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Abstract

The hyperplanes of the symplectic dual polar space DW (5, q) arising from em-
bedding, the so-called classical hyperplanes of DW(5,q), have been determined
earlier in the literature. In the present paper, we classify non-classical hyperplanes
of DW (5, q). If q is even, then we prove that every such hyperplane is the extension
of a non-classical ovoid of a quad of DW (5,q). If ¢ is odd, then we prove that
every non-classical ovoid of DW (5, q) is either a semi-singular hyperplane or the
extension of a non-classical ovoid of a quad of DW (5,q). If DW (5,q), ¢ odd, has a
semi-singular hyperplane, then ¢ is not a prime number.
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1 Introduction

The hyperplanes of the finite symplectic dual polar space DW (5, ¢) that arise from some
projective embedding, the so-called classical hyperplanes of DW (5, q), have explicitly
been determined earlier in the literature, see Cooperstein & De Bruyn [5], De Bruyn [7]
and Pralle [21]. In the present paper, we give a rather complete classification for the
non-classical hyperplanes of DW (5, q). There are two standard constructions for such
hyperplanes.

(1) Suppose z is a point of DW (5,¢q) and O is a set of points of DW (5, ¢q) at distance
3 from x such that every line at distance 2 from z has a unique point in common with
O. Then 2t U O is a non-classical hyperplane of DW (5, ), the so-called semi-singular
hyperplane with deepest point .

(2) Suppose @Q is a quad of DW (5, ¢q). Then the points and lines contained in @) define
a generalized quadrangle @ isomorphic to Q(4, q). If O is a non-classical ovoid of @, then
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the set of points of DW (5, ¢) at distance at most 1 from O is a non-classical hyperplane of
DW (5, q), the so-called extension of O. Several classes of non-classical ovoids of Q(4, q)
are known, see Section 2.2 for a discussion.

The following is our main result.

Theorem 1. (1) If q is even, then every non-classical hyperplane of DW (5,q) is the
extension of a non-classical ovoid of a quad of DW (5, q).

(2) If q is odd, then every mon-classical hyperplane of DW (5,q) is either a semi-
singular hyperplane or the extension of a non-classical ovoid of a quad of DW (5, q).

Up to present, no semi-singular hyperplane of DW (5, q) is known to exist. If a semi-
singular hyperplane of DW (5,q) exists, then ¢ must be odd (Theorem 19) and not a
prime (Corollary 18).

The lines and quads through a given point x of DW (5, q) define a projective plane iso-
morphic to PG(2, ¢) which we denote by Res(x). If H is a hyperplane of DW (5, ¢) and x
is a point of H, then Ay (z) denotes the set of lines through z contained in H. We regard
Ay (x) as a set of points of Res(z). If Ay(x) is the whole set of points of Res(z), then x
is called deep with respect to H.

The dual polar space DW (5, ¢) has a nice full projective embedding e in the projective
space PG(13, q), which is called the Grassmann embedding of DW (5, q), see e.g. Cooper-
stein [4, Proposition 5.1]. A hyperplane of DW (5, ¢) whose image under e is contained in a
hyperplane of of PG(13, ¢) is said to arise from e. For a proof of the following proposition,
we refer to Pasini [16, Theorem 9.3] or Cardinali & De Bruyn [3, Corollary 1.5].

Proposition 2. If H is a hyperplane of DW (5, q) arising from the Grassmann embedding
of DW (5, q), then for every point x of H, Ay(x) is one of the following sets of points
of Res(z): (1) a point; (2) a line; (3) the union of two distinct lines; (4) a nonsingular
conic; (5) the whole set of points of Res(z).

If ¢ # 2, then the Grassmann embedding of DWW (5, q) is the so-called absolutely universal
embedding of DW (5, q) (Cooperstein [4, Theorem B], Kasikova & Shult [12, Section 4.6,
Ronan [22]), implying that the classical hyperplanes of DW (5, q) are precisely those hyper-
planes arising from the Grassmann embedding. Combining Theorem 1 with Proposition
2, we easily find:

Corollary 3. If H is a hyperplane of DW (5,q), q # 2, then for every point x of H,
Apg(x) is one of the following sets of points of Res(z): (1) the empty set; (2) a point; (3)
a line; (4) the union of two distinct lines; (5) a nonsingular conic; (6) the whole set of
points of Res(x). If Ay(x) is the empty set, then H is a semi-singular hyperplane whose
deepest point lies at distance 3 from x. If H is not a semi-singular hyperplane, then case
(1) cannot occur.
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The conclusion of Corollary 3 is false for the dual polar space DW (5,2). If x is a point of
DW (5,2), then for every set Y of points of Res(z) = PG(2,2), there exists a hyperplane
H through z such that Ay (xz) =Y, see Pralle [21, Table 1].

If n > 4, then the symplectic dual polar space DW (2n — 1, ¢) has many full subgeometries
isomorphic to DW (5, ¢). So, Corollary 3 reveals information on the local structure of any
hyperplane of any symplectic dual polar space DW (2n — 1, q), where ¢ # 2 and n > 4.

Theorem 1 will be proved in Section 3. In Section 2, we give the basic definitions (including
some of the notions already mentioned above) and basic properties which will play a role
in the proof of Theorem 1.

2 Preliminaries

2.1 The dual polar space DW (5, q)

Let S = (P, L,]) be a point-line geometry with nonempty point-set P, line set £ and
incidence relation I C P x L. A set H C P is called a hyperplane of S if every line of S
has either one or all of its points in H. A full projective embedding of S is an injective
mapping e from P to the point-set of a projective space X satisfying (i) (e(P))s = X;
(ii) {e(z)|(x,L) € 1} is a line of ¥ for every line L of S. If e : & — ¥ is a projective
embedding of S and IT is a hyperplane of 3, then e~!(e(P) N1I) is a hyperplane of S. A
hyperplane of S is said to be classical if it is of the form e !(e(P) N II), where e is some
full projective embedding of § into a projective space ¥ and II is some hyperplane of 3.

Distances d(-,-) in & will be measured in its collinearity graph. If z is a point of S
and 7 € N, then T';(z) denotes the set of points of S at distance i from z. Similarly, if X
is a nonempty set of points and ¢ € N, then I';(X') denotes the set of all points at distance
i from X i.e. the set of all points y for which min{d(y,z) |z € X} = .

Let W (5, q) be the polar space whose subspaces are the subspaces of PG(5, ¢) that are
totally isotropic with respect to a given symplectic polarity of PG(5, ¢), and let DW (5, q)
denote the associated dual polar space. The points and lines of DW (5, ¢) are the totally
isotropic planes and lines of PG(5,¢), with incidence being reverse containment. The
dual polar space DW (5, q) belongs to the class of near polygons introduced by Shult and
Yanushka in [23]. This means that for every point x and every line L, there exists a unique
point on L nearest to x. The maximal distance between two points of DW (5, ¢) is equal
to 3. The dual polar space DW (5, q) has (¢ + 1)(¢*> + 1)(¢® + 1) points, ¢ + 1 points on
each line and ¢ 4+ ¢ + 1 lines through each point.

If z and y are two points of DW (5, q) at distance 2 from each other, then the smallest
convex subspace (x,y) of DW(5,q) containing = and y is called a quad. A quad @ of
DW (5, q) consists of all totally isotropic planes of W (5, ¢) that contain a given point z
of W(5,q). Any two lines L and M of DW (5, q) that meet in a unique point are contained
in a unique quad. We denote this quad by (L, M). Obviously, we have (L, M) = (x,y)
where x and y are arbitrary points of L \ M and M \ L, respectively. The points and
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lines of DW (5, q) that are contained in a given quad () define a point-line geometry @
isomorphic to the generalized quadrangle (4, q) of the points and lines of a nonsingular
parabolic quadric of PG(4, ¢q). If @ is a quad of DW (5, ¢q) and x is a point not contained
in @, then @) contains a unique point mg(x) collinear with x and d(x,y) = 1 +d(mg(x),y)
for every point y of Q. If @1 and Qs are two distinct quads of DW (5, q), then Q1 N Q2 is
either empty or a line of DW(5,¢). If Q1 N Q2 = 0, then the map Q1 — Q2; 2 — 7o, ()

is an isomorphism between ()1 and ()».

2.2 Hyperplanes of Q(4,q)

By Payne and Thas [18, 2.3.1], every hyperplane of the generalized quadrangle Q(4,q)
is either the perp x% of a point z, a (¢ + 1) x (¢ + 1)-subgrid or an ovoid. An ovoid of
Q(4,q) is classical if it is an elliptic quadric @~ (3,q) C @Q(4,¢q). For many values of g,
non-classical ovoids of Q(4,q) do exist: (i) ¢ = p" with p an odd prime and h > 2 [11];
(ii) ¢ = 2% with h > 1 [26]; (iii) ¢ = 3% with b > 1 [11]; (iv) ¢ = 3" with h > 3
[24]; (v) g = 3° [19]. For several prime powers g, it is known that all ovoids of Q(4, q) are
classical:

Proposition 4. e ([2, 15]) Every ovoid of Q(4,4) is classical.
e ([13, 14]) Every ovoid of Q(4,16) is classical.
e ([1]) Every ovoid of Q(4,q), q prime, is classical.

A set G of hyperplanes of Q(4,q) is called a pencil of hyperplanes if every point of
Q(4,q) is contained in either 1 or all elements of G. The following lemma is precisely
Lemma 3.2 and Corollary 3.3 of De Bruyn [8].

Lemma 5. If G; and Go are two distinct classical hyperplanes of Q(4,q), then through
every point x of Q(4, q) not contained in G1UGs, there exists a unique classical hyperplane
G, satisfying G, NG1 = G1NGy = GoNG,. As a consequence, any two distinct classical
hyperplanes of Q(4,q) are contained in a unique pencil of classical hyperplanes of Q(4,q).

2.3 Hyperplanes of DW (5, q)

Since DW (5, q) is a near polygon, the set of points of DW (5, q) at distance at most 2
from a given point z is a hyperplane of DW (5, q), the so-called singular hyperplane with
deepest point x. If O is a set of points of DW (5, q) at distance 3 from a given point z
such that every line at distance 2 from z has a unique point in common with O, then
21 U O is a hyperplane of DW (5, q), a so-called semi-singular hyperplane of DW (5, q)
with deepest point x. If @ is a quad of DW(5,q) and G is a hyperplane of é >~ Q(4,q),
then QU {z € I'1(Q) | mg(x) € G} is a hyperplane of DW (5, ¢), the so-called extension of
G.

If H is a hyperplane of DW(5,¢q) and @ is a quad, then either @ C H or QN H is a
hyperplane of Q = Q(4,q). If Q C H, then Q is called a deep quad. f QN H = 2+ N Q
for some point x € @), then @ is called singular with respect to H and x is called the deep
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point of ). The quad @Q is called ovoidal (respectively, subquadrangular) with respect to
H if and only if Q@ N H is an ovoid (respectively, a (¢ + 1) x (¢ + 1)-subgrid) of Q. A
hyperplane H of DW (5, q) is called locally singular (locally subquadrangular, respectively
locally ovoidal) if every non-deep quad of DW (5, ¢) is singular (subquadrangular, respec-
tively ovoidal) with respect to H. A hyperplane that is locally singular, locally ovoidal or
locally subquadrangular is also called a uniform hyperplane. In the following proposition,
we collect a number of known results which we will need to invoke later in the proof of
the Main Theorem.

Proposition 6. (1) The dual polar space DW (5, q), q # 2, has no locally subquadrangular
hyperplanes.

(2) The dual polar space DW (5, q) has no locally ovoidal hyperplanes.

(3) Every nonuniform hyperplane of DW (5,q) admits a singular quad.

Proposition 6(1) is due to Pasini & Shpectorov [17]. Locally ovoidal hyperplanes of
DW (5, q) are just ovoids and cannot exist by Thomas [25, Theorem 3.2], see also Coop-
erstein and Pasini [6]. Proposition 6(3) is due to Pralle [20].

The classical hyperplanes of the dual polar space DW (5, q) have already been classified
in the literature. The dual polar space DW (5,q), ¢ # 2, has six isomorphism classes
of classical hyperplanes by Cooperstein & De Bruyn [5] and De Bruyn [7]. This fact
is not true if ¢ = 2. The dual polar space DW (5,2) has twelve isomorphism classes
of hyperplanes by Pralle [21], see also De Bruyn [7, Section 9]. Observe that all these
hyperplanes are classical by Ronan [22, Corollary 2]. By De Bruyn [8], the classical
hyperplanes of DW (5, q) can be characterized as follows.

Proposition 7. The classical hyperplanes of DW (5, q) are precisely those hyperplanes H
of DW (5,q) that satisfy the following property: if Q is an ovoidal quad, then Q N H is a
classical ovoid of Q.

2.4 Hyperbolic sets of quads of DW (5, q)

As in Section 2.1, let W(5, q) be the polar space associated with a symplectic polarity of
PG(5,q). If L is a hyperbolic line of PG(5, ¢) (i.e. a line of PG(5, ¢) that is not a line of
W (5,q)), then the set of the ¢+ 1 (mutually disjoint) quads of DW (5, q) corresponding to
the points of L satisfy the property that every line that meets at least two of its members
meets each of its members in a unique point. Any set of ¢ + 1 quads that is obtained in
this way will be called a hyperbolic set of quads of DW (5, q). Every two disjoint quads Qy
and Qo of DW (5, q) are contained in a unique hyperbolic set of quads of DW (5, q). We
will denote this hyperbolic set of quads by H(Q1,Q2). Considering all the lines meeting
()1 and @5, we easily see that the following holds.

Lemma 8. Let {Q1,Q2,...,Qu1} be a hyperbolic set of quads of DW (5, q) and let H be
a hyperplane of DW(5,q) such that H N Q1 and wgo, (H N Q2) are distinct hyperplanes of

Q1. Then {mo,(HNQ;) |1 <i< g+ 1} is a pencil of hyperplanes of Q1.
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3 Proof of Theorem 1

Throughout this section, we suppose that H is an arbitrary hyperplane of DW (5, q). In
De Bruyn [9], we classified for every field K of size at least three the hyperplanes of
DW (5,K) containing a quad. The main theorem of [9] implies the following:

Proposition 9. Every non-classical hyperplane of DW (5,q), q¢ # 2, containing a quad is
the extension of a non-classical ovoid of a quad.

We have already mentioned above that every hyperplane of DW (5, 2) is classical by Ro-
nan [22, Corollary 2]. Since we are interested in the classification of all non-classical
hyperplanes of DW (5, q), we may by the above assume that the following holds:

Assumption: We have ¢ > 3 and the hyperplane H does not contain quads.

We denote by v the total number of points of H and by [ the total number of lines of
DW (5,q) contained in H. In Section 3.1, we prove that there are only three possible
values for v, namely ¢ +¢@*+¢@*+q+1, P+ + P+ +2¢+1or P +* + P+ +q+1.
In Section 3.2, we prove that if v = ¢°+¢*+¢*+q+1, then H is a semi-singular hyperplane.
We also prove there that semi-singular hyperplanes cannot exist if ¢ is even. In [10] (see
also Corollary 18), the nonexistence of semi-singular hyperplanes was already shown for
prime values of g. In Section 3.3, we prove that the case v = ¢° +¢*+¢*+¢*>+2¢+1 cannot
occur and in Section 3.4, we prove that H must be classical if v = ¢® +¢* +¢* +¢* +q+ 1.
All these results together imply that Theorem 1 must hold.

3.1 The possible values of v

The following lemma is an immediate consequence of Proposition 6.
Lemma 10. The hyperplane admits singular quads.

Lemma 11. We have | — v~(q2+q+1)—(q2+1)(q3+1)(q2+q+1)'
q

Proof. We count the number of lines not contained in H. There are (q+1)(¢* +1)(¢> +
1) — v points outside H and each of these points is contained in ¢* + ¢ + 1 lines which
contain a unique point of H. Hence, the total number of lines not contained in H is equal

((q+1)(q2+1)(q3;1)7v)(q2+q+1)‘ Since the total number of lines of DW (5, q) equals (¢* +

1)(¢°+1)(¢*+q+1), we have | = (¢ +1)(¢* +1)(¢* +q +1) - (LD 4o4)) _

v (@ +a+1)=(+1) (@ +1)(¢*+q+1) n
q
Lemma 12. If ) is a singular quad with deep point x, then one of the following cases
occurs:
() ztNnH=2'NnQ;
(2) there exists a line L through x not contained in Q such that z*NH = (z*NQ)UL;
(3) there exists a quad R through x distinct from Q such that x* N H = (z+ N Q) U
(1 N R);
(4) 2+ C H.

to
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Proof. Since 2zt NQ C 2t N H, |[Ay(z)] = ¢+ 1. If [Ay(z)| € {qg+ 1,9+ 2}, then
either case (1) or (2) of the lemma occurs. Suppose therefore that |Ag(z)] = ¢+ 3 and
let L; and Ly be two distinct lines through x that are contained in H, but not in ). Put
R := (L, Ly). Since L1 CRNH, Ly CRNH and RNQ C RN H, R is singular with
deep point x and hence every line of R through z is contained in H. So, |Ag(z)| > 2¢+ 1.

If |[Ag(z)] = 2g + 1, then obviously case (3) of the lemma occurs. Suppose therefore
that [Ag(x)| > 2¢+2. Then there exists a line Ly C H through z not contained in QU R.
If @ is a quad through Lj distinct from (L3, Q N R), then since Q' NQ C H, QN R C H
and Ly C H, @) is singular with deep point x and hence every line of @)’ through x is
contained in H. It follows that all lines of DW (5, q) through x are contained in H, except
maybe for the ¢ — 1 lines through x contained in (L3, @ N R) and distinct from Lz and
QN R. Let L' be one of these ¢ — 1 lines and let )" be a quad through L’ distinct from
(L3, Q@ N R). Since q > 3 lines of Q)" through z are contained in H, Q" is singular with
deep point x and hence also L' is contained in H. So, x+ C H and case (4) of the lemma
occurs. U

Lemma 13. If Q is a singular quad with deep point x, then |Ts(z) N H| = ¢°.

Proof. Every point of I'3(x) N H is collinear with a unique point of I'y(x) N Q. Conversely,
every point u of T'y(x) NQ is collinear with precisely ¢ points of I'3(z) N H. (One on each
line through u not contained in Q.) Hence, |T's(z) N H| = [T2(z) N Q| - ¢* = ¢°. O

Lemma 14. Suppose Q s a singular quad with deep point x.

o If case (1) of Lemma 12 occurs, then v = ¢ + ¢ + @ + @ +q+1 and | =
CHt+ P+ g+ 1L

o If case (2) of Lemma 12 occurs, then v = ¢ + ¢* + @+ ¢* +2¢+ 1 and | =
(¢* +q+ (¢’ +2).

o If case (3) of Lemma 12 occurs, then v = @ + ¢ + @ + @ +q+1 and | =
P+ +E+E+q+ 1.

e If case (4) of Lemma 12 occurs, thenv=q¢"+ ¢ +¢*+q+1 andl=¢* +q+ L.

Proof. Suppose case (1) of Lemma 12 occurs. Then z is contained in 1 singular quad
that has x as deep point (namely Q) and ¢* + ¢ singular quads that do not have x as deep
point. In this case, |To(z) NH| =1, |T1(z)NH|=¢*+q, |[T2(z) NH| =1-0+ (¢*+q) - ¢*
and |T3(z) N H| = ¢°. Hence, v =1+ (®+q)+(*+q¢) -+ =P+ +P+ @ +q+1.

Suppose case (2) of Lemma 12 occurs. Then z is contained in 1 singular quad with
deep point equal to z, ¢ + 1 subquadrangular quads and ¢? — 1 singular quads with deep
point different from x. In this case, [To(z) N H| = 1, |T1(z) N H| = (¢ + 2)q = ¢* + 2q,
Do) NH| =10+ (q+1)- ¢+ (*—1)-¢* =¢" + ¢ and [T'3(z) N H| = ¢°. Hence,
v=14(+2)+ (@ + )+ =+ + P+ P+ 20+ 1

Suppose case (3) of Lemma 12 occurs. Then z is contained in 2 singular quads with
deep point z, g—1 singular quads with deep point different from z and ¢* subquadrangular
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quads. In this case, [To(x) N H| =1, [Ti(x) N H| = 2¢+ 1)qg = 2¢* + ¢, |Ta(z) N H| =
2.0+ (-1 ¢+ ¢ =q¢"+¢—¢®and |I's(x) N H| = ¢°. Hence, v =1+ (2¢>+q) +
@'+ -+ =+ + P+ +q+ 1

Suppose case (4) of Lemma 12 occurs. Then z is contained in ¢? 4 ¢+ 1 singular quads
that have x as deep point. Hence, v = |To(2)NH|+|T1(x)NH |+ |To(x)NH|+|T3(z)NH| =
14¢(@P+q+1)+0+ =+ + P +q+ 1.

In each of the four cases, the value of [ can be derived from Lemma 11. 0]

By Lemmas 10, 12 and 14, we have:

Corollary 15. v € {* + P+ P+ q+ 1, + ¢+ P+ P +q+ 1, +¢* + P+ P +2¢+ 1}

We see that if case (2) of Lemma 12 occurs for one singular quad @, then case (2) occurs
for all singular quads ). A similar remark holds applies to case (4) of Lemma 12.

3.2 Thecasev=q¢ +¢@+¢@+q+1
Let @Q* denote a singular quad and z* its deep point.

Lemma 16. Ifv = ¢° + ¢ +¢*+q+1, then H is a semi-singular hyperplane of DW (5, q)
with deepest point x*.

Proof. If v = ¢ + ¢* + ¢* + ¢ + 1, then case (4) of Lemma 12 occurs for the pair
(Q*, z*). So, we have that 2** C H and T'y(z*)NH = §) (no deep quad through z*). Since
Lo(z*) N H = (), every line at distance 2 from z* contains a unique point of I's(z*) N H.
It follows that H is a semi-singular hyperplane of DW (5, ¢) with deepest point x*. ([l

The following proposition was proved in De Bruyn and Vandecasteele [10, Corollary 6.3].

Proposition 17. If q is a prime power such that every ovoid of Q(4,q) is classical, then
DW (5, q) does not have semi-singular hyperplanes.

By Propositions 4 and 17, we have

Corollary 18. If q is prime, then DW (5,q) has no semi-singular hyperplanes.

We will now use hyperbolic sets of quads of DW (5, ¢) to prove the nonexistence of semi-
singular hyperplanes of DW (5, q), q even.

Theorem 19. The dual polar space DW (5,q), q even, has no semi-singular hyperplanes.

Proof. Suppose H is a semi-singular hyperplane of DW (5, q), ¢ even, and as before let x*
denote the deepest point of H. Let () be a quad through z*, let G be a (¢+ 1) x (¢ + 1)-

subgrid of @) not containing z*, let L; and Ly be two disjoint lines of G and let Q);,
i € {1,2}, be a quad through L; distinct from @. Then @; and @, are disjoint. Put

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(2) (2013), #P14 8



H = H(Q1,Q2). Every Q3 € H intersects () in a line of G and hence z* ¢ Q3. It follows
that every Q3 € H is ovoidal with respect to H. Suppose Q3 € H\{Q1} and z3 € Q3N H
such that x; = 7, (x3) € @1 N H. Then the line x 23 is contained in H and hence
x* € xyxs. But this is impossible, since no quad of H contains z*. Hence, mg, (Q3 N H) is
disjoint from )y N H. By Lemma 8, the set {mg, (Qs N H) | Qs € H} is a partition of @,
into ovoids. This is however impossible since the generalized quadrangle (4, q), ¢ even,
has no partition in ovoids by Payne and Thas [18, Theorem 1.8.5]. U

3.3 Thecasev=¢" +¢" +¢@+¢*+2¢+1

We suppose that v = ¢° +¢* + ¢®* +¢* +2¢+ 1 and | = (¢* + ¢+ 1)(¢* +2). Recall that if
@ is a singular quad and x is the deep point of @, then case (2) of Lemma 12 occurs for

the pair (Q, z).

Lemma 20. Let Q) be a singular quad, let x be the deep point of Q, let L be the line
through x not contained in Q such that x* N H = (z- N Q) U L and let y be a point of
L\ {z}. Then there are ¢+ 1 lines Ly, Lo, ..., L,y through y different from L that are
contained in H. The q + 2 lines L, Ly, Lo, ..., Lgy1 form a hyperoval of the projective
plane Res(y) = PG(2,q). (Hence, ¢ must be even.)

Proof. The g + 1 quads Ry,..., Rs41 through L determine a partition of the set of
lines through y different from L. Each of these quads is subquadrangular. Hence, R;,
i€ {l,2,...,q+ 1}, contains a unique line L; # L through y that is contained in H.

For all 7,7 € {1,2,...,¢+ 1} with ¢ # j, the lines L, L, and L, are not contained in
a quad since the quad (L, L;) is subquadrangular. Suppose there exist mutually distinct
i,7,k € {1,2,...,q+ 1} such that L;, L; and Ly are contained in a quad ¢’. Then L is
not contained in Q" and hence @ N Q" = 0. Since L;, L; and L are contained in H, Q'
is singular with deep point y. Let 2’ € Q" \ y* and z := mg(2’). Since z and 2’ are not
contained in H, the line 2z’ contains a unique point z” € H. Let )" denote the unique
quad through z” intersecting L in a point u. Then Q" € H(Q,Q’). So, every point of
ut N Q" is contained in a line joining a point of y= N @’ with a point of 2+ N Q and hence
is contained in H. Since also z” € H, Q" C H, contradicting the fact that there are no
deep quads. O

Lemma 21. There are four possible types of points in H:

(A) points x for which Ag(z) is the union of a line of Res(z) and a point of Res(x)
not belonging to that line;

(B) points x for which Ag(x) is a hyperoval of Res(x);

(C) points x for which |Ag(z)| = 2;

(D) points x for which Ag(x) is empty.
Moreover, we have:

(i) Every point of Type (A) has distance 1 from precisely ¢* — 1 points of Type (A), q
points of Type (B) and q + 1 points of Type (C).

(17) Every point of Type (B) has distance 1 from precisely q + 2 points of Type (A),
(g4 2)(qg — 1) points of Type (B) and 0 points of Type (C).
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(7i1) Every point of Type (C) has distance 1 from precisely 2q points of Type (A), 0
points of Type (B) and 0 points of Type (C).

Proof. Suppose * is a singular quad and x* is its deep point. Consider the collinearity
graph I" of DW (5, q) and let I'y; denote the subgraph of I induced on the vertex set H.
Suppose z is a point of H such that x and z* belong to different connected components
of I'y. We prove that Ay(x) is empty. Suppose to the contrary that there exists a line
L through = contained in H. If L meets Q*, then L N Q* must be contained in z**,
contradicting the fact that * and x belong to different connected components of I'y;. So,
L is disjoint from Q*. Then my«(L) meets z*+ and hence z* and z are connected by a
path of I'y, again a contradiction.

Notice that by Lemma 14 and the fact that v = ¢° +¢* +¢* +¢*+2¢ + 1, 2* is a point
of Type (A). So, in order to prove the first part of the lemma, it suffices to verify that
every vertex x of Type (X), X € {A, B,C}, of 'y is adjacent with only vertices of Type
(A), (B) or (C). As a by-product of our verification, also the conclusions of the second
part of the lemma will be obtained.

First, suppose that z is a point of Type (A). Without loss of generality, we may suppose
that z = 2*. Let L* denote the unique line through * such that 2**NH = (z*-NQ*)UL*.
By Lemma 20, every point of L*\ {z*} has Type (B). Now, let L be a line through z*
contained in Q*. Then (L, L*) is a subquadrangular quad. Any quad through L different
from (L, L*) and Q* is singular with deep point contained in L \ {z*}. By Lemmas 12
and 14 and the fact that v = ¢° + ¢* + ¢® + ¢* +2q + 1, every point of L\ {z*} is the deep
point of at most 1 such singular quad. Hence, ¢ — 1 points of L\ {z*} have Type (A) and
the remaining point of L \ {z*} has type (C).

Suppose z is a point of Type (C). Let L; and L, denote the two lines through x that
are contained in H. Then (L4, Ls) is a subquadrangular quad. If @ is a quad through L,
distinct from (Lq, Lo), then @ is singular with deep point on L; \ {z}. By Lemmas 12
and 14 and the fact that v = ¢° + ¢* + ¢® + ¢* +2q + 1, every point of L, \ {z} is the deep
point of at most 1 such singular quad. It follows that every point of L; \ {z} has Type
(A). In a similar way, one shows that every point of Ly \ {z} has Type (A).

Suppose z is a point of Type (B). Let L be an arbitrary line through z contained in
H. Every quad through L is subquadrangular. It follows that through every point v € L
there are precisely ¢ + 2 lines that are contained in H. If at least three of these lines are
contained in a certain quad R, then R is singular with deep point u and hence u is of
type (A). Otherwise, u is of type (B). By Lemma 20, there are two possibilities.

(1) L contains a unique point of Type (A) and ¢ points of Type (B).
(2) L contains g + 1 points of Type (B).

We show that case (2) cannot occur. Suppose it does occur. Then |T'o(L)NH| = ¢+ 1 and
Ty (L) N H| = (¢ + 1)?q. Each quad intersecting L in a unique point is either ovoidal or
subquadrangular and contributes ¢* to the value of [['o(L)NH|. Since every point of I'y(L)
is contained in a unique quad that intersects L in a unique point, |To(L)NH| = (q+1)q¢?-¢>.
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It follows that |H| = |To(L)NH|+|T1(L)NH|+|To(L)NH| = (g+1)+(q+1)%q+(q+1)¢* =
¢ +¢*+ ¢ +2¢% +2q + 1, contradicting the fact that |H| = ¢ +¢* + ¢ +¢*+2¢+1. O

Now, let n4, ng, nc respectively np, denote the total number of points of H of Type
(A), (B), (C), respectively (D). Then by Lemma 21, we have n4 - ¢ = ng - (¢ + 2) and
na-(q+1) =ne-2q. Hence,

na-q

np = q—|—2’ (1)
e — %‘2“) 2)

Now, counting in two different ways the number of pairs (z, L), with x € H and L a line
through x contained in H, we obtain

na-(q+2)+ng-(qg+2)+nc-2=10-(qg+1) =(F+q+1)(g+ (> +2). (3)

(@PHa+1)(@+2)q o (@P+a+D)(@*+2)e?

From equations (1), (2) and (3), we find ny = Sqtl , B = T iaaern - and
2 3
ne = 4 +q+21()2(5;1r)2)(q+1). If ¢ =3, then ny € N. If ¢ > 4, then
5¢ 4 Tq+2
na+ng+ne = (*+q+1)(¢°+2)- d 1

2(¢+2)(2¢ + 1)
> P+ + @+ +20+1)-1

= ?_]’

a contradiction. Hence, the case v = ¢° + ¢* + ¢® + ¢*> + 2¢ + 1 cannot occur.

34 Thecasev=q¢ +¢+@+¢F+q+1
Suppose v =¢* +¢* + ¢* + ¢ +q+ 1.

Lemma 22. There are five possible types of points in H:
(A) points x for which |Ay(x)| =1;
(B) points © for which Ay (x) is a line of Res(z);
(C) points x for which Ay (x) is the union of two distinct lines of Res(x);
(D) points x for which Ag(z) is an oval of Res(x);
(E) points x for which Ay (x) is empty.

Proof. Suppose Q* is a singular quad and x* is its deep point. Consider the collinearity
graph ' of DW(5,¢q) and let I'y denote the subgraph of I' induced on the vertex set H.
Suppose z is a point of H such that x and x* belong to different connected components
of I'y. Then we prove that Ay (x) is empty. Suppose to the contrary that there exists a
line L through x contained in H. If L meets Q*, then L N Q* must be contained in z**,
contradicting the fact that 2* and x belong to different connected components of I'y. So,

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(2) (2013), #P14 11



L is disjoint from Q*. Then mg+(L) meets z** and hence 2* and x are connected by a
path of I'y, again a contradiction.

By Lemmas 12 and 14 applied to the pair (Q*,z*), * is a point of Type (B) or
(C). So, in order to prove the lemma, it suffices to prove that if x is a point of Type
(X) € {( ),(B),(C), (D)} and y is a point of H \ {z} collinear with z, then y is of Type
(A), (B), (C) or (D). Put L := zy. Since z is of Type (A), (B), (C) or (D), one of the

following two possibilities occurs:

(1) L is contained in ¢ + 1 singular quads with deep point on L.

(2) L is contained in a unique singular quad with deep point on L and ¢ subquadrangular
quads.

Observe that case (1) can only occur if x has Type (A), (B) or (C), while case (2) can
only occur if z has Type (C) or (D).

Suppose case (1) occurs. Then Ag(y) is the union of a number of lines of Res(y)
through a given point of Res(y), union this point. Since every quad through y is singular,
subquadrangular or ovoidal, every line of Res(y) intersects Ag(y) in either 0, 1, 2 or
q + 1 points. Notice also that the point y cannot be deep with respect to H, since
otherwise Lemmas 12 and 14 applied to any singular quad through y would yield that
v=¢"+ ¢ +q¢*+q+1, which is impossible. It follows that y is of Type (A), (B) or (C).

If case (2) occurs, then there are two possibilities:

(2a) Ap(y) is a line of Res(y) + ¢ extra points. By Lemma 12, y necessarily is a point
of Type (C).

(2b) |Ag(y)| = ¢+ 1. If at least three of the points of Ay (y) are collinear, then Ag(y) is
necessarily a line of Res(y). But this is impossible since y is not the deep point of
a singular quad through L. So, no three points of Ay (y) are collinear. This implies
that Ay (y) is an oval of Res(y), i.e. y is a point of Type (D). O

Definition. As we have already noticed in the proof of Lemma 22, every line L. C H must
be contained in either ¢ + 1 singular quads or one singular quad and ¢ subquadrangular
quads. If all quads on L are singular, then L is said to be special.

Lemma 23. If L is a special line, then L contains only points of Type (A), (B) and (C).
Moreover, the number of points of Type (A) on L equals the number of points of Type (C)
on L.

Proof. Since every quad through L is singular, there are (¢ + 1)q lines contained in H
that meet L in a unique point. Moreover, for every y € L, Ay(y) is the union of a number
of lines of Res(y), union the point of Res(y) corresponding to L. It follows that every
point of L is of Type (A), (B) or (C). Let ny, ns, respectively ns, denote the number of
points of Type (A), (B), respectively (C), contained in L. Then n; +mns+n3 = ¢+ 1 and
ny-0+ng-q+ns-2¢=q(qg+1). It follows that n; = ng. O

The proof of the following lemma is straightforward.
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Lemma 24. Every point of Type (A) is contained in a unique special line. Every point
of Type (C) is contained in a unique special line.

Let na, ng, nc, np, respectively ng, denote the total number of points of H of Type
(A), (B), (C), (D), respectively (E). The following is an immediate corollary of Lemmas
23 and 24.

Corollary 25. We have nc = ny.
Lemma 26. We have ng = 0.

Proof. We count in two different ways the number of pairs (x, L) with x € H and L a
line of H through x. We find

na-l+ng-(q+1)+nc-2¢+1)+np-(g+1)+ng-0=1I0(qg+1).

Using the facts that ny = ng and [ = (¢*+¢+1)(¢*+1) = v, we find ng+ng+nc+np = v.
Hence, ng = 0. U

2
Lemma 27. We have np = qzj%lnA.

Proof. We count in two different ways the number of pairs (z, Q) where @ is a singular
quad and z is its deep point. We find

Si2n3+2'nc, (4)

where Si denotes the total number of singular quads. We count in two different ways the
number of pairs (z, Q) where @ is a singular quad and z is a point of Q N H distinct from
the deep point of (). We find

(q+1)q-Si=(qg+Dna+q(g+1)ng+ (¢—1)nc+ (¢+ )np. (5)
From (4) and (5) and the fact that ny = nc, it readily follows that np = %n;‘. O

Now, put 0 :=n,. Then we have ny = ng =9, np = (]2_% dand ng = (¢*+q+ 1) (& +
2(¢®+q+1)
== o

Lemma 28. We have 0 <6 < [5(¢+ 1)(¢* +1)].

Proof. This follows from the fact that ng > 0. O

Remark. If ¢ > 4 is even, then by De Bruyn [7], the dual polar space DW (5, q) has

up to isomorphism two hyperplanes not containing quads. The values of ¢ corresponding

to these two hyperplanes are respectively equal to 0 and w. If ¢ is odd, then by

Cooperstein and De Bruyn [5], the dual polar space DW (5, ¢) has up to isomorphism two
hyperplanes not containing quads. The values of ¢ corresponding to these two hyperplanes
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are respectively equal to (¢ + 1)(¢* — 1) and 1(¢ + 1)(¢* + 1). So, the lower and upper
bounds in Lemma 28 can be tight.

Definition. Recall that if @ is a quad of DW (5, ¢) then the points and lines of DW (5, q)
contained in ) bijectively correspond to the points and lines of PG(4, ¢) that are contained
in a given nonsingular parabolic quadric Q(4, q) of PG(4, q). A conic of @ is a set of ¢+ 1
points of @) that corresponds to a nonsingular conic of Q(4,¢), i.e. with a set of ¢ + 1
points of (4, q) contained in a plane 7 of PG(4, q) intersecting Q(4,¢) in a nonsingular
conic of 7.

Lemma 29. Let {Q1,Q2,...,Qq1} be a hyperbolic set of quads of DW(5,q) such that
Q1 is ovoidal with respect to H and |mo,(Q2NH) N (Q1NH)| > 2. Then:

(1) mo,(QNH)N (Q1N H) is a conic of Q.

2) The number of ovoidal quads of {Q1,...,Qqs1} is bounded above by L. If the
q

2
- - - +1 - 41
number of these ovoidal quads is precisely &=, then the remaining 5~ quads of

2
{Q1,...,Qq1} are subquadrangular with respect to H.

Proof. We first prove that mg, (Q2 N H) # Q1 N H. Suppose to the contrary that
70, (Q2NH) = Q1N H. Let u be a point of Q; \ H, let L be the unique line through u
meeting each quad of {Q1,Qs, ..., Qu+1}, let v denote the unique point of L contained in
H, and let i be the unique element of {3,...,¢+ 1} such that v € @;. Now, since Q; N H
contains g, (Q2 N H) and the point v € Q; \ 7o, (Q2 N H), we must have @); C H. This is
however impossible since no quad is contained in H.

So, mg,(Q2N H) # Q1N H. By Lemma 8, {mg,(@: N H)|1 < i< ¢+1}isa
pencil of hyperplanes of @; Let aq, as, respectively ag, denote the number of quads of
{Q1,...,Qq1} that are ovoidal, singular, respectively subquadrangular, with respect to
H. Put §:=|mg,(Q2NH)N (Q1 N H)| > 2. We prove that § = ¢+ 1.

Ifa;=qg+1and ag = a3 =0, then (¢+1)(¢*+1) = |Q:1| =8+ (¢+ 1) (¢*+1-5) =
(q+1)(¢*+1)—qB < (¢+1)(¢*+1), a contradiction. So, without loss of generality, we may
suppose that ()5 is not ovoidal with respect to H. If ()5 is subquadrangular with respect
to H, then f = |7, (Q2NH)N(Q1NH)| = ¢+ 1. If ), is singular with respect to H with
deep point u such that mg, (u) & Q1 N H, then also = |1, (Q2NH)N(Q1NH)| =q+1.
If @y were singular with respect to H with deep point u such that mg, (u) € Q1 N H, then
B =|mo,(Q2NH)N(Q1 N H)| =1, a contradiction. Hence, 5 = ¢+ 1 as claimed.

Now, we have a1 +as + a3 = ¢+ 1and (¢+1)(¢*+1) = |Q1] = (¢+ 1)+ a1(¢®* — ¢) +
s> +az3(@*+q) = (q+ 1)+ (g+1)¢* + qlaz —ay), i.e. ag+as+asz=q+1and a; = az.
Hence, oy = a3 < %. Moreover, if oy = a3z = q;—l, then ay = 0. This proves claim (2).
Now, as + a3z > %. So, as + a3 > 2. Without loss of generality, we may suppose
that the quads )2 and Q3 are singular or subquadrangular with respect to H.

The points and lines contained in @); can be identified (in a natural way) with the
points and lines lying on a given nonsingular parabolic quadric Q(4, q¢) of PG(4, ¢). Now,
each of 7g, (Q2 N H) and 7, (Qs N H) is either a singular hyperplane or a subgrid of Q1
and hence arises by intersecting ()(4, ¢) with a hyperplane of PG(4,¢). Since mg, (Q2 N
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H)Nmo,(QsNH) =mg,(Q2NH)N(Q1NH) is a set of g+ 1 mutually noncollinear points,
7o, (Q2 N H) N (Q1 N H) must be a conic of Q. O

Lemma 30. If Q)1 is an ovoidal quad, then through every two points of Q1 N H, there is
a conic of Q1 that is completely contained in QQ1 N H.

Proof. Let x; and x5 be two distinct points of )1 N H. By Lemmas 22 and 26, there
exists a line L;, i € {1,2} through x; that is contained in H. Let Q)2 be a quad distinct
from () that meets Ly and Lo, and let {Q1, @2, ..., Qq+1} be the unique hyperbolic set
of quads of DW (5, ¢q) containing @); and Q9. Since {x1, 22} C mo,(Q2NH) N (Q1 N H),
Lemma 29 applies. We conclude that 7o, (Q2 N H) N (Q1 N H) is a conic containing
and x,. O

Lemma 31. For every quad Q1 that is ovoidal with respect to H, there is a quad Qo
disjoint from Q1 that is singular with respect to H such that wg, (u) & Q1 N H where u is

the deepest point of the singular hyperplane Qs N H of ()s.

Proof. The number of points x € I'1(Q1) N H for which 7o, (z) € Q1 N H is equal to

(1Q:] = Q1 NHI) - 4> = ¢*(¢* + 1). Now, since np = 258 < 2L L(g+1)(¢* + 1) =
(¢ +1) < ¢(¢* + 1), there exists a point y € I'1(Q;) N H not of type (D) for which
7o, (y) € Q1N H. Let L C H be a special line through y and let z denote the unique

point of L for which mg,(2) € @1 N H. By Lemma 22, there are at most two quads R
through L for which z is the deep point of the singular hyperplane R N H of R. Hence,
there exists a quad ()2 through L for which the deep point w of the singular hyperplane
Q2 N H of (), is distinct from 2. Since u is not collinear with a point of 1 N H, @)1 and
(- are disjoint. O

Lemma 32. If (), is ovoidal with respect to H, then Q1N H is a classical ovoid of @vl

Proof. By Lemma 31, there exists a quad Q441 disjoint from (); that is singular with
respect to H such that mg,(u) € Q1 N H where v is the deep point of the singular

hyperplane Qq+1 N H of C/Q;J:. Let {Q1,Q2,...,Qq+1} denote the unique hyperbolic set
of quads of DW (5, ¢) containing ¢); and Q,4+:. By Lemma 29, we then have:

(1) X :==m,(Qqr1 N H) N (Q1 N H) is a conic of Q;

(2) the number k of ovoidal quads of the set {Q1,Q2, ..., Qq41} is at most £.
Without loss of generality, we may suppose that @1, ..., Qx are the quads of {Q1, @2, . . .,
(Qq+1} that are ovoidal with respect to H. Since (¢ +1) — 1 > 2, Q, and Q41 are not
ovoidal with respect to H. By Lemmas 5 and 8, mg,(Q, N H) and 7g, (Qq+1 N H) are

—

contained in a unique pencil of classical hyperplanes of ();. Moreover, this pencil contains
the hyperplanes mg, (Q; N H),i € {k+1,...,q+1}. Let A;,..., Ay denote the remaining
elements of this pencil. Then X C Ay N---NAgand A U---UA, = 7o, (QiNH)U
UM, (Qk M H). Now, [A; U~ U A > [X|+ k(" +1—|X]) = (¢g+ 1)+ k(¢ —q)

and equality holds if and only if every A;, 7 € {1,...,k}, is a classical ovoid of ;. Now,
since |1, (Qi NV H) U+ U, (Qx N H)| = [X|+k(¢* +1— |X]) = (¢+1) + k(¢* — q), we

can conclude that every A;, j € {1,...,k}, is a classical ovoid of Q).
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Now, let i € {1,...,k} and suppose there exists no j € {1,...,k} such that mg, (Q; N
H) = A;. Then X C 7, (Q;NH) C Ay U---U A, and there exist two distinct ji, jo €
{1,...,k} such that 7, (Q: NV H) N (Aj; \ X) # 0 and 7o, (Q;: N H) N (Aj, \ X) # 0. Let
y1 be an arbitrary point of mg, (Q; N H) N (A, \ X) and let y, be an arbitrary point of
70, (Qi N H)N (A, \ X). By Lemma 30, there exists a conic C' through y; and y, that is
completely contained in g, (Q;NH) and hence also in A;U---UAy. Since |C| = ¢+1 and
k < 4, there exists a js € {1,...,k} such that [CNAj,| > 3. Since Aj; is a classical ovoid

of @vl , this necessarily implies that C' C Aj,, contradicting the fact that y; € A4; \ X,
yo € A;,\ X and j; # jo. Hence, there exists a j € {1, ..., k} such that mg, (Q;NH) = A;.

This implies that the ovoid Q); N H of @); is classical. O
Corollary 33. The hyperplane H 1is classical.

Proof. This is an immediate corollary of Proposition 7 and Lemma 32. U

Remark. With the terminology of Cooperstein & De Bruyn [5] and De Bruyn [7], the
hyperplane H is either a hyperplane of Type V or a hyperplane of Type VI.
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