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Abstract

In this paper, we introduce a method of constructing universal cycles on sets by
taking “sums” and “products” of smaller cycles. We demonstrate this new approach
by proving that if there exist universal cycles on the 4-subsets of [18] and the 4-
subsets of [26], then for any integer n > 18 equivalent to 2 (mod 8), there exists a
universal cycle on the 4-subsets of [n].

1 Introduction

Consider the binary sequence 00011101. If we regard this sequence as a cycle, each of the 8
binary triples appears exactly once as a block of consecutive symbols in our sequence. In
1946, de Bruijn [1] showed that for any n and k, there exists an n-ary sequence in which
each n-ary k-tuple appears exactly once. Such sequences are now known as de Bruijn
cycles.

In 1992, Chung, Diaconis, and Graham [2] explored various generalizations of de Bruijn
cycles, which they called universal cycles or ucycles. One such generalization was to
universal cycles on [ nk ]1: n-ary sequences in which each block of k consecutive symbols
consists of k different symbols, and any set of k symbols chosen from [n] = {0, 1, . . . , n−1}
is represented exactly once as a set of k consecutive symbols in the sequence.

Chung, Diaconis, and Graham [2] proved that for universal cycles on [ nk ] to exist, it is
necessary for k to divide

(
n−1
k−1

)
, a result reproduced below:

Lemma 1.1 (Chung, Diaconis, and Graham): k
∣∣(n−1

k−1

)
is a necessary condition for the exis-

tence of a universal cycle on [ nk ].

1Here, [ nk ] denotes the set of all k-element subsets of [n] = {0, 1, . . . , n− 1}
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Proof. Let C be a universal cycle on [ nk ], and let s be any symbol in [n]. For each
occurrence of s in C, there will be exactly k different blocks of size k which contain that
occurrence of s. Since no block can contain multiple occurrences of s, the total number of
blocks containing s must be k times the number of occurrences of s. As there is exactly
one such block for each set of k symbols in [n] containing s, k must divide

(
n−1
k−1

)
.

Chung, Diaconis, and Graham also conjectured that for any k, provided that n was
sufficiently large, this necessary condition was also sufficient. In other words,

Conjecture (Chung, Diaconis, and Graham): Ucycles exist for [ nk ] provided that k divides(
n−1
k−1

)
and n > n0(k).

It is easy to show that this conjecture holds when k ∈ {1, 2}.

In 1993, Jackson [5] showed that for all n > 8 not divisible by 3, there exist ucycles on
[ n3 ], completing the k = 3 case. The same paper also proved that for odd n > 9, there
exist ucycles on [ n4 ]. Since

(
n−1

3

)
is divisible by 4 if and only if n is odd or n ≡ 2 (mod 8),

this leaves only the n ≡ 2 (mod 8) case unresolved for k = 4.

In 1994, Hurlbert [3] unified Jackson’s results and gave a partial solution for k = 6 with
the following theorem:

Theorem 1.2 (Hurlbert): For k ∈ {3, 4, 6} and sufficiently large n relatively prime to k, there
exist ucycles on [ nk ].

In addition to the published results above, Jackson claims to have an unpublished result
completing the k = 4 and proving the k = 5 case.

In this paper, we provide a new method of constructing universal cycles on k-subsets
of [n]. Instead of finding a ucycle directly, we build the ucycle up from smaller cycles.
In particular, we demonstrate a method for taking “sums” and “products” of cycles.
Although these methods have significant limitations, they give us a powerful new tool for
finding universal cycles on sets. In fact, an application of these new techniques allows us
to prove the following results:

Main Theorem: If a and b are positive multiples of 8 such that neither a + 1 nor b + 1 are
divisible by 3, then if there exist universal cycles on [ a+2

4 ] and [ b+2
4 ], there must exist universal

cycles on [ a+b+2
4 ].

Corollary to Main Theorem: As long as we can find universal cycles on [ 18
4 ] and [ 26

4 ], we
can find universal cycles on 4-subsets on [ n4 ] for any n = 2 (mod 8) satisfying n > 18.
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2 Definitions

General

NOTE: In this paper, ∪ and “union” of two multisets A and B will be used
to denote the multiset which consists of combining the elements without
removing any duplicates. For example, we would say

{a, a, b} ∪ {a, b, c} = {a, a, a, b, b, c}.

We will not be using the standard set union in this paper.

Let [n] = {0, 1, . . . , n − 1} and [ nk ] denote the set of all k-element subsets of [n]. Note
that this may differ from some conventional definitions of [n] = {1, 2, · · ·n}.

Define a k-string to be a string of length k, and a k-multiset to be a multiset of
cardinality k.

Denote the cardinality of a multiset A as |A| and the length of a string S as |S|.

Define the powerset of a set A, denoted P (A), to be the set of subsets of A. Furthermore,
define Pk(A) = {M ∈ P (A) : |M | = k} to be the set of all k-element subsets of A.

If M and N are both multisets of multisets, define their product, M × N , to be the
multiset consisting of all the unions of elements of M with elements of N . In other
words, M × N = {A ∪ B : A ∈ M,B ∈ N}. For example, if M = {{a, b}, {c}} and
N = {{x}, {y, z}}, then

N ×M = {{a, b, x}, {a, b, y, z}, {c, x}, {c, y, z}}.

If S and T are both strings, let the concatenation of S with T , written S ·T , be the string
consisting of the characters of S followed by the characters of T .

Denote the multiset of k-substrings of S as SUBk(S). For example, if S = abcabcd, and
k = 3, we would have SUBk(S) = {abc, bca, cab, abc, bcd}.

If S is a string, let Γ(S) denote the multiset of characters in S. If M is a multiset of
strings, then let Γ(M) denote {Γ(S) : S ∈M}. For example, Γ(cycle) = {c, c, e, l, y} and
Γ({and, text}) = {a, d, e, n, t, t, x}.

Cycles

Let a length z cycle be a string of length z.
If C is a cycle, let Cx denote the (x+ 1)th symbol in C, up to modulo |C|. Note that the
first symbol of C is C0 and not C1.
If C is a cycle, let Ck

x denote the k-string CxCx+1 · · ·Cx+k−2Cx+k−1.
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If C is a cycle, let the k-range of C be the multiset {Ck
x : 0 6 x 6 |C| − 1}. We will use

Rk(C) to denote the k-range of C. For example,

R2(inoh) = {in, no, oh, hi}

and
R3(abcdabc) = {abc, bcd, cda, dab, abc, bca, cab}.

Remark: Equivalently, the k-range of C is

Rk(C) = SUBk(C0C1 · · ·C|C|+k−3C|C|+k−2) = SUBk(C · Ck−1
0 ).

This can be thought of as the multiset of the |C| different length-k substrings of C if we allow
“looping over” from the end of C to the beginning of C.

If A is a set of symbols, we say that C is a universal cycle or a ucycle on Pk(A)
if Γ

(
Rk(C)

)
= Pk(A). In other words, if C is a universal cycle on Pk(A), then every

string in the k-range of C consists of k different symbols in A, the set of these k symbols
is different for each element of C’s k-range, and for any k symbols in A, there is some
element of the k-range of C which consists of these k symbols.

Since Pk([n]) = [ nk ], this new definition agrees with the earlier definition of a universal
cycle on [ nk ].

Rotations

We say that a rotation of a cycle C is any cycle of the form CxCx+1 · · ·Cx+|C|−1. In other
words, a rotation of C is any cycle which could be obtained from C by repeatedly moving
a symbol from the beginning of C to the end of C. For example, the rotations of “abcbc”
are “abcbc”, “bcbca”, “cbcab”, “bcabc”, and “cabcb”.

Two simple but important facts follow from this definition. First, rotating a cycle does
not change the k-range of the cycle for any k. Second, if S is in the k-range of C, there
exists some rotation C ′ of C such that S = C ′0C

′
1 · · ·C ′k−1; in other words, if S is in C

k-range, we can always rotate C so that it starts with S.

3 Cycle Addition

In this section, we present a method for taking the k-sum (⊕k) of two cycles to get a new
cycle. This operation requires the addends to have a common string of length at least
k − 1, and has several useful properties which we prove in Theorem 3.2 and its corollary.
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Construction

Let S be a (k − 1)-string, and let C and D be cycles containing S. If C ′ and D′ are
rotations of C and D which both start with S, we say that C ′ ·D′ is a k-sum of C and
D. Note that S here is arbitrary; all we require is that the first k − 1 symbols of C ′ and
D′ match.

If there is at least one cycle which is the k-sum of C and D, we will use C⊕kD to denote
some (arbitrary) k-sum of C and D.

Example

For example, let C = “abc” and D = “bcdab”. In this case the 3-sums of C and D are
abc · abbcd = abcabbcd and bca · bcdab = bcabcdab.

Properties

Remark: If C and D have intersecting (k− 1)-ranges, then there is at least one k-sum of C
and D.

Lemma 3.1: If E is a k-sum of C and D, then E is a (k − 1)-sum of C and D.

Proof. Since E is a k-sum of C and D, we can write E = C ′ · D′, where C ′ and D′ are
rotations of C and D starting with the same k − 1 characters. Since C ′ and D′ start
with the same k − 1 characters, they must also start with the same k − 2 characters, so
C ′ ·D′ = E is also a (k − 1)-sum of C and D.

Theorem 3.2: If E is a k-sum of C and D, then the k-range of E is the disjoint-union of
the k-ranges of C and D. Formally,

Rk(C ⊕k D) = Rk(C) ∪Rk(D).

Proof. Since E is a k-sum of C and D, we can write E = C ′ · D′, where C ′ and D′ are
rotations of C and D starting with the same k−1 characters. Let us call the (k−1)-string
of those first characters S.

Rk(C) = Rk(C ′) = SUBk(C ′ · S), and

Rk(D) = Rk(D′) = SUBk(D′ · S).

Thus,
Rk(C) ∪Rk(D) = SUBk(C ′ · S) ∪ SUBk(D′ · S).
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But since the last k−1 characters of SUBk(C ′ ·S) are the same as the first k−1 characters
of D′ · S,

SUBk(C ′ · S) ∪ SUBk(D′ · S) = SUBk(C ′ ·D′ · S) = SUBk(E · S) = Rk(E).

A simple example of this theorem can be seen for C = “abc′′, D = “bcde′′, and k = 3.
Here, a 3-sum of C and D is bca · bcde = bcabcde, and

R3(bcabcde) = {bca, cab, abc, bcd, cde, deb, dec}
= {bca, cab, abc} ∪ {bcd, cde, deb, dec}
= {abc, bca, cab} ∪ {bcd, cde, deb, dec} = R3(C) ∪R3(D).

Corollary 3.2.1: If E is a k-sum of C and D, then the (k−1)-range of E is the disjoint-union
of the (k − 1)-ranges of C and D.

Proof. By Lemma 2, If E is a k-sum of C and D, it is also a (k − 1)-sum of C and D.
Thus, a straightforward application of Theorem 3.2 tells us that Rk−1(E) = Rk−1(C) ∪
Rk−1(D).

Cycle Summation

Sometimes, we will want to take k-sums of more than 2 elements. This leads us to define
a generalization over cycle addition which we will call cycle summation. If C is a set of
cycles, we will say that it is k-summable if there exists a valid order in which we can add
up all the elements of C. If C is k-summable, we will furthermore define a k-summation
of C, denoted

⊕k
C, to any k-sum of the elements of C taken in some valid order.

Since Rk−1(C⊕kD) = Rk−1(C)∪Rk−1(D), some C⊕k (D⊕kE) exists if and only if some
C ⊕k D or some C ⊕k E exists. Thus, C is k-summable if and only if for any C,D ∈ C

there exists a set of cycles C0, C1, · · · , Cn in C such that C = C0, D = Cn, and for any
i ∈ [n− 1], some Ci ⊕k Ci+1 exists.

Remark: We can extend the results of Theorem 3.2 and Corollary 3.2.1 to k-summations. In
other words, for any set of cycles C,

Rk
(⊕k

C
)

=
⋃
C∈C

Rk(C) and

Rk−1
(⊕k

C
)

=
⋃
C∈C

Rk−1(C).
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4 Cycle Multiplication

In the previous section, we saw that if C and D were cycles satisfying certain simple
conditions, we could find a cycle C ⊕k D such that Rk(C) ∪ Rk(D) = Rk(C ⊕k D). It
would be desirable to have an analogous result where we could find a cycle E such that
Γ (Rt(C))×Γ (Ru(D)) = Γ (Rt+u(E)). Unfortunately, such a cycle is sometimes impossible
to find.2 Instead, we will show a slightly weaker result: as long as |C| and |D| are both
multiples of t+ u, there is a set of cycles C such that

Γ
(
Rt(C)

)
× Γ (Ru(D)) =

⋃
E∈C

Γ
(
Rt+u(E)

)
.

The elements of C in this result are exactly the WEAVEs that we examine throughout
this section.

Construction

Fix two positive integers t and u, and let k = t+ u. Furthermore, let C and D be cycles
such that both |C| and |D| are multiples of k. Then, for any integers c and d, we will
define WEAVEc,d(C

t, Du) to be the cycle

Ct
c ·Du

d · Ct
c+t ·Du

d+u · · ·Ct
c+(r−1)t ·Du

d+(r−1)u

where r = lcm(|C|u,|D|t)
tu

.

Remark: Since k is a factor of both |C| and |D|, k · lcm(t, u) = lcm(ku, kt) is a factor of
lcm(|C|u, |D|t). But k = t+ u is a multiple of gcd(t, u), so tu = gcd(t, u) · lcm(t, u) divides
lcm(|C|u, |D|t). Thus, r is in fact an integer.

Notice that we obtain WEAVEc,d(C
t, Du) by “interweaving” C and D: we take t char-

acters from C, then u characters from D, then t characters from C, then u characters
from D, and so on. We continue this process, possibly looping over the cycles multiple
times, until we simultaneously return to the place we started in both C and D. Since
r = lcm(|C|u,|D|t)

tu
is the first value for which both rt

|C| and ru
|D| are integers, this happens after

we have used rt characters from C and ru characters from D.

Example

For example, let t = 3, u = 2, C = 12345, and D = abcde. Then,

WEAVE0,0(C3, D2) = 123 · ab · 451 · cd · 234 · ea · 512 · bc · 345 · de.
2A simple example of this occurs when t = u = 1, C = aaa, and D = b. Then, Γ (Rt(C))×Γ (Ru(D))

will be {{a, b}, {a, b}, {a, b}}, which cannot be the 2-range of any cycle.
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Properties

NOTE: Throughout this section, we will let n be any integer, m be any
integer satisfying 0 6 m < k, and W be WEAVEc,d(C

t, Du).

Remark: |W | = rt+ ru = rk.

Remark: W k
nk = Ct

c+nt · Du
d+nu; that is, the length-k substring of W starting at index nk

is exactly the concatenation of the length-t substring of C starting at index c + nt with the
length-u substring of D starting at index d + nu. Note that this holds for all integers n,
including those greater than r.

Remark: We can derive an explicit form for the symbol found at a given index of W :

Wnk+m =

{
Cc+nt+m 0 6 m < t

Dd+nu+(m−t) t 6 m < k.

This allows us to also find an explicit form for the k-substring of W starting from a certain
index:

W k
nk+m =


Ct−m

c+nt+m ·Du
d+nu · Cm

c+(n+1)t 0 6 m < t

D
u−(m−t)
d+nu+(m−t) · Ct

c+(n+1)t ·D
(m−t)
d+(n+1)u t 6 m < k.

Although this form is not particularly elegant, this result allows us to derive a much more
manageable formulation for Γ

(
W k

nk+m

)
which will be fundamental to our proof of the Product

Theorem.

Lemma 4.1:

Γ
((

WEAVEc,d(C
t, Du)

)k
nk+m

)
=


Γ
(
Ct

c+nt+m

)
∪ Γ
(
Du

d+nu

)
0 6 m < t

Γ
(
Ct

c+(n+1)t

)
∪ Γ
(
Du

d+nu+(m−t)
)

t 6 m < k.

Proof. In the notation of this section,
(
WEAVEc,d(C

t, Du)
)k
nk+m

= W k
nk+m, and we can

use the result above to compute
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Γ
(
W k

nk+m

)
=


Γ
(
Ct−m

c+nt+m ·Du
d+nu · Cm

c+(n+1)t

)
0 6 m < t

Γ
(
D

u−(m−t)
d+nu+(m−t) · Ct

c+(n+1)t ·D
(m−t)
d+(n+1)u

)
t 6 m < k

=


Γ
(
Ct

c+nt+m ·Du
d+nu

)
0 6 m < t

Γ
(
Du

d+nu+(m−t) · Ct
c+(n+1)t

)
t 6 m < k

=

Γ
(
Ct

c+nt+m

)
∪ Γ
(
Du

d+nu

)
0 6 m < t

Γ
(
Ct

c+(n+1)t

)
∪ Γ
(
Du

d+nu+(m−t)
)

t 6 m < k.

The Product Theorem

We would like to prove

Product Theorem: Let C and D be any cycles for which |C| and |D| are both multiples of
t+ u. Then, there exists a value s such that

Γ
(
Rt(C)

)
× Γ (Ru(D)) =

s−1⋃
a=0

Γ
(
Rk
(
WEAVEa,−a(C

t, Du)
))
.

We will start by defining two integer functions:

F (nk +m) =

{
nt+m 0 6 m < t

(n+ 1)t t 6 m < k

and

G(nk +m) =

{
nu 0 6 m < t

nu+ (m− t) t 6 m < k.

This allows us to write the result from Lemma 4.1 in a simpler form:

Γ
((

WEAVEc,d(C
t, Du)

)k
nk+m

)
= Γ

(
Ct

c+F (nk+m)

)
∪ Γ
(
Du

d+G(nk+m)

)
,

Equivalently, if we substitute i for nk +m,

Γ
((

WEAVEc,d(C
t, Du)

)k
i

)
= Γ

(
Ct

c+F (i)

)
∪ Γ
(
Du

d+G(i)

)
,
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If we let H be the set {(F (i), G(i)) : 0 6 i < rk}, it follows that

Γ
(
Rk
(
WEAVEc,d(C

t, Du)
))

=
{

Γ
(
Ct

c+F (i)

)
∪ Γ
(
Du

d+G(i)

)
: 0 6 i < rk

}
=
{

Γ
(
Ct

f+c

)
∪ Γ
(
Du

g+d

)
: (f, g) ∈ H

}
.

To proceed beyond this point we will first need to prove some properties of H.

Remark: F (i+ k) = F (i) + t and G(i+ k) = G(i) + u.

Lemma 4.2: F (i) +G(i) = i.

Proof. If we write i = nk +m,

F (i) +G(i) = F (nk +m) +G(nk +m)

=

{ (
nt+m

)
+
(
nu
)

0 6 m < t(
(n+ 1)t

)
+
(
nu+ (m− t)

)
t 6 m < k

=

{
nt+m+ nu 0 6 m < t
nt+ t+ nu+m− t t 6 m < k

= n(t+ u) +m

= i.

Throughout this subsection, we will say that two ordered pairs of integers are similar
(∼) if their first coordinates are equivalent modulo |C| and their second coordinates are
equivalent modulo |D|. In other words, (x1, y1) ∼ (x2, y2) if and only if x1 ≡ x2 (mod |C|)
and y1 ≡ y2 (mod |D|).

Remark: If (x1, y1) ∼ (x2, y2), then Ct
x1

= Ct
x2

, Du
y1

= Du
y2

, and consequently,

Γ
(
Ct

x1

)
∪ Γ
(
Du

y1
) = Γ

(
Ct

x2

)
∪ Γ
(
Du

y2
).

Lemma 4.3: If i and j are integers, we will have (F (i), G(i)) ∼ (F (j), G(j)) if and only if
j − i is a multiple of rk.

Proof.
(
⇐
)
: Let j − i = ark for some integer a. Since rt is a multiple of |C| and ru is a

multiple of |D|,

F (j) = F (i+ ark) = F (i) + art ≡ F (i) (mod |C|)
G(j) = G(i+ ark) = G(i) + aru ≡ G(i) (mod |D|).(

⇒
)
: Let us assume (F (i), G(i)) ∼ (F (j), G(j)). Since |C| and |D| are both multiples of

k, F (i) ≡ F (j) (mod k) and G(i) ≡ G(j) (mod k), so Lemma 4.2 tells us that

i = F (i) +G(i) ≡ F (j) +G(j) = j (mod k).
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Thus, we can write j = i + nk for some integer n. But F (i + nk) = F (i) + nt and
G(i+ nk) = G(i) + nu, so n must satisfy both nt ≡ 0 (mod |C|) and nu ≡ 0 (mod |D|).
The only such values of n are multiples of lcm(|C|u,|D|t)

tu
= r, so j − i = nk is divisible by

rk.

Lemma 4.4: For any i, exactly one (f, g) ∈ H satisfies (f, g) ∼ (F (i), G(i)).

Proof. For any i, there is exactly one value j ∈ [rk] satisfying j ≡ i (mod rk). By Lemma
4.3, j must be the only value in [rk] satisfying

(F (j), G(j)) ∼ (F (i), G(i)),

so (f, g) = (F (j), G(j)) is the only element of H satisfying (f, g) ∼ (F (i), G(i)).

Let us define s to be the smallest positive integer for which there exist (f1, g1) and (f2, g2)
in H satisfying (f2, g2) ∼ (f1 + s, g1 − s).3

Lemma 4.5: If (f1, g1) and (f2, g2) are different elements of H and a and b are integers such
that (f1 + a, g1 − a) ∼ (f2 + b, g2 − b), then we must have |a− b| > s.

Proof. By Lemma 4.4, it is not the case that (f1, g1) ∼ (f2, g2), so our condition that
(f1 + a, g1 − a) ∼ (f2 + b, g2 − b) implies a 6= b. Without loss of generality, let us assume
that a > b.

(f2 + b, g2 − b) ∼ (f1 + a, g1 − a), so

(f2, g2) ∼ (f1 + (a− b), g1 − (a− b)).

Since (a− b) is a positive integer, by definition s 6 (a− b).

Lemma 4.6: For any i and any x, there must exist a j satisfying

(F (j), G(j)) ∼ (F (i) + xs,G(i)− xs).

Proof. From the definition of s, we know there must exist some i∗ and j∗ which satisfy
(F (j∗), G(j∗)) ∼ (F (i∗) + s,G(i∗)− s). By Lemma 4.2,

i∗ − j∗ = (F (i∗) +G(i∗))− (F (j∗) +G(j∗))

= (F (i∗)− F (j∗)) + (G(i∗)−G(j∗))

≡ (s) + (−s) (mod k).

Therefore, i∗ − j∗ is a multiple of k, so we can write j∗ = i∗ + nk, which allows us to
compute

(F (i∗) + nt,G(i∗) + nu) = (F (j∗), G(j∗)) ∼ (F (i∗) + s,G(i∗)− s), so

(nt, nu) ∼ (s,−s).
3We know such an s must exist because we can let (f1, g1) = (f2, g2) = (F (0), G(0)) and pick s to be

a multiple of both |C| and |D|.
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Let x and i be given, and let j = i+ xnk. Then,

(F (j), G(j)) = (F (i+ xnk), G(i+ xnk))

= (F (i) + xnt,G(i) + xnu)

∼ (F (i) + xs,G(i)− xs).

Corollary 4.6.1: For any a, WEAVEa,−a(C
t, Du) and WEAVEa+s,−a−s(C

t, Du) are rota-
tions of each other.

Recall that we have defined s to be the smallest positive integer for which there exist (f1, g1)
and (f2, g2) in H satisfying (f2, g2) ∼ (f1 + s, g1 − s), where

H = {(F (i), G(i)) : 0 6 i < rk},

where F and G given by

F (nk +m) =

{
nt+m 0 6 m < t

(n+ 1)t t 6 m < k

G(nk +m) =

{
nu 0 6 m < t

nu+ (m− t) t 6 m < k.

Proof. As we saw in the proof of Lemma 4.6, there exists an n satisfying (nt, nu) ∼ (s,−s).
Thus, for all x and y,

F (x) + a+ s ≡ F (x) + a+ nt = F (x+ nk) + a (mod |C|)
G(y)− a− s ≡ G(y)− a+ nu = G(y + nk)− a (mod |D|),

so for any i, (
WEAVEa+s,−a−s(C

t, Du)
)
i

=
(
WEAVEa,−a(C

t, Du)
)
i+nk

.

Theorem 4.7: For any x and y, there is a unique (f, g) ∈ H and a unique a ∈ [s] satisfying
(f + a, g − a) ∼ (x, y).

Proof. By Lemma 4.5, for any a and b in [s], there cannot be two different elements
(f1, g1), (f2, g2) ∈ H satisfying (f1 + a, g1 − a) ∼ (f2 + b, g2 − b). In addition, if a, b ∈ [s]
are distinct, (f + a, g + a) 6∼ (f + b, g + b). Thus, if some a ∈ [s] and (f, g) ∈ H satisfy
the conditions of this theorem, they do so uniquely.

Let i = x+ y, and let µ = G(i)− y. By Lemma 4.2 F (i) +G(i) = i, so

F (i) + µ = F (i) +G(i)− y = i− y = x.
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Thus, (F (i) + µ,G(i)− µ) ∼ (x, y).

Let a be the value satisfying a ∈ [s] and a ≡ µ (mod s). By Lemma 4.6, there exists
some j for which (F (j), G(j)) ∼ (F (i) + (µ− a), G(i)− (µ− a)). Then,

(F (j) + a,G(j)− a) ∼ (F (i) + µ,G(i)− µ) ∼ (x, y).

By Lemma 4.4, there exists (f, g) ∈ H satisfying (f, g) ∼ (F (j), G(j)), so
(f + a, g − a) ∼ (x, y).

Let H∗ denote the set of ordered pairs {(f + a, g − a) : (f, g) ∈ H, a ∈ [s]}, and let J
denote the set of ordered pairs {(x, y) : x ∈ [|C|], y ∈ [|D|]}.

Corollary 4.7.1: There is a bijection between H∗ and J which maps ordered pairs to similar
ordered pairs.

Proof. Let B : H∗ → J be a map which takes any ordered pair in H∗ to the element of
J which it is similar to. By Theorem 4.7, for any (x, y) ∈ J , there is exactly one element
(f + a, g − a) ∈ H∗ such that B((f + a, g − a)) = (x, y), so B must be a bijection.

We can finally prove the Product Theorem.

Product Theorem: Let C and D be any cycles for which |C| and |D| are both multiples of
k = t+ u.

Let s be the smallest positive integer for which there exist (f1, g1) and (f2, g2) in H satisfying
(f2, g2) ∼ (f1 + s, g1 − s), where

H = {(F (i), G(i)) : 0 6 i < rk},

where F and G given by

F (nk +m) =

{
nt+m 0 6 m < t

(n+ 1)t t 6 m < k

G(nk +m) =

{
nu 0 6 m < t

nu+ (m− t) t 6 m < k.

Then,

Γ
(
Rt(C)

)
× Γ (Ru(D)) =

s−1⋃
a=0

Γ
(
Rt+u

(
WEAVEa,−a(C

t, Du)
))
.

Proof. We know from the discussion preceding Lemma 4.2 that

Γ
(
Rk
(
WEAVEc,d(C

t, Du)
))

=
{

Γ
(
Ct

f+c

)
∪ Γ
(
Du

g+d

)
: (f, g) ∈ H

}
.
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It follows that

s−1⋃
a=0

Γ
(
Rt+u

(
WEAVEa,−a(C

t, Du)
))

=
{

Γ
(
Ct

f

)
∪ Γ
(
Du

g

)
: (f, g) ∈ H∗

}
.

If (f, g) ∼ (x, y) then Γ
(
Ct

f

)
∪ Γ
(
Du

g

)
= Γ

(
Ct

x

)
∪ Γ
(
Du

y

)
, so by Corollary 4.7.1,{

Γ
(
Ct

f

)
∪ Γ
(
Du

g

)
: (f, g) ∈ H∗

}
=
{

Γ
(
Ct

x

)
∪ Γ
(
Du

y

)
: (x, y) ∈ J

}
=
{

Γ
(
Ct

x

)
: x ∈ [|C|]

}
×
{

Γ
(
Du

y

)
: y ∈ [|D|]

}
= Γ

(
Rt(C)

)
× Γ

(
Ru(D)

)
.

Remark: An application of the Product Theorem shows that

∣∣Γ (Rt(C)
)
× Γ (Ru(D))

∣∣ =

∣∣∣∣∣
s−1⋃
a=0

Γ
(
Rt+u

(
WEAVEa,−a(C

t, Du)
))∣∣∣∣∣ ,

so

|C| · |D| = s ·
∣∣WEAVEa,−a(C

t, Du)
∣∣ = srk = sk

lcm(|C|u, |D|t)
tu

.

Therefore, we can explicitly compute

s =
gcd(|C|u, |D|t)

k
.

5 Benign Cycles

The Product Theorem show that we can construct a class of cycles

C =
{

WEAVEa,−a(C
t, Du) : a ∈ [s]

}
with the property that ⋃

E∈C

Γ
(
Rk(E)

)
= Γ

(
Rt(C)

)
× Γ (Ru(D)) .

However, this is still of little use to us as long as |C| is large. In this section, we will
introduce a method which will allow us to drastically reduce the cardinality of |C| when
the cycle |C| is (t, t+ u)-benign. This will leave us with sufficiently few cycles so that we
can eventually use cycle addition to construct our universal cycle.
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Definition

We say that a cycle C is (t,k)-benign if for some ∆ relatively prime to |C| and some i,
Ct−1

i = Ct−1
i+k∆. If C is also a universal cycle on S, we would say that C is a (t, k)-benign

universal cycle on S.

Examples

For example, the cycle C = abcdaeed is (3,4)-benign since C2
3 = da = C2

7 and 7−3
4

= 1 is
an integer relatively prime to |C| = 8.

Application

As usual, let k = t+ u.

Lemma 5.1: If C and D are cycles with lengths divisible by k and C satisfies Ct−1
i = Ct−1

i+k∆,
then for any a, we can find a k-sum

WEAVEa,−a(C
t, Du)⊕k WEAVEa+u∆,−a−u∆(Ct, Du).

Proof. Let C denote the rotation of C forward by k∆ spaces, so C satisfies Cx = Cx+k∆

for all x. Notice that Ct−1
i = Ct−1

i+k∆ = Ct−1
i .

For some j,
(
WEAVEc,d(C

t, Du)
)k−1

j
consists of Ct−1

i interspersed in some way with u

characters from D. But that means
(
WEAVEc,d(C

t, Du)
)k−1

j
will consist of Ct−1

i inter-

spersed in the same way with the same u characters from D. Since Ct−1
i = Ct−1

i ,(
WEAVEc,d(C

t, Du)
)k−1

j
=
(
WEAVEc,d(C

t, Du)
)k−1

j
.

We know from section 4 that

(
WEAVEc,d(C

t, Du)
)
nk+m

=

{
Cc+nt+m 0 6 m < t

Dd+nu+(m−t) t 6 m < k
, so

(
WEAVEc+u∆,d−u∆(Ct, Du)

)
nk+m

=

{
Cc+u∆+nt+m 0 6 m < t

Dd−u∆+nu+(m−t) t 6 m < k

=

{
Cc+(n−∆)t+m 0 6 m < t

Dd+(n−∆)u+(m−t) t 6 m < k

=
(
WEAVEc,d(C

t, Du)
)

(n−∆)k+m
.
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Therefore, we can conclude that(
WEAVEc+u∆,d−u∆(Ct, Du)

)k−1

j+k∆
=
(
WEAVEc,d(C

t, Du)
)k−1

j

=
(
WEAVEc,d(C

t, Du)
)k−1

j
,

so for any c and d, we can find a k-sum

WEAVEc,d(C
t, Du)⊕k WEAVEc+u∆,d−u∆(Ct, Du).

By setting d = −c, this reduces to the result we were looking for.

Lemma 5.2: If C and D are cycles with lengths divisible by k, C is a (t, k)-benign cycle, and

s = gcd(|C|u,|D|t)
k

, then there exists a partition of

C =
{

WEAVEa,−a(C
t, Du) : a ∈ [s]

}
into gcd(u, s) multisets Ci such that

1. For any a ∈ [s], if i ∈ [gcd(u, s)] and a is equivalent to i modulo gcd(u, s), then
WEAVEa,−a(C

t, Du) ∈ Ci, and

2. Each Ci is k-summable.

Proof. Let Wa denote WEAVEa,−a(C
t, Du).

Since C is a (t, k)-benign cycle, we can find ∆ relatively prime to |C| and i such that
Ct−1

i = Ct−1
i+k∆. By Lemma 5.1, for any a there exists a k-sum Wa⊕kWa+u∆. By Corollary

4.6.1, Wa and Wa+s are equivalent up to rotation for any a, so if a and b satisfy the
relation b ≡ a+ u∆ (mod s), we can take the k sum of Wa and Wb.

Since ∆ is relatively prime to |C| and s divides |C|, ∆ must be relatively prime to s.
Thus, there must exist a value ∆ satisfying ∆∆ ≡ 1 (mod s).

Let Ci be the multiset of Wa for which a − i is a multiple of gcd(u, s). Notice that
{C1,C2, · · · ,Cgcd(u,s)} is a partition of C, and Wa ∈ Ci for any a equivalent to i modulo
gcd(u, s).

For any Wa,Wb ∈ Ci, a is equivalent to b modulo gcd(u, s). Since any multiple of gcd(u, s)
can be written as an integer linear combination of u and s, and b − a is a multiple of
gcd(u, s), there must exist integers y, z such that b− a = yu+ zs. Therefore,

b = a+ yu+ zs ≡ a+ yu ≡ a+ (y∆)(u∆) (mod s).

If we let ax = a + xu∆, we get a0 = a, ay∆ = b, and ai+1 ≡ ai + u∆ (mod s). By the
last condition, we can take a k-sum of Wai and Wai+1

= W(ai+u∆), so by the criterion
established in Section 3, Ci must be k-summable.
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Corollary 5.2.1: If C and D are cycles having lengths divisible by k and C is (t, t+u)-benign,
then there exist x 6 u multisets Ci such that

1. For any a, if i ∈ [x] and i ≡ a (mod x), WEAVEa,−a(C
t, Du) ∈ Ci,

2. Each Ci is k-summable, and

3. If we let C denote
⋃x−1

i=0 Ci,

Γ
(
Rt(C)

)
× Γ

(
Ru(D)

)
=
⋃
E∈C

Γ
(
Rt+u(E)

)
.

Proof. Let s = gcd(|C|u,|D|t)
k

and x = gcd(u, s) (note that gcd(u, s) 6 u, so x satisfies
x 6 u). By the product theorem, C =

{
WEAVEa,−a(C

t, Du) : a ∈ [s]
}

satisfies

Γ
(
Rt(C)

)
× Γ

(
Ru(D)

)
=
⋃
E∈C

Γ
(
Rt+u(E)

)
,

so this corollary follows directly from Lemma 5.2.

Existence of Important Cases

Remark: Since C0
i = C0

j for any i, j, any cycle is (1,k)-benign for arbitrary k.

Lemma 5.3: For any k > 3 and any odd n > 2k − 1, there exists a (2,k)-benign universal
cycle on [ n2 ].

Proof. For any w, let Dw(x) be the cycle which has length n
gcd(w,n)

whose symbols are

given by
(
Dw(x)

)
i
≡ x+ iw (mod n),

(
Dw(x)

)
i
∈ [n].4 Less formally, Dw(x) is the unique

cycle which starts at x, has symbols taken from [n], obeys the condition that each symbol
must be w greater (modulo n) than the last, and goes until it loops back to x for the first
time.

Note that all of the n
gcd(w,n)

symbols of Dw(x) are unique, and are actually the symbols in

[n] which are equivalent to x modulo gcd(w, n). Thus, the 2-range of Dw(x) will be the
set of strings ij for which i and j are both in [n], i is equivalent to x modulo gcd(w, n),
and j ≡ i+ w (mod n).

Now, let Dw = {Dw(x) : 0 6 x < gcd(w, n)}. We can see that⋃
D∈Dw

R2(D) =
{
ij : i ∈ [n], j ∈ [n], j ≡ i+ w (mod n)

}
.

4Note that our definition of
(
Dw(x)

)
i
≡ x + iw (mod n) is periodic, with a period exactly equal to

the length of Dw(x).

the electronic journal of combinatorics 20(2) (2013), #P18 17



If we also let D =
⋃n−1

2
w=1 Dw, then⋃

D∈D

Γ
(
R2(D)

)
=
{
{i, j} : i ∈ [n], j ∈ [n], i 6= j

}
= P2

(
[n]
)
.

Let D′ = D − {Dk−1(0), D1(0)}. Since n−1
2

> k > 3, and k 6= 2, both D and D′ will
contain D2(0).

Since 2 must be relatively prime to n, D2(0) must contain every symbol in [n], which
means its 1-range must intersect with the 1-range of every element of D′. Thus, D′ is
2-summable.
Let E denote some such 2-summation with a first symbol of ‘0’.

Since Dn−1(0)1
0 = Dk−1(0)1

0 = E1
0 = 0, we can take their k-summation E ′ = Dn−1(0) ·

Dk−1(0) · E. But

Γ
(
R2
(
Dn−1(0)

))
= Γ

(
R2
(
D1(0)

))
,

so

Γ
(
R2(E ′)

)
= Γ

(
R2
(
Dn−1(0)

))
∪ Γ
(
R2
(
Dk−1(0)

))
∪ Γ
(
R2
(
E
))

= Γ
(
R2
(
D1(0)

))
∪ Γ
(
R2
(
Dk−1(0)

))
∪ Γ
(
R2
(
E
))

= Γ
( ⋃

D∈D

(
R2(D)

) )
=
{
{i, j} : i ∈ [n], j ∈ [n], i 6= j

}
.

Thus, E ′ is a universal cycle on [ n2 ].

E ′n−(k−1) = Dn−1(0)n−(k−1) = k − 1 and E ′n+1 = Dk−1(0)1 = k − 1. Since

n+ 1− (n− (k − 1)) = k · 1

and 1 is relatively prime to |E ′|, E ′ must be (2, k)-benign.

6 Proof of the Main Theorem

In this section, we will finally prove our main theorem:

Main Theorem: If a and b are positive multiples of 8 such that neither a + 1 nor b + 1 are
divisible by 3, then if there exist universal cycles on [ a+2

4 ] and [ b+2
4 ], there must exist universal

cycles on [ a+b+2
4 ].
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Preliminaries

Lemma 6.1: If C is a universal cycle on Pk(A), |A| = |B|, S is a (k + 1)-string consisting
of k + 1 distinct symbols from B, and x is any integer, then there exist a cycle D such that

1. Dk+1
x = S

2. D is a universal cycle on Pk(B), and

3. if C is (a, b)-benign, then so is D.

Proof. Since |A| = |B|, we can find a bijection from A to B. Furthermore, for any distinct
a1, a2, · · · , an ∈ A and distinct b1, b2, · · · , bn ∈ B, we can find such a bijection which maps
each ai to bi.

Since C is universal cycle on Pk(A), Ck
x and Ck

x+1 must each consist of k different symbols.
In addition, since we must have Γ

(
Ck

x

)
6= Γ

(
Ck

x+1

)
, Cx 6= Cx+k, so Ck+1

x consists of k + 1
different characters.

Let f be some bijection from A to B which takes Cx+i to Si for every i ∈ [k + 1], and let
D = f(C). Then, for i ∈ [k + 1], Dx+i = f(Cx+i) = Si, so Dk+1

x = S.

In addition,

Rk(D) = {Dk
x : 0 6 x 6 |D| − 1}

= {f(C)kx : 0 6 x 6 |C| − 1}
= {f(Ck

x) : 0 6 x 6 |C| − 1}
= f({Ck

x : 0 6 x 6 |C| − 1})
= f(Pk(A))

= Pk(B).

Finally, if C is (a, b)-benign, then Ca−1
i = Ca−1

i+b∆, so

Da−1
i = f(C)a−1

i = f(Ca−1
i ) = f(Ca−1

i+b∆) = f(C)a−1
i+b∆ = Da−1

i+b∆,

which shows that D must also be (a, b)-benign.

Let a and b be positive integers for which

1. Both a and b are divisible by 8,

2. neither a+ 1 nor b+ 1 are divisible by 3, and

3. there exist universal cycles on [ a+2
4 ] and [ b+2

4 ].

Remark: a > 16 and b > 16.
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Let A and B be disjoint sets of symbols satisfying |A| = a and |B| = b. Let α and β be
distinct symbols not in A ∪ B.

Let

M0 = P4 (A ∪ {α, β})
M1 = P3 (A ∪ {α}) ×P1 (B)

M2 = P2 (A ∪ {α}) ×P2 (B ∪ {β})
M3 = P1 (A) ×P3 (B ∪ {β})
M4 = P4 (B ∪ {α, β}) .

Remark:
M0 ∪M1 ∪M2 ∪M3 ∪M4 = P4 (A ∪ B ∪ {α, β}) .

Constructing the Component Cycles

NOTE: The properties of cycles constructed in this subsection are sum-
marized in Figure 1.

Since a+1 is odd and greater than 7 = 2 ·4−1, by Lemma 5.3 there exists a (2, 4)-benign
universal cycle on [ a+1

2 ]. Thus, by Lemma 6.1, we can find a cycle C(2) which is a (2, 4)-
benign ucycle on P2

(
A ∪ {α}

)
satisfying α 6∈ Γ (C(2)3

1).
By similar reasoning, we can find a ucycle on P2

(
B ∪ {β}

)
satisfying β 6∈ Γ

(
D(2)3

−2

)
.

For any set M , we can obtain a universal cycle on P1

(
M
)

simply by listing the characters
of M in any order. Since C(2)3

1 contains only characters from A, we can find a cycle C(3)
which is a universal cycle on P1

(
A
)

satisfying C(3)3
0 = C(2)3C(2)1C(2)2.

By similar reasoning, we can find a cycle D(1) which is a universal cycle on P1

(
B
)

satis-
fying D(1)3

0 = D(2)0D(2)−2D(2)−1.

Since a + 1 > 8 and a + 1 is not a multiple of 3, by the results of Jackson [5], there
exist universal cycles on [ a+1

3 ]. Thus, by Lemma 6.1, we can find a cycle C(1) which is a
universal cycle on P3

(
A ∪ {α}

)
satisfying C(1)4

−2 = C(2)4
0, and therefore also satisfying

C(1)3
−2 = C(2)3

0.
By similar reasoning, we can find a cycle D(3) which is a universal cycle on P3

(
B ∪ {β}

)
satisfying D(3)3

−2 = D(2)3
−1.

By assumption, there exist universal cycles on [ a+2
4 ] and [ b+2

4 ]. Thus, by Lemma 6.1, we
can find a cycle C(0) which is a universal cycle on P4

(
A ∪ {α, β}

)
satisfying C(0)4

−1 =
C(1)4

−1.
By similar reasoning, we can find a cycle D(4) which is a universal cycle on P4

(
B∪{α, β}

)
satisfying D(4)4

0 = D(3)4
−1.

Remark: |C(1)|, |C(2)|, |C(3)|, |D(1)|, |D(2)|, and |D(3)| are each divisible by 4.
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C(3)3
0 = C(2)3C(2)1C(2)2, so C(3)0 = C(2)3 (1)

C(3)3
0 = C(2)3C(2)1C(2)2, so C(3)1 = C(2)1 (2)

C(3)3
0 = C(2)3C(2)1C(2)2, so C(3)2 = C(2)2 (3)

C(1)3
−2 = C(2)3

0, so C(1)2
−2 = C(2)2

0 (4)

C(1)3
−2 = C(2)3

0, so C(1)2
−1 = C(2)2

1 (5)

C(0)4
−1 = C(1)4

−1, so C(0)3
−1 = C(1)3

−1 (6)

C(0)4
−1 = C(1)4

−1, so C(0)3
0 = C(1)3

0 (7)

D(1)3
0 = D(2)0D(2)−2D(2)−1, so D(1)0 = D(2)0 (8)

D(1)3
0 = D(2)0D(2)−2D(2)−1, so D(1)1 = D(2)−2 (9)

D(1)3
0 = D(2)0D(2)−2D(2)−1, so D(1)2 = D(2)−1 (10)

D(3)3
−2 = D(2)3

−1, so D(3)2
−2 = D(2)2

−1 (11)

D(3)3
−2 = D(2)3

−1, so D(3)2
−1 = D(2)2

0 (12)

D(4)4
0 = D(3)4

−1, so D(4)3
0 = D(3)3

−1 (13)

D(4)4
0 = D(3)4

−1, so D(4)3
1 = D(3)3

0 (14)

Figure 1: Summary of what we know by construction

Remark:
M0 = Γ

(
R4 (C(0))

)
M1 = Γ

(
R3 (C(1))

)
×Γ
(
R1 (D(1))

)
M2 = Γ

(
R2 (C(2))

)
×Γ
(
R2 (D(2))

)
M3 = Γ

(
R1 (C(3))

)
×Γ
(
R3 (D(3))

)
M4 = Γ

(
R4 (D(4))

)
.
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Fitting Everything Together

Let us define

Ei(1) = WEAVEi,−i
(
D(1)1, C(1)3

)
,

Ei(2) = WEAVEi,−i
(
C(2)2, D(2)2

)
,

Ei(3) = WEAVEi,−i
(
C(3)1, D(3)3

)
,

H(1) = {E0(1), E1(1), E2(1)},
H(2) = {E0(2), E1(2)}, and

H(3) = {E0(3), E1(3), E2(3)}.

Lemma 6.2: {C(0), D(4)} ∪H(1) ∪H(2) ∪H(3) is 4-summable.

Proof. First,

C(0)3
−1 = C(1)3

−1 = E1(1)3
1 By Fig.1(6)

C(0)3
0 = C(1)3

0 = E0(1)3
1 By Fig.1(7).

Thus, {C(0), E0(1), E1(1)} must be 4-summable.

E0(1)3
−2 = C(1)2

−2D(1)0 = C(2)2
0D(2)0 = E0(2)3

0 By Fig.1(4, 8)

E2(1)3
0 = D(1)2C(1)2

−2 = D(2)−1C(2)2
0 = E0(2)3

−1 By Fig.1(4, 10),

so {C(0), E0(2)} ∪H(1) must be 4-summable.

E1(1)3
0 = D(1)1C(1)2

−1 = D(2)−2C(2)2
1 = E1(2)3

−1 By Fig.1(5, 9)

E0(3)3
−2 = D(3)2

−2C(3)0 = D(2)2
−1C(2)3 = E1(2)3

2 By Fig.1(1, 11)

E2(3)3
0 = C(3)2D(3)2

−2 = C(2)2D(2)2
−1 = E1(2)3

1 By Fig.1(3, 11)

E1(3)3
0 = C(3)1D(3)2

−1 = C(2)1D(2)2
0 = E0(2)3

1 By Fig.1(2, 12),

so {C(0)} ∪H(1) ∪H(2) ∪H(3) must be 4-summable.

Finally,

D(4)3
1 = D(3)3

0 = E0(3)3
1 By Fig.1(14).

Thus, {C(0), D(4)} ∪H(1) ∪H(2) ∪H(3) must be 4-summable.

Main Theorem: If a and b are positive multiples of 8 such that neither a + 1 nor b + 1 are
divisible by 3, then if there exist universal cycles on [ a+2

4 ] and [ b+2
4 ], there must exist universal

cycles on [ a+b+2
4 ].

Proof. D(1) is (1, 4)-benign (trivially), so by Corollary 5.2.15 we can find x 6 3 multisets
C(1)i such that

5Note that in this application of the corollary, D(1) takes on the role of C, and C(1) takes on the role
of D, despite the notational mismatch.
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1. each C(1)i contains an element of H(1),

2. each element of H(1) is contained in one of the C(1)i,

3. each C(1)i is 4-summable, and

4. If we let C(1) =
⋃x−1

i=0 C(1)i,⋃
E∈C(1)

Γ
(
R4(E)

)
= Γ

(
R1(D(1))

)
× Γ

(
R3(C(1))

)
= M1.

Since {C(0), D(4)} ∪H(1) ∪H(2) ∪H(3) is 4-summable by Lemma 6.2, properties 1, 2,
and 3 above imply that {C(0), D(4)} ∪H(2) ∪H(3) ∪ C(1) is 4-summable.

C(3) is (1, 4)-benign (trivially), so by Corollary 5.2.1 we can find x 6 3 multisets C(3)i
such that

1. each C(3)i contains an element of H(3),

2. each element of H(3) is contained in one of the C(3)i,

3. each C(3)i is 4-summable, and

4. If we let C(3) =
⋃x−1

i=0 C(3)i,⋃
E∈C(3)

Γ
(
R4(E)

)
= Γ

(
R1(C(3))

)
× Γ

(
R3(D(3))

)
= M3.

Since {C(0), D(4)}∪H(2)∪H(3)∪C(1) is 4-summable, properties 1, 2, and 3 above imply
that {C(0), D(4)} ∪H(2) ∪ C(1) ∪ C(3) is 4-summable.

C(2) is (2, 4)-benign by construction, so by Corollary 5.2.1 we can find x 6 2 multisets
C(2)i such that

1. each C(2)i contains an element of H(2),

2. each element of H(2) is contained in one of the C(2)i,

3. each C(2)i is 4-summable, and

4. If we let C(2) =
⋃x−1

i=0 C(2)i,⋃
E∈C(2)

Γ
(
R4(E)

)
= Γ

(
R2(C(2))

)
× Γ

(
R2(D(2))

)
= M2.

Since {C(0)}∪H(2)∪C(1)∪C(3) is 4-summable, properties 1, 2, and 3 above imply that
{C(0), D(4)} ∪ C(1) ∪ C(2) ∪ C(3) is 4-summable.
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Let C = {C(0), D(4)} ∪ C(1) ∪ C(2) ∪ C(3).⋃
E∈C

Γ
(
R4(E)

)
= M0 ∪M4 ∪M1 ∪M2 ∪M3 = P4 (A ∪ B ∪ {α, β}) .

Since C is 4-summable, there must exist a cycle X whose 4-range is the union of the
4-ranges of the elements of C, which means

Γ
(
R4(X)

)
= P4

(
A ∪ B ∪ {α, β}

)
.

Thus, X is a universal cycle on P4 (A ∪ B ∪ {α, β}).
Since |(A ∪ B ∪ {α, β})| = a + b + 2, and a universal cycle on [ a+b+2

4 ] exists if and only
if a universal cycle on P4 (A ∪ B ∪ {α, β}) exists, there must exist a universal cycle on
[ a+b+2

4 ].

Corollary to Main Theorem: As long as we can find universal cycles on [ 18
4 ] and [ 26

4 ], we
can find universal cycles on 4-subsets on [ n4 ] for any n = 2 (mod 8) satisfying n > 18.

Proof. Let us assume that there exist universal cycles on [ 18
4 ] and [ 26

4 ]. Since 16 is a
multiple of 8 and is not equivalent to 2 (mod 3), by the Main Theorem, there must exist
a universal cycle on [ 16+16+2

4 ] = [ 34
4 ]. Thus, we know that any i ∈ {2, 3, 4}, there exists a

universal cycle on [ 8i+2
4 ]. From here, we proceed by induction on i.

Let us assume that x > 4 and for any i satisfying 2 6 i 6 x, there exists a universal cycle
on [ 8i+2

4 ].

If x ≡ 2 (mod 3), 8 · (x−2) + 1 is not divisible by 3. Since 24 + 1 is not divisible by 3 and
there exist universal cycles on

[
8(x−2)+2

4

]
and [ 24+2

4 ], there must exist a universal cycle on[
8(x−2)+24+2

4

]
=
[

8(x+1)+2
4

]
.

If x 6≡ 2 (mod 3), 8 · (x−1) + 1 is not divisible by 3. Since 16 + 1 is not divisible by 3 and
there exist universal cycles on

[
8(x−1)+2

4

]
and [ 16+2

4 ], there must exist a universal cycle on[
8(x−1)+16+2

4

]
=
[

8(x+1)+2
4

]
.

Thus, by induction, for any i > 2, there exists a universal cycle on [ 8i+2
4 ].

7 Future Directions

The k = 5 case

In this paper, we have demonstrated several methods of fitting together small cycles to
make larger ones. These methods allowed us to prove our Main Theorem, but they are not
limited to this application. For example, they could be used to make significant inroads
on the k = 5 case. In particular, we could show:
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Conjecture: For any i ∈ {1, 2, 3, 4}, if a and b are sufficiently large multiples of 5 and satisfy
certain other divisibility conditions6, then if there exist universal cycles on [ a+i

5 ] and [ b+i
5 ],

there must exist universal cycles on [ a+b+i
5 ].

This result could be achieved entirely with the tools presented in Sections 2 through 5
by modifying Section 6 to use slightly different component cycles. Unfortunately, the
divisibility conditions on a and b would limit a + b + i to even values, so even with the
correct base cases, this would only solve the problem of finding universal cycles on [ n5 ] for
even n. Of course, it is quite possible that other approaches might yield less restricted
results.

The k > 5 cases

When k > 5, our approach runs into a difficulty. Recall that in the proof of the Main
Theorem, we used the fact that C(3) and D(1) were (1, 4)-benign and C(2) was (2, 4)-
benign. For the k = 5 case, we would similarly have two component cycles which were
(1, 5)-benign and two which were (2, 5)-benign. But for the k = 6 case, this approach
would require a component cycle which was (3, k)-benign; a case our construction does
not extend to.

To resolve this issue, we would need to prove the existence of (3, k)-benign universal cycles
on [ n3 ] for various n. To make further inroads on the k > 7 cases, we would need to prove
the existence of (4, k)-benign universal cycles on [ n4 ], and so on. We suspect that this
may be possible to do by modifying the existence proofs in [3] or [5] to conform to this
benignity condition, which would allow us to apply our methods to higher k.

Generalizing Weaves

In this paper, we describe a method of “multiplying” two cycles. A natural question
would be whether it is possible to similarly multiply three or more cycles, and indeed
there is. If we have x cycles C(1), C(2), · · · , C(x) such that |C(i)| is a multiple of k =
t(1) + t(2) + · · ·+ t(x) for any i, then we can create a Weave of these cycles by taking t(1)
symbols from C(1), t(2) symbols from C(2), t(3) symbols from C(3), and continue in this
fashion (returning to C(1) after taking symbols from C(x)) until adding the symbols from
C(x) returns us to the place we started in each of the C(i). Interestingly enough, the
“divisibility by k” condition is sufficient for the following generalization of the Product
Theorem to hold:

6These conditions would be the analogues to the Main Theorem’s condition that neither a + 1 nor
b+ 1 are divisible by 3, arising partially from the necessity of finding the smaller universal cycles we use,
and partially from the fact that we can only weave together cycles whose lengths are multiples of k. The
conditions will depend on both i and how we fit the cycles together (namely, what we chose to be the
analogues to M0,M1,M2,M3 and M4).
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Generalized Product Theorem (proof omitted)7: Let C(i) for i ∈ {1, 2, · · · , x} be cycles
such that k = t(1) + t(2) + · · · + t(x) divides |C(i)| for each i. Then, there is a set A of
x-tuples such that

Γ
(
Rt(1)(C(1))

)
× Γ

(
Rt(2)(C(2))

)
× · · · × Γ

(
Rt(x)(C(x))

)
=

⋃
(a(1),··· ,a(x))∈A

Γ
(
Rk
(
WEAVEa(1),··· ,a(x)(C(3)t(1), · · · , C(x)t(x))

))
.

Although this result was not necessary for the k = 4 case, it greatly expands the options
we have for expressing a cycle as a sum of products of cycles - some of which may yield
additional progress on the Chung, Diaconis, and Graham conjecture.

Universal Cycles on other Combinatorial Families

Although we have focused on the problem of finding universal cycles on k-subsets of n-
sets, our methods can also be applied to finding universal cycles on other combinatorial
families. For instance, they could be used to finding universal cycles on k-multisets on
n-sets, a problem studied by Hurlbert, Johnson, and Zahl in [4]. In fact, the Product
Theorem would be applicable to any combinatorial family which consisted of some subset
of the k-multisets on an n-set, an example being the k-multisets containing exactly k′

distinct symbols.
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