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Abstract

Let Dv,b,k denote the family of all connected block designs with v treatments
and b blocks of size k. Let d ∈ Dv,b,k. The replication of a treatment is the number
of times it appears in the blocks of d. The matrix C(d) = R(d) − 1

kN(d)N(d)>

is called the information matrix of d where N(d) is the incidence matrix of d and
R(d) is a diagonal matrix of the replications. Since d is connected, C(d) has v − 1
nonzero eigenvalues µ1(d), . . . , µv−1(d). Let D be the class of all binary designs of
Dv,b,k. We prove that if there is a design d∗ ∈ D such that (i) C(d∗) has three
distinct eigenvalues, (ii) d∗ minimizes trace of C(d)2 over d ∈ D, (iii) d∗ maximizes
the smallest nonzero eigenvalue and the product of the nonzero eigenvalues of C(d)

over d ∈ D, then for all p > 0, d∗ minimizes
(∑v−1

i=1 µi(d)−p
)1/p

over d ∈ D. In the

context of optimal design theory, this means that if there is a design d∗ ∈ D such
that its information matrix has three distinct eigenvalues satisfying the condition
(ii) above and that d∗ is E- and D-optimal in D, then d∗ is Φp-optimal in D for
all p > 0. As an application, we demonstrate the Φp-optimality of certain group
divisible designs. Our proof is based on the method of KKT conditions in nonlinear
programming.
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1 Introduction

For a statistician, a design is a much more general structure than what it means to a
combinatorialist. What statisticians consider a design is in fact a more general struc-
ture than a hypergraph; the blocks may contain repeated treatments. Statisticians use
designs as experimenting schemes and they need to decide which one is better than the
other in some sense. Their criterion for this is the general principle that a better de-
sign has a smaller variance of estimators [3]. A design which is the best in this sense
is called ‘optimal’. Usually, statisticians consider three major criteria for optimality: A-
optimality, D-optimality, and E-optimality. (The letters A, D, and E stand for ‘average’,
‘determinant’, and ‘extreme’.) These criteria can be stated in terms of the eigenvalues of
certain matrices associated to designs which is discussed in the remaining parts of this
introductory remarks.

We consider designs in statistical sense which are pairs (X,B) where X is a v-set
whose elements are called treatments and B is a collection of lists (called blocks) each
consists of k treatments. A design is said to be connected if for every pair of treatments
it is possible to pass from one to the other through a chain of treatments such that
any two consecutive treatments in the chain appear in a common block. The set of
all connected designs with v treatments, b blocks and block size k is denoted by Dv,b,k.
Since the blocks of a design are defined as lists, they may contain repeated elements. If
the blocks are subsets of X, i.e. have no repeated elements, then the design is called
binary. Let d ∈ Dv,b,k. Let N(d) be the v × b incidence matrix whose (i, j) entry is the
number of times that treatment i occurs in block j. Thus the column sums of N(d) are
all equal to k, the block sizes while the sum ri of the i-th row is the number of times
which treatment i occurs overall which is the replication of i. If d binary, then N(d) is a
(0, 1)-matrix. A design is called equireplicate if all the treatments have equal replications.
The concurrence matrix of d is the v×v matrix S(d) = N(d)N(d)>. The diagonal matrix
whose diagonal entries are the replication numbers of treatments is denoted by R(d). The
matrix C(d) = R(d)− 1

k
S(d) is called the information matrix of d. It is well known that

C(d) is a positive semidefinite matrix and since d is connected, C(d) has exactly one
eigenvalue zero. Let µ1(d) > · · · > µv−1(d) be the nonzero eigenvalues of C(d) which we
assume throughout that are ordered decreasingly. The multiset of nonzero eigenvalues of
C(d) is called the spectrum of C(d). If µ1 > · · · > µs are distinct nonzero eigenvalues of
C(d) with multiplicities t1, . . . , ts, respectively, we use the notation {µt1

1 , . . . , µ
ts
s } for the

spectrum of C(d).
Given a class of designs, a design is said to be A-optimal if it maximizes the harmonic

mean of µ1, . . . , µv−1 in that class. A design is D-optimal if it maximizes the geometric
mean of µ1, . . . , µv−1. A design is said to be E-optimal if it maximizes the minimum of
the nonzero eigenvalues of C(d). The eigenvalue optimality criteria are generalized by
Kiefer [19] to a much more general criterion called Φp-optimality. For any p > 0, a design
is Φp-optimal if it minimizes (∑v−1

i=1 µ
−p
i

v − 1

) 1
p

.
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A-optimality corresponds to p = 1; the limit as p → 0 gives D-optimality; the limit as
p → ∞ gives E-optimality. Cheng [9] further generalized the notion of optimality as
follows. Let a be a large enough positive number and f be a real valued function defined
on the interval (0, a). Suppose that f satisfies the conditions (i) limx→0+ f(x) = ∞, (ii)
f ′ < 0, (iii) f ′′ > 0, and (iv) f ′′′ < 0. Then a design d∗ is called type 1 optimal if for any
d with the same number of treatments and blocks as d∗ and for all functions f satisfying
the above properties, we have

v−1∑
i=1

f(µi(d
∗)) 6

v−1∑
i=1

f(µi(d)).

The specific functions f(x) = x−p and f(x) = − lnx give Φp-optimality and D-optimality,
respectively.

The notion of universal optimality introduced by Kiefer [19] helps in unifying the
various optimality criteria. Let Mv be the set of all v × v symmetric matrices with zero
row and column sums. Consider a function Φ : Mv → R such that

(i) Φ is convex,

(ii) Φ(bC) is a nonincreasing function of b > 0 for any C ∈Mv, and

(iii) Φ is invariant under each simultaneous permutation of rows and columns.

A design d∗ is said to be universally optimal over a class of competing designs D if d∗ ∈ D
and for every function Φ satisfying the above conditions Φ(C(d∗)) 6 Φ(C(d)) for any
d ∈ D. It can be shown that a design that is universally optimal is also A-, D- and
E-optimal.

The theory of optimal designs is discussed in details in the recent survey [3].
In this paper we are interested in the optimality of designs with three distinct eigenval-

ues, that is designs d for which the information matrix C(d) has three distinct eigenvalues.
For equireplicate designs, this is equivalent to say that the concurrence matrix of d has
three distinct eigenvalues. The (connected) designs with three distinct eigenvalues are
called connected designs with second-order balance in the statistical literature. R.A. Bai-
ley (see [8]) raised the question that which designs have three eigenvalues. More specific,
it was asked for which equireplicate designs d does the concurrence matrix S(d) have three
distinct eigenvalues. This was partially answered in [16, 17]. This class of designs include
partial geometric designs. A partial geometric design is defined as a binary equireplicate
connected design whose concurrence matrix is a singular matrix with at most three dis-
tinct eigenvalues, see [6, 7]. The optimality of designs with few eigenvalues has captured
the attention of many workers in the field.

The following result due to Kiefer [19] provides a sufficient condition for determining
a universally optimal design over a class of competing designs D.

Theorem 1. (Kiefer [19]) Suppose a class C = {C(d) | d ∈ D} of matrices in Mv contains
a C(d∗) for which
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(i) C(d∗) is completely symmetric, that is its diagonal elements are constant and its
off-diagonal elements are constant, and

(ii) d∗ maximizes the trace of C(d) over d ∈ D.

Then d∗ is universally optimal over D. In particular, if Dv,b,k contains a BIBD d∗, then
d∗ is universally optimal over Dv,b,k.

In other words, the Kiefer’s result says that if a design d∗ maximizes the trace of C(d)
over d ∈ Dv,b,k and the spectrum of C(d∗) is of the form {µv−1

1 }, then d∗ is universally
optimal over Dv,b,k.

Theorem 2. (Cheng [9]) Suppose d∗ ∈ Dv,b,k satisfies the following properties:

(i) C(d∗) has spectrum of the form {µ1, µ
v−2
2 },

(ii) d∗ maximizes trace of C(d) over d ∈ Dv,b,k,

(iii) d∗ minimizes the trace of C(d)2 over d ∈ Dv,b,k.

Then d∗ is type 1 optimal in Dv,b,k.

Theorem 3. (Cheng [11]) If there is a design d∗ ∈ Dv,b,k such that

(i) C(d∗) has spectrum of the form {µv−2
1 , µ2},

(ii) d∗ maximizes trace of C(d) over d ∈ Dv,b,k,

(iii) d∗ is Φp-optimal for some p > 0,

then d∗ is Φq-optimal for all 0 6 q 6 p.

In the same paper, Cheng also showed that the same result holds if one replace the
condition (ii) in Theorem 3 by “(ii)′ d∗ is D-optimal.”

Theorem 4. (Jacroux [21]) Suppose d∗ ∈ Dv,b,k satisfies the following properties:

(i) C(d∗) has spectrum of the form {µ1, µ
v−3
2 , µ3},

(ii) d∗ minimizes the trace of C(d)2 over d ∈ Dv,b,k,

(iii) d∗ is E-optimal.

Then d∗ is type 1 optimal in Dv,b,k.

A design d∗ is said to be M-optimal (or Schur-optimal) in Dv,b,k if for any d ∈ Dv,b,k,
the vector of eigenvalues of C(d), ordered decreasingly, majorizes the vector of eigenvalues
of C(d∗), that is

t∑
i=1

µi(d
∗) 6

t∑
i=1

µi(d), for all t = 1, . . . , v − 1.
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It is known that if d∗ is M -optimal, then it is optimal with respect to many criteria
including type 1 optimality. We note that for a partial geometric design d, the replication
r is an eigenvalue of C(d) as S(d) is singular. The dual of a design d with b blocks and v
treatments is the design d with v blocks, b treatments and N(d) = N(d)>.

Theorem 5. (Bagchi and Bagchi [2]) Suppose d∗ ∈ Dv,b,k is a partial geometric design
with replication r and spectrum {rg, µv−1−g}. If d∗ satisfies the following properties

(i) g 6 (v−1)(k−1)
r(v−k) ,

(ii) the dual of d∗ is M-optimal in the class of all equireplicate designs of Db,v,r,

then d∗ is M-optimal in Dv,b,k.

For similar results on M-optimality see [4]. More results on optimality of designs with
few eigenvalues can be found in [1, 9].

In this paper, we continue this line of research and prove the following theorem.

Theorem 6. Let D be the class of all binary designs of Dv,b,k. Let d∗ ∈ D such that C(d∗)
has two nonzero distinct eigenvalues. If

(i) d∗ minimizes the trace of C(d)2 over d ∈ D,

(ii) d∗ is E-optimal in D,

(iii) d∗ is D-optimal in D,

then d∗ is Φp-optimal for all p > 0 in D.

Remark 7. The referee pointed out that the designs which satisfy the hypotheses of
Theorem 6 seem rather likely to be partially balanced designs with two associate classes
and concurrences differing by one (for definition and properties see [25, Chapter 11]). A
related result was proved in [13] where it was shown that among partially balanced designs
with two associate classes and concurrences differing by one those which have a singular
concurrence matrix are type 1 optimal within the subclass of all binary equireplicate
incomplete designs of Dv,b,k.

As an application of Theorem 6, we demonstrate the Φp-optimality of certain group
divisible designs. Group divisible designs are an important class of partially balanced
incomplete block designs. These designs have v treatments divided into m groups of
n treatments each such that treatments in the same group occur together in λ1 blocks
and treatments in different groups occur together in λ2 blocks. Jacroux [20] showed that
group-divisible designs of group size 2, k > 3, and λ2 = λ1 + 1 or λ2 = λ1 − 1 (where
λ1 > 1) are D-optimal. These designs have two distinct nonzero eigenvalues, and clearly
minimize tr(C2). They are also E-optimal. The E-optimality of the former was shown by
Takeuchi [26] and the latter by Cheng [10]. Hence by Theorem 6, they are Φp-optimal.
We summarize this in the following theorem.
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Theorem 8. Group-divisible designs of group size 2, k > 3, and λ2 = λ1+1 or λ2 = λ1−1
(where λ1 > 1) are Φp-optimal for all p > 0.

Another application of Theorem 6 concerning the optimality of the Petersen graph
will be given at the end of Section 3.

Theorem 6 is a consequence of the following general inequality which could be of
interest on its own. We recall that for two different designs d1, d2 ∈ Dv,b,k, it is likely that
traceC(d1) 6= traceC(d2). Nonetheless, for binary designs these are equal, namely for all
binary designs d ∈ Dv,b,k, traceC(d) = b(k − 1).

Theorem 9. Let (θ1, . . . , θn) be a vector consisting of two distinct, positive components.
If a vector (x1, . . . , xn) of positive components satisfies the conditions

(i) x1 + · · ·+ xn = θ1 + · · ·+ θn,

(ii) x21 + · · ·+ x2n > θ21 + · · ·+ θ2n,

(iii) min{xi | i = 1, . . . , n} 6 min{θi | i = 1, . . . , n},

(iv)
∏n

i=1 xi 6
∏n

i=1 θi,

then for all p > 0,
x−p1 + · · ·+ x−pn 6 θ−p1 + · · ·+ θ−pn .

The proof of Theroem 9 is based on Karush–Kuhn–Tucker (KKT) conditions from
nonlinear programming and shall be presented in Section 3.

2 Karush–Kuhn–Tucker (KKT) conditions

In nonlinear programming, the Karush–Kuhn–Tucker (KKT) conditions are necessary for
a local solution to a minimization problem provided that some regularity conditions are
satisfied. Allowing inequality constraints, the KKT approach to nonlinear programming
generalizes the method of Lagrange multipliers, which allows only equality constraints.
For details see [24].

Consider the following optimization problem:

Minimize f(x)
subject to:

gi(x) 6 0, for i ∈ I,
hj(x) = 0, for j ∈ J ,

where I and J are finite sets of indices. Suppose that the objective function f : Rn → R
and the constraint functions gi : Rn → R and hj : Rn → R are continuously differentiable
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at a point x∗. If x∗ is a local minimum that satisfies some regularity conditions, then
there exist constants νi and λj, called KKT multipliers, such that

∇f(x∗) +
∑
i∈I

νi∇gi(x∗) +
∑
j∈J

λj∇hj(x∗) = 0

gi(x
∗) 6 0, for all i ∈ I,

hj(x
∗) = 0, for all j ∈ J,
νi > 0, for all i ∈ I,

νigi(x
∗) = 0, for all i ∈ I.

In order for a minimum point to satisfy the above KKT conditions, it should satisfy
some regularity conditions (or constraint qualifications). The one which suits our problem
is the Mangasarian–Fromovitz constraint qualification (MFCQ). Let I(x∗) be the set of
indices of active inequality constraints at x∗, i.e. I(x∗) = {i ∈ I | gi(x∗) = 0}. We say
that MFCQ holds at a feasible point x∗ if the set of gradient vectors {∇hj(x∗) | j ∈ J}
is linearly independent and that there exists w ∈ Rn such that

∇gi(x∗)w> < 0, for all i ∈ I(x∗),

∇hj(x∗)w> = 0, for all j ∈ J.

Theorem 10. ([22], see also [24]) If a local minimum x∗ of the function f(x) subject to
the constraints gi(x) 6 0, for i ∈ I, and hj(x) = 0, for j ∈ J , satisfies MFCQ, then it
satisfies the KKT conditions.

3 Proofs

In this section, we prove Theorem 9. We start by stating some results on inequalities.

Lemma 11. (Bennet [5]) Suppose that α1, α2, δ1, δ2 > 0, d1 < a1 < a2 < d2, α1 + α2 =
δ1 + δ2, and that α1a1 + α2a2 = δ1d1 + δ2d2. If ϕ is a convex function, then

α1ϕ(a1) + α2ϕ(a2) 6 δ1ϕ(d1) + δ2ϕ(d2).

Lemma 12. (Bennet [5]) Suppose that α1, α2, δ1, δ2 > 0, a1 < d1 < a2 < d2, α1 + α2 =
δ1 + δ2, α1a1 + α2a2 = δ1d1 + δ2d2, and that α1a

2
1 + α2a

2
2 > δ1d

2
1 + δ2d

2
2. If ϕ is a concave

and ϕ′ a convex function, then

α1ϕ(a1) + α2ϕ(a2) 6 δ1ϕ(d1) + δ2ϕ(d2).

Lemma 13. Let m,n, s, t be positive integers with m+ n = s+ t and a1, a2, x, y be reals
with 0 < x 6 a1 < a2 6 y. If sx + ty = ma1 + na2 and sx2 + ty2 = ma21 + na22, then
m = s, n = t, x = a1, and y = a2.
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Proof. First assume that s > m. If we let α1 := x − a1 6 0, α2 := x − a2 < 0, and
γ := y − a2 > 0, then, by the assumption, mα1 + (s−m)α2 + tγ = 0. Now we have

sx2 + ty2 = m(a1 + α1)
2 + (s−m)(a2 + α2)

2 + t(a2 + γ)2

= ma21 + na22 +mα2 + (s−m)α2
2 + tγ2 + 2mα1(a1 − a2)

+ 2a2(mα1 + (s−m)α2 + tγ).

By the assumption, it is necessary that s = m and α1 = γ = 0 which implies the result.
The case s < m can be handled similarly.

Now we let
p := (θ1, . . . , θ1, θ2, . . . , θ2) ∈ Rn,

such that 0 < θ1 < θ2, θ1 is repeated m1 times and θ2 is repeated m2 times. In order to
prove Theorem 9, we fix p > 0 for the rest of the paper and find the global minima of the
function

f(x) := x−p1 + · · ·+ x−pn , x = (x1, . . . , xn) ∈ Rn

subject to the constraints:

g(x) := x1 + · · ·+ xn −m1θ1 −m2θ2 = 0,

h(x) := m1θ
2
1 +m2θ

2
2 − x21 − · · · − x2n 6 0,

k(x) := x1 · · ·xn − θm1
1 θm2

2 6 0,

l1(x) := x1 − θ1 6 0,

l2(x) := ξ − x1 6 0,

mi(x) := x1 − xi 6 0, for i = 2, . . . , n− 1,

ni(x) := xi − xn 6 0, for i = 2, . . . , n− 1.

The positive number ξ is chosen small enough so that it satisfies ξ−p > f(p).
Hereafter we suppose that the vector

e = (e1, . . . , en)

is a local minimum of the above problem.

Lemma 14. If l2(e) < 0, then e satisfies MFCQ.

Proof. With no loss of generality, assume that e1 6 e2 6 · · · 6 en. We have also e1 < en.
The only equality constraint is g(x) = 0 for which ∇g(x) is the all one vector. So if
∇g(e)w> = 0, then the components of w must sum up to zero. We also observe that
mi(e) = 0 and ni(e) = 0 cannot simultaneously occur for any i = 2, . . . , n. Assume that
t of ei are equal to en for some t > 1 and a, b, c be positive numbers with a = (t− 1)b+ c
and c > b. By choosing w = (−a, 0, . . . , 0, b, . . . , b, c), with b repeated t− 1 times, we see
that for all y in

{∇h(e),∇k(e),∇l1(e)}∪{∇mi(e) | i = 2, . . . , n−1−t}∪{∇ni(e) | i = n−2−t, . . . , n−1}

we have yw> < 0. Hence MFCQ conditions are satisfied for e.
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Theorem 15. If e is a global minimum, then it must be a permutation of p.

Proof. Assume that f(e) 6 f(p) and e1 6 e2 6 · · · 6 en. We show that e must be equal
to p. By the choice of ξ, l2(e) < 0 and so by Lemma 14, e satisfies KKT conditions,
namely

∇f(e)+ν∇g(e)+λ∇h(e)+ρ∇k(e)+
2∑

i=1

ηi∇li(e)+
n−1∑
i=2

(αi∇mi(e) + βi∇ni(e)) = 0, (1)

e1 + · · ·+ en −m1θ1 −m2θ2 = 0, (2)

λ > 0, λ(m1θ
2
1 +m2θ

2
2 − e21 − · · · − e29) = 0, (3)

ρ > 0, ρ(e1 · · · en − θm1
1 θm2

2 ) = 0, (4)

η1 > 0, η1(e1 − θ1) = 0, (5)

η2 > 0, η2(ξ − e1) = 0, (6)

αi > 0, αi(e1 − ei) = 0, for i = 2, . . . , n− 1, (7)

βi > 0, βi(ei − en) = 0, for i = 2, . . . , n− 1. (8)

Since l2(e) < 0, we have η2 = 0. If we let D =
∏n

i=1 ei, then (1) can be written as

− pe−p−11 + ν − 2λe1 + ρ
D

e1
+ η1 + α2 + · · ·+ αn−1 = 0, (9)

− pe−p−1i + ν − 2λei + ρ
D

ei
− αi + βi = 0, for i = 2, . . . , n− 1,

− pe−p−1n + ν − 2λen + ρ
D

en
− β2 − · · · − βn−1 = 0. (10)

Assume that r of ei are equal to e1, t of ei are equal to en, and s of them are between e1
and en. We consider four cases according to whether r and t are equal to 1 or not.
Case 1. r > 2 and t > 2. We have e2 = e1. This implies that e2 < en and so β2 = 0 and
−α2 = η1 + α2 + · · · + αn−1. Since η1, αi > 0 it follows that η1 = α2 = · · · = αn−1 = 0.
Similarly β2 = · · · = βn−1 = 0. It turns out that each ei must be a zero of the function

y(x) := −p+ νxp+1 − 2λxp+2 + ρDxp.

It is easily seen that y′(x) has at most one positive zero and thus y(x) has at most two
positive zeros. Therefore, each ei is equal to either e1 or en. In case λ = 0, y(x) becomes
a monotone function and thus it has at most one zero implying that e1 = · · · = en which
is impossible. Therefore, λ > 0 and so by (3),

re21 + te2n = m1θ
2
1 +m2θ

2
2.

Now Lemma 13 implies that e1 = θ1, en = θ2, r = m1 and t = m2. Therefore, e = p.
Case 2. r > 2 and t = 1. Since t = 1, by (8), all βi are zero. Since r > 2, as above,
η1 = α2 = · · · = αn−1 = 0. It follows that all ei are zeros of y(x) and so e1 = · · · = en−1.
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We have necessarily en > θ2. Now, if m2 > 1, then by Lemma 13, we arrive at a
contradiction and if m2 = 1, then e = p.
Case 3. r = 1 and t > 2. Since r = 1, by (7), all αi are zero and from t > 2 it follows
that β2 = · · · = βn−1 = 0. If η1 = 0, then all ei admit at most two different values which
is only possible when r = m1 and t = m2 as in Case 2. Thus η1 > 0 and so e1 = θ1. The
rest of ei are zeros of y(x) and so they are equal to either e2 or en. Clearly e2 > θ1. From
lemma 13 it follows that en > θ2. Now we apply Lemma 12 with the function ϕ(x) = lnx.
It turns out that e1 · · · en > θm1

1 θm2
2 , a contradiction.

Case 4. r = t = 1. As above, we have all αi and βi equal to zero and so all of e2, . . . , en
are zeros of y(x). From (9) it is clear that y(e1) 6 0. So if we denote the zeros of y(x) by y1
and y2 with y1 6 y2, then we have e1 < y1 < en = y2 implying that e2 = · · · = en−1 = y1.
If η1 = 0, then e1 must be a zero of y(x) and it has to be equal to y1 which is not possible.
So η1 > 0 implying that e1 = θ1. This yields the same result as in Case 3.

Consequently, we found that all the cases lead to a contradiction except for the case
r = m1 and t = m2 which in turn implies that e = p. The proof is now complete.

Example. The celebrated Petersen graph has many fascinating properties. Concerning
optimality, this distinguished graph shows another interesting and unique character. In
[18], an algorithm is developed which searches for optimal designs within Dv,b,k. Imple-
menting that algorithm, we looked for the optimal designs in the family of graphs with 10
vertices and 15 edges. As result, the Petersen graph was pumped out as the A-, D-, and
E-optimal design in that family. This was in fact one of our motivations for this work.
Now, as a demonstration of Theorem 6, we prove the general optimality property that
for all p > 0, the Petersen graph is the unique Φp-optimal and also D- and E-optimal
graph among all connected simple graphs on 10 vertices and 15 edges. This follows from
Theorem 6 and Proposition 16 below. Note that, since we restrict to simple graphs, that
the Petersen graph minimizes tr(C2) is trivial. Meanwhile, the uniqueness of Petersen
graph as D- and E-optimal design is concluded from the equality cases of Proposition 16.
(We remark that the E-optimality of Petersen graph is a special case of Theorem 3.3 of
[12]. Nonetheless we include the short reasoning for the sake of completeness.) In passing
we mention that in the case of graphs, the information matrix is half its Laplacian matrix
so one can consider the eigenvalues of Laplacian matrix for studying optimality. Recall
that the Laplacian eigenvalues of Petersen graph are {54, 25, 0}. The Petersen graph is
also uniquely determined by its Laplacian eigenvalues.

Proposition 16. Let G be a connected graph with 10 vertices, 15 edges, and denote the
eigenvalues of Laplacian matrix of G by µ1 > · · · > µ9 > µ10 = 0. Then

(i) µ9 6 2 and the equality holds only for Petersen graph,

(ii)
∏9

i=1 µi 6 2 · 104 and the equality holds only for Petersen graph.

Proof. Let d1 > · · · > d10 be the degree sequence of G. It is known that for non-complete
graphs, the smallest nonzero eigenvalue of Laplacian does not exceed the minimum degree
(see, e.g., [15, p. 198]). Hence µ9 6 d10. It follows that if G is not regular, then µ9 6 2. So
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we may assume that G is regular. It is a well known fact that there are exactly 21 3-regular
graphs on 10 vertices out of which 19 are connected. By inspecting the table of spectra
of small graphs [14], one can verify that the 19 3-regular graphs on 10 vertices satisfy (i).
There are exactly 112, 618 connected graphs on 10 vertices and 15 edges which can be
extracted from the McKay’s database on small graphs [23]. By a simple computation one
can verify (ii) and also the equality case of (i).

Acknowledgments

We thank the referee for several fruitful comments. The research of the second author
was in part supported by a grant from IPM (No. 91050114).

References

[1] S. Bagchi, On the optimality of a class of designs with three concurrences, Linear
Algebra Appl. 417 (2006), 8–30.

[2] B. Bagchi and S. Bagchi, Optimality of partial geometric designs, Ann. Statist. 29
(2001), 577–594.

[3] R.A. Bailey and P.J. Cameron, Combinatorics of optimal designs, in: Surveys in
Combinatorics 2009 (ed. S. Huczynska, J.D. Mitchell, and C.M. Roney-Dougal),
London Math. Soc. Lecture Notes 365, Cambridge University Press 2009, pp. 19–73.

[4] R.A. Bailey, H. Monod, and J. P. Morgan, Construction and optimality of affine-
resolvable designs, Biometrika 82 (1995), 187–200.

[5] G. Bennett, Meaningful sequences and the theory of majorization, Houston J. Math.
35 (2009), 573–589.

[6] R.C. Bose, W.G. Bridges, and M.S. Shrikhande, Partial geometric designs and two-
class partially balanced designs, Discrete Math. 21 (1978), 97–101.

[7] R.C. Bose, S.S. Shrikhande, and N.M. Singhi, Edge regular multigraphs and partial
geometric designs with an application to the embedding of quasi-regular designs, in:
Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo I, 49–81.
Atti dei Convegni Lincei, 17, Accad. Naz. Lincei, Rome, 1976.

[8] P.J. Cameron, Research problems from the 19th British Combinatorial Conference,
Discrete Math. 293 (2005), 313–320.

[9] C.-S. Cheng, Optimality of certain asymmetrical experimental designs, Ann. Statist.
6 (1978), 1239–1261.

[10] C.-S. Cheng, On the E-optimality of some block designs, J. Roy. Statist. Soc. Ser. B
42 (1980), 199–204.

[11] C.-S. Cheng, An optimization problem with applications to optimal design theory,
Ann. Statist. 15 (1987), 712–723.

the electronic journal of combinatorics 20(2) (2013), #P16 11



[12] C.-S. Cheng, A note on the E-optimality of regular line graph designs, J. Stat. Theory
Pract. 6 (2012), 162–168.

[13] C.-S. Cheng and R.A. Bailey, Optimality of some two-associate-class partially bal-
anced incomplete block designs, Ann. Statist. 19 (1991), 1667–1671.
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