1 6 j 6 λℓ(λ), h1,j(λ)is odd}

=
∑

λ∈SP(n)

♯{h1,j(λ) | 1 6 j 6 λℓ(λ), h1,j(λ)is even}.
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Example. Let n = 6. We draw Young diagrams Y (λ) of all strict partitions of 6, and
write hook length h1,j(λ) in (1, j)-cell for 1 6 j 6 λℓ(λ).

Figure 3.

6 5 4 3 2 1 6 5 4 5

The number of odd numbers equals the number of even numbers.

Proof. In Theorem 6, the strict partitions they have same arm length and different parity
length are pair. Recall that h1j(λ) = a1j(λ)+ ℓ(λ)− 1. Therefore the parity of their hook
length are different. And the leftovers are divisors of n. When n equals 2(2m + 1), the
number of odd divisors of n equals the number of even divisors of n.

4 Generalizations

Theorem 9. For any positive integers k,m and n, we have

♯

{

(λ; i1, . . . , im)
∣

∣

∣

λ ∈ SP(n), 1 6 i1 < . . . < im 6 λℓ(λ)

a1,im(λ) = k, ℓ(λ) : odd

}

− ♯

{

(λ; i1, . . . , im)
∣

∣

∣

λ ∈ SP(n), 1 6 i1 < . . . < im 6 λℓ(λ)

a1,im(λ) = k, ℓ(λ) : even

}

= ♯

{

(λ; t1, . . . , tm−c(λ))
∣

∣

∣

λ ∈ P(n), c(λ) 6 m,λ1 = k, λti = λti+1

1 6 t1 < . . . < tm−c(λ) < ℓ(λ)

}

.

When m = 1, this identity is specialized as

♯{(λ; i) | λ ∈ SP(n), 1 6 i 6 λℓ(λ), a1,i(λ) = k, ℓ(λ) : odd}

− ♯{(λ; i) | λ ∈ SP(n), 1 6 i 6 λℓ(λ), a1,i(λ) = k, ℓ(λ) : even}

= ♯{λ | λ ∈ P(n), c(λ) = 1, λ1 = k}.

When c(λ) = 1, the shape of Y (λ) is rectangle. Therefore this identity is equivalent to
Theorem 6.
Example. For n = 5,m = 2, we draw the same figure as Figure 2.

Figure 4.

5 4 3 2 1 4 3 2
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We count the pairs of arm lengths in a partition λ with sign (−1)ℓ(λ). The pairs with
positive sign are (5, 1), (4, 1), (3, 1), (2, 1), (5, 2), (4, 2), (3, 2), (5, 3), (4, 3), (5, 4). The
pair with negative sign is (3, 2). On the other hand, all Young diagrams of partition of 5
that made by concatenating 2 rectangles are followings.

Figure 5.

There are 9 such Young diagrams. Here we count the ways of concatenating rectangles.
Hence, for example, the first 4 diagrams must be thought of as the different ones. The
number 9 equals the number of the pairs with positive sign minus the number of the
pairs with negative sign. And more fix smaller number b, the number of pair (a, b) with
positive sign minus the number of pair (a, b) with negative sign also equals the number
of Young diagrams λ made by concatenating 2 rectangles that λ1 equals b. For example,
the number of the pairs that smaller number is 1 and the number of Young diagrams that
size of first line is 1 are both 4.

Proof of Theorem 9. When λ ∈ SP(n), i1 < . . . < im 6 λℓ are given, we consider the
strict partitions λ(1), . . . , λ(m) in the following procedure. First, we put λ(1) := λ. When
λ(h) is determined, we put µ := λ(h) and jh := a1,im+1−h

(λ(h)). And we make a new strict
partition [µ] by replacing µ1 by µ1 − jh in µ. This operation keeps strictness, since µ is
strict to modulus k. We repeat this operation until we get a1,im−h

(µ) 6 jh. We put λ(h+1)

with µ obtained in this way. And let th be the number of times of the operations. The
length of λ(i) is same as the length of λ. We pair up (λ; i1, i2, . . . im) and (λ′; i′1, i

′
2, . . . i

′
m)

when λ(m)and λ′(m) correspond by αjm and jh = j′h for all h. Here αjm is the map defined

in the proof of Theorem 6. Such λ′ is calculable by performing inverse operations to λ′(m).
The inverse operation is adding jh to the minimum part of λ′(m). And i′h is determined
from condition jh = j′h. Then there is only 1 difference between the lengths of λ and

λ′. Leftovers are λ(m) = (λ
(m)
1 ) that λ

(m)
1 is multiple of jm. Since j1 > . . . > jm, it

corresponds with Young diagram that is made by concatenating rectangles jh × th, where

tm =
λ
(m)
1

jm
.

Example. Let k = 13, m = 3, n = 70, λ = (23, 19, 16, 12), i1 = 4, i2 = 5, i3 = 11.
First, we put λ(1) = (23, 19, 16, 12), j1 = a1,11(λ

(1)) = 13.

λ(1) = (23, 19, 16, 12)
−13
→ (19, 16, 12, 10)

−13
→ (16, 12, 10, 6).

Because a1,5(16, 12, 10, 6) = 12 6 j1, operation stops. And we put λ(2) = (16, 12, 10, 6),
j2 = a1,5(λ

(2)) = 12.

λ(2) = (16, 12, 10, 6)
−12
→ (12, 10, 6, 4).
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We put λ(3) = (12, 10, 6, 4), j3 = a1,4(λ
(3)) = 9. Then,

λ(3) = (12, 10, 6, 4) → {12, 10, 6, 4, 0} → {3, 10, 6, 4, 9}

→ α9(λ
(3)) = (10, 9, 6, 4, 3).

And we perform inverse operation,

a9(λ
(3)) = (10, 9, 6, 4, 3)

12
→ (15, 10, 9, 6, 4)
13
→ (17, 15, 10, 9, 6)

13
→ (19, 17, 15, 10, 9).

Here, a1,2(10, 9, 6, 4, 3), a1,4(15, 10, 9, 6, 4) and a1,7(19, 17, 15, 10, 9) are equal to j3, j2 and
j1 respectively. Then, we checked ((23, 19, 16, 12); 4, 5, 11) and ((19, 17, 15, 10, 9); 2, 4, 7)
are pairs.
As another example, let λ = (70), i1 = 13, i2 = 19, i3 = 58.
We put λ(1) = (70), j1 = a1,58(λ

(1)) = 13.

λ(1) = (70)
−13
→ (57)

−13
→ (44)

−13
→ (31).

We put λ(2) = (31), j2 = a1,19(λ
(2)) = 13.

λ(2) = (31)
−13
→ (18).

We put λ(3) = (18), j3 = a1,13(λ
(3)) = 6. Then, λ

(3)
1 = 18 is multiple of j3 = 6. Therefore

((70); 13, 19, 58) corresponds with Young diagram concatenating with rectangles 13 × 3,
13× 1 and 6× 3.

Theorem 10 (Dilcher’s identity 1). For any positive integer m,

∞
∑

k=1

(−1)k−1 q
k(k−1)

2
+mk

(q; q)k(1− qk)m
=

∞
∑

j1=1

qj1

1− qj1

j1
∑

j2=1

qj2

1− qj2
· · ·

jm−1
∑

jm=1

qjm

1− qjm
.

Figure 6.

+ + + +

=

In the left-hand side of Dilcher’s identity,
( qk

1− qk

)m

is the generating function ofm-tuples

of rectangular Young diagrams whose vertical lengths are equal to k. Note the lower right
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angle of each rectangle. For a strict partition λ, there are

(

λℓ(λ)

m

)

decompositions to the

partitions of figure type. Therefore, in a language of Young diagrams, this identity is
equivalent to the following.

∑

λ∈SP

(−1)ℓ(λ)−1

(

λℓ(λ)

m

)

q|λ| =
∑

λ∈P

(

ℓ(λ)− c(λ)

m− c(λ)

)

q|λ|. (4)

Proof of Theorem 10. Total sum of the left-hand side of Theorem 9 is

∞
∑

k=1

♯

{

(λ; i1, . . . , im)
∣

∣

∣

λ ∈ SP(n), 1 6 i1 < . . . < im 6 λℓ(λ)

a1,im(λ) = k, ℓ(λ) : odd

}

−

∞
∑

k=1

♯

{

(λ; i1, . . . , im)
∣

∣

∣

λ ∈ SP(n), 1 6 i1 < . . . < im 6 λℓ(λ)

a1,im(λ) = k, ℓ(λ) : even

}

=
∑

λ∈SP(n)

(−1)ℓ(λ)−1

(

λℓ(λ)

m

)

.

And sum of right-hand side is

∞
∑

k=1

♯

{

(λ; t1, . . . , tm−c(λ))
∣

∣

∣

λ ∈ P(n), c(λ) 6 m,λ1 = k, λti = λti+1

1 6 t1 < . . . < tm−c(λ) < ℓ(λ)

}

=
∑

λ∈P(n)

(

ℓ(λ)− c(λ)

m− c(λ)

)

.

They are the coefficients of qn in (4)

Analogously with Theorem 7, we have an identity by taking the sum over k from 1 to
t for Theorem 9.

Theorem 11 (Dilcher’s identity 2). For any positive integers m and t,

t
∑

k=1

(−1)k−1 q
k(k−1)

2
+mk

(1− qk)m

[

t

k

]

=
t

∑

j1=1

qj1

1− qj1

j1
∑

j2=1

qj2

1− qj2
· · ·

jm−1
∑

jm=1

qjm

1− qjm
.

Theorem 9 is a generalization of Dilcher’s identities. The both sides are the coefficients
of bkqn in the following generating functions

Theorem 12. For any positive integer m,

∞
∑

k=1

(−1)k−1 bkq
k(k−1)

2
+mk

(bq; q)k(1− qk)m
=

∞
∑

j1=1

bj1qj1

1− qj1

j1
∑

j2=1

qj2

1− qj2
· · ·

jm−1
∑

jm=1

qjm

1− qjm
.
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Theorem 13. For any positive integers m and t,

t
∑

k=1

(−1)k−1 b
kq

k(k−1)
2

+mk

(1− qk)m

[

t

k

]

q,b

=
t

∑

j1=1

bj1qj1

1− qj1

j1
∑

j2=1

qj2

1− qj2
· · ·

jm−1
∑

jm=1

qjm

1− qjm
,

where

[

t

k

]

q,b

is defined by

[

t

k

]

q,b

=
∑

λ∈P

λ16t−k,ℓ(λ)6k

bλ1q|λ|.

When b = 1, they are Dilcher’s identities.

Proof of Theorem 13. By analogous transform in proof of Theorem 10, this identity is
equivalent to the following.

∑

λ∈SP

λℓ(λ)
∑

i=1

(−1)ℓ(λ)−1

(

i− 1

m− 1

)

ba1,i(λ)q|λ| =
∑

λ∈P

(

ℓ(λ)− c(λ)

m− c(λ)

)

bλ1qλ.

On the left-hand side of this identity, i is the column number which has the right most
gray box in Figure 6. And,

(

i−1
m−1

)

is the number of arrangement of other gray box. Then,
we count the left-hand side of Theorem 9, taking care about im.

♯

{

(λ; i1, . . . , im)
∣

∣

∣

λ ∈ SP(n), 1 6 i1 < . . . < im 6 λℓ(λ)

a1,im(λ) = k, ℓ(λ) : odd

}

− ♯

{

(λ; i1, . . . , im)
∣

∣

∣

λ ∈ SP(n), 1 6 i1 < . . . < im 6 λℓ(λ)

a1,im(λ) = k, ℓ(λ) : even

}

=
∑

λ∈SP(n)

∑

i6λℓ(λ),a1,i(λ)=k

(−1)ℓ(λ)−1

(

i− 1

m− 1

)

.

And right-hand side is

♯

{

(λ; t1, . . . , tm−c(λ))
∣

∣

∣

λ ∈ P(n), c(λ) 6 m,λ1 = k, λti = λti+1

1 6 t1 < . . . < tm−c(λ) < ℓ(λ)

}

=
∑

λ∈P(n),λ1=k

(

ℓ(λ)− c(λ)

m− c(λ)

)

.

Therefore the coefficients of bkqn of Theorem 12 are equal to the both sides of Theorem
9.

Theorem 13 is the finite version of Theorem 12. The author does not have the good

display of this analogue of q-binomial coefficient. We say that

[

t

k

]

q,b

satisfy following
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recurrence formula.

(bq)t−k

[

t

k

]

+

[

t

k + 1

]

q,b

=

[

t+ 1
k + 1

]

q,b

.

We remark that the first term is ordinary q-binomial coefficient and we will finish.
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