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Abstract

An oriented graph Gσ is a simple undirected graph G with an orientation σ,

which assigns to each edge of G a direction so that Gσ becomes a directed graph.
G is called the underlying graph of Gσ and we denote by S(Gσ) the skew-adjacency
matrix of Gσ and its spectrum Sp(Gσ) is called the skew-spectrum of Gσ. In this
paper, the skew spectra of two orientations of the Cartesian product of two graphs
are discussed. As applications, new families of oriented bipartite graphs Gσ with
Sp(Gσ) = iSp(G) are given and the orientation of a product graph with maximum
skew energy is obtained.
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1 Introduction

All graphs in this paper are simple and finite. Let G be a graph with n vertices and
A(G) = (ai,j) the adjacency matrix of G, where ai,j = aj,i = 1 if there is an edge ij

between vertices i and j in G (denoted by i ∼ j), otherwise ai,j = aj,i = 0. The n roots
of the characteristic polynomial P (G; x) = det(xI − A(G)) of A(G) are said to be the
eigenvalues of the graph G. Since A(G) is symmetric, all eigenvalues of A(G) are real and
we denote by Sp(G) the adjacency spectrum of G.

Let σ be an orientation of graph G, which assigns to each edge of G a direction so
that the induced graph Gσ is directed graph. The skew-adjacency matrix S(Gσ) = (si,j)
is a real skew symmetric matrix, where si,j = 1 and sj,i = −1 if i → j is an arc of Gσ,
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otherwise si,j = sj,i = 0. The skew-spectrum Sp(Gσ) of Gσ is defined as the spectrum of
S(Gσ). Note that Sp(Gσ) consists of only purely imaginary eigenvalues because S(Gσ) is
a real skew symmetric matrix.

Throughout this paper, we denote the path, cycle and complete graph on n vertices
by Pn, Cn and Kn, respectively. Note that P2 = K2.

While there are many results on spectrum of the adjacency matrix on a graph, there
are comparably fewer results on the skew-adjacency matrix of a graph. It is worthy to
mention that the square of the number of perfect matchings of a Pfaffian graph G is the
determinant of the skew-adjacency matrix S(Gσ), see [6] and references therein.

The concept of the energy of an undirected graph was defined as

E(G) =
∑

λ∈Sp(G)

|λ|,

which was introduced by Gutman. One may check the online bibliography maintained by
Gutman available at http: www.sgt.pep.ufrj.br/home.arquivos/energyenerbib.pdf. Re-
cently, the skew energy of an oriented graph Gσ was introduced in [1] by Adiga, Balakr-
ishnan and Wasin So. It is defined as the energy of the matrix S(Gσ), that is,

E(Gσ) =
∑

λi∈Sp(Gσ)

|λ|.

In [1], some basic facts of the skew energy are discussed and some open problems are
proposed [1], such as the following Problems 1.1 and 1.2.

Problem 1.1 Find new families of oriented graphs Gσ with E(Gσ) = E(G).

In [7], Shader and So showed that Sp(Gσ) = iSp(G) for some orientation σ if and
only if G is bipartite and Sp(Gσ) = iSp(G) for any orientation σ of G if and only if G is
acyclic. Combinatorial proofs of these results can be found in [4]. Some new families of
oriented graphs with Sp(Gσ) = iSp(G) can also be found in [4, 8].

Problem 1.2 Which k-regular graphs on n vertices have an orientation σ with E(Gσ) =
n
√
k, or equivalently S(G)TS(G) = kIn?

Given a graph G, which orientations of G have maximum skew energy? This is also
an interesting problem. In [1], it is shown that E(Gσ) 6 n

√
∆, where ∆ is the maximum

degree of G. It follows that if G is a k-regular graph and σ is an orientation with skew
energy n

√
k then σ must be an orientation of G with maximum skew energy among all

orientations of G.
The problems above motivate our investigation of the skew spectra of oriented graphs.

In Section 2 we will show that an oriented graph Gσ of a bipartite graph G has Sp(Gσ) =
iSp(G) if and only if the orientation σ is even cycle oriented uniformly, and if orientations
σ and τ of G and H with Sp(Gσ) = iSp(G) and Sp(Hτ ) = iSp(H), respectively, then
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Sp(Gσ�Hτ ) = iSp(G�H). The latter fact will provide new digraphs with Sp(Gσ) =
iSp(G) from known oriented graphs.

Let G be a k-regular graph and Gσ be an oriented graph of G with skew energy n
√
k. In

Section 3, we will obtain an oriented graph of P2�G with skew energy 2n
√
k + 1 and hence

obtain an oriented graph of P2�G with the maximum skew energy among all orientations
of P2�G. Note that P2�G is (k + 1)-regular if G is k-regular. For any positive integer
k > 3, we give new families of k-regular oriented graphs on n = 2k−1 vertices which have
the maximum skew energy E(Gσ) = n

√
k, or equivalently, ST (Gσ)S(Gσ) = kIn.

If T is a tree, then Sp(T σ) = iSp(T ) for any orientation σ of T and hence E(T σ) =
E(T ). In Section 3 we will also give an orientation of P2�T with the maximum skew
energy among all orientations of P2�T.

2 Oriented graphs with Sp(Gσ) = iSp(G)

LetG be a graph. A linear subgraph L ofG is a subgraph ofG in which each component
is either an edge or a cycle. A linear subgraph L of G is evenly linear if L contains no
cycle with odd length. A k-matchingM in G is a disjoint union of k-edges. If 2k is the
order of G, then a k-matching of G is called a perfect matching of G.

Let G be a graph and A(G) be its adjacency matrix. Then the characteristic polyno-
mial of G is

P (G; x) = det(xI − A) =
n

∑

i=0

aix
n−i. (2.1)

Here a0(G) = 1, a1(G) = 0, and −a2(G) is the number of edges in G. In general, we have

Theorem 2.1 ([2]) Let G be a graph and let the characteristic polynomial of A(G) be
expressed as in (2.1). Then

ai =
∑

L∈Li

(−1)p1(L)(−2)p2(L), (2.2)

where Li denotes the set of all linear subgraphs L of G with i vertices, p1(L) is the number
of components of order 2 in L and p2(L) is the number of cycles in L.

If G is bipartite, then ai = 0 for all odd i, and

P (G; x) =

⌊n
2
⌋

∑

i=0

(−1)ib2i(G)xn−2i, (2.3)

where all b2i = (−1)ia2i are nonnegative.
Let C be an undirected even cycle of Gσ. Now regardless of which of the possible rout-

ing around C is chosen, if C contains an even number of oriented arcs whose orientation
agrees with the routing, then C also contains an even number of arcs whose orientation
is opposite to the routing. Hence the following definition is independent of the routing
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chosen. If C is any undirected even cycle of Gσ, we say C is evenly oriented relative to
Gσ if it has an even number of arcs oriented in the direction of the routing. Otherwise
C is oddly oriented.

Let σ be an orientation of G and S(Gσ) be the skew-adjacency matrix of Gσ. Denote
the characteristic polynomial of S(Gσ) by

P (Gσ; x) = det(xI − S) =
n

∑

i=0

cix
n−i. (2.4)

Then (i) c0 = 1, (ii) c2 is the number of edges of G, (iii) ci > 0 for all i and (iv) ci = 0 for
all odd i since the determinant of any skew symmetric matrix is 0 if its order is odd. In
general, we have

Theorem 2.2 [4] Let σ be an orientation of G. Then

ci =
∑

L∈ELi

(−2)pe(L)2po(L), (2.5)

where ELi is the set of all evenly linear subgraphs of Gσ with i vertices, pe(L) is the
number of evenly oriented cycles of L relative to Gσ and po(L) is the number of oddly
oriented cycles of L relative to Gσ. In particular, ci = 0 if i is odd.

Let σ be an orientation of G and the characteristic polynomials of A(G) and S(Gσ)
be expressed as in (2.1) and (2.4), respectively. Because the roots of P (Gσ; x) are pure
imaginary and occur in complex conjugate pairs, while the roots of P (G; x) are all real,
it follows that Sp(Gσ) = iSp(G) if and only if P (G; x) =

∑n

i=0 aix
n−i = xn−2r

∏r

i=1(x
2 −

λ2
i ) and P (Gσ; x) =

∑n

i=0 cix
n−i = xn−2r

∏r

i=1(x
2 + λ2

i ) for some non-zero real numbers
λ1, λ2, . . . , λr if and only if

a2i = (−1)ic2i, a2i+1 = c2i+1 = 0, (2.6)

where i = 0, 1, . . . , ⌊n
2
⌋.

The following result was first obtained in [7] by Shader and So.

Theorem 2.3 A graph G is bipartite if and only if there is an orientation σ of G such
that Sp(Gσ) = iSp(G).

For which orientations σ of a bipartite graph, do we have Sp(Gσ) = iSp(G)? This
may be an interesting problem. We need a definition to do this. Let σ be an orientation
of a graph G. An even cycle C2ℓ is said to be oriented uniformly if C2ℓ is oddly (resp.,
evenly) oriented relative to Gσ when ℓ is odd (resp., even).

Theorem 2.4 Let G be a bipartite graph and σ be an orientation of G. Then Sp(Gσ) =
iSp(G) if and only if every even cycle is oriented uniformly in Gσ.
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Proof. Since G is bipartite, all cycles in G are even and all linear subgraphs are even.
Then a2i+1 = 0 for all i.

(Sufficiency) Since every even cycle is oriented uniformly, for every cycle C2ℓ with
length 2ℓ, C2ℓ is evenly oriented relative to Gσ if and only if ℓ is even. Thus (−1)pe(C2ℓ) =
(−1)ℓ+1.

By Eqs (2.2) and (2.5), we have

(−1)ia2i = m(G, i) +
∑

L∈CL2i

(−1)p1(L)+i(−2)p2(L), (2.7)

c2i = m(G, i) +
∑

L∈CL2i

(−2)pe(L)2po(L), (2.8)

where m(G, i) is the number of matchings with i edges and CL2i is the set of all linear
subgraphs with 2i vertices of G and with at least one cycle.

For a linear subgraph L ∈ CL2i of G, assume that L contains the cycles C2ℓ1 , . . . , C2ℓp2
.

Then the number of components of L that are single edges is p1(L) = i−∑p2(L)
j=1 ℓj. Hence

(−1)p1(L)+i = (−1)
∑p2(L)

j=1 ℓj . Therefore L contributes

(−1)ℓ1+1 · · · (−1)ℓp2+12p2(L) = (−1)p1(L)+i(−2)p2(L)

in c2i. Thus (−1)ia2i = c2i by Eqs. (2.7) and (2.8) and the sufficiency is proved.
(Necessity) If there is an even cycle of G that is not oriented uniformly in Gσ, then

choose a shortest cycle C2ℓ with length 2ℓ such that C2ℓ is not oriented uniformly, that
is, C2ℓ is oddly oriented in Gσ if ℓ is even, and evenly oriented if ℓ is odd. Assume that
there are r cycles with length 2ℓ such that they are not oriented uniformly, and let UCL2ℓ

denote the set of all even linear subgraphs with 2ℓ vertices of G and all even cycles that
are oriented uniformly. Thus, we have

(−1)ℓa2ℓ = m(G, ℓ) + r(−1)ℓ(−2) +
∑

L∈UCL2ℓ

(−1)p1(L)+ℓ(−2)p2(L),

c2ℓ = m(G, l) + r(−1)ℓ2 +
∑

L∈UCL2ℓ

(−2)pe(L)2po(L).

By the choice of C2ℓ and the proof of the necessity,
∑

L∈UCL2ℓ
(−1)p1(L)+ℓ(−2)p2(L) =

∑

L∈UCL2ℓ
(−2)pe(L)2po(L). Thus (−1)ℓa2ℓ 6= c2ℓ and hence Sp(Gσ) 6= iSp(G) by Eq. (2.6).

Let G and H be graphs with n1 and n2 vertices, respectively. The Cartesian product
G�H of G andH is a graph with vertex set V (G)�V (H) and there exists an edge between
(u1, v1) and (u2, v2) if and only if u1 = u2 and v1v2 is an edge of H, or v1 = v2 and u1u2 is
an edge of G. Orientations σ and τ of graphs G and H will give an orientation of G�H in a
natural way and this gives the Cartesian product Gσ�Hτ of Gσ and Hτ , a directed graph
with vertex set V (G)�V (H) and there exists an arc from (u1, v1) to (u2, v2) if and only if

the electronic journal of combinatorics 20(2) (2013), #P19 5



u1 = u2 and (v1, v2) is an arc of Hτ , or v1 = v2 and (u1, u2) is an arc of Gσ. It is easy to
see that Gσ�Hτ is an oriented graph of G�H. With suitable labeling of vertices of G�H,

one can obtain the skew adjacency matrix of Gσ�Hτ as In1⊗S(Hτ )+S(Gσ)⊗In2 . Thus,
the skew eigenvalues of Gσ�Hτ are λ(Gσ) + µ(Hτ ), λ(Gσ) ∈ Sp(Gσ), µ(Hτ ) ∈ Sp(Hτ ).

Theorem 2.5 Let Gσ and Hτ be oriented graphs with Sp(Gσ) = iSp(G) and Sp(Hτ ) =
iSp(H), respectively. Then Sp(Gσ�Hτ ) = iSp(G�H).

Proof. Let the eigenvalues of G and H be λ1, · · · , λn1 and µ1, · · · , µn2 , respectively. Then
the eigenvalues of G�H are λi + µj, i = 1, · · · , n1, j = 1, · · · , n2. Since Sp(Gσ) = iSp(G)
and Sp(Hτ ) = iSp(H), Sp(Gσ) = {λ1i, · · · , λn1i} and Sp(Hτ ) = {µ1i, · · · , µn2i}. Thus
Sp(Gσ�Hτ ) = {λii+ µji, i = 1, · · · , n1, j = 1, · · · , n2} = iSp(G�H). .

Example 2.6 In [8], an oriented hypercube
−→Hd satisfying Sp(

−→Hd) = iSp(Hd) is given. In

fact, this orientation gives the Cartesian product of the directed graphs
−→Hd =

−→
K2�

−−−→Hd−1

and
−→H1 =

−→
K2. See Fig. 1

?
? ?

-

-

-

-� �

?

?
?

?

- ��

-

−→H1
−→H2

−→H3

Figure 1: The first three oriented hypercubes in Example 2.6.

Let σ be an orientation of a graph G. Let W be a subset of V (G) and W = V (G)\W .
The orientation τ of G obtained from σ by reversing the orientations of all arcs betweenW

and W is said to be obtained from Gσ by a switching with respect to W . If Gτ is obtained
from Gσ by a switching with respect to W, then S(Gτ ) = PS(Gσ)P for a diagonal signed
matrix P = (pij), where pii = −1 if i ∈ W, 1 otherwise. Moreover, two oriented graphs
Gσ and Gτ of G are said to be switching-equivalent if Gτ can be obtained from Gσ by a
switching.

The following result is proved in [1].

Lemma 2.7 ([1]) Let σ and τ be orientations of G. If Gσ and Gτ are switching-equivalent
then Sp(Gσ) = Sp(Gτ ) and E(Gσ) = E(Gτ ).

Let G be a bipartite graph with the bipartition V (G) = X ∪Y . We call an orientation
σ ofG elementary if it assigns each edge ofG the direction fromX to Y. For the elementary
orientation σ of a bipartite graph G, Sp(Gσ) = iSp(G) by Theorem 2.2 in [7].

In [8], it is claimed that the oriented graph
−→Hd is non-isomorphic to the elementary

oriented graph of Hd. But we have
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Proposition 2.8 The orientation σ of
−→Hd of Hd in Example 2.6 is switching-equivalent

to the elementary orientation of Hd.

Proof. We prove the proposition by induction on d. The proposition holds for d = 1
and d = 2 clearly. Now we suppose that

−−−→Hd−1 is switching-equivalent to the elementary
orientation of Hd−1 with the bipartition X ∪ Y . Then the vertex set of Hd is X ∪ Y ∪
X ′ ∪ Y ′ and

−→Hd is depicted in Fig. 2. Then
−→Hd is switching-equivalent to the elementary

orientation of Hd by switching with respect to Y ′.

? ? ??? ???

-
-
-

-
-
-

X

Y

X

Y

X ′

Y ′

−→
H d−1

−→
H d

X

Y

X ′

Y ′

???

-
-
-

666

�
�

�

?

A switching of
−→
H d

Figure 2: An orientation and a switching of Hd

We pose the following conjecture.

Conjecture 2.9 Let G = G(X, Y ) be a bipartite graph and let σ be an orientation of
G. Then Sp(Gσ) = iSp(G) if and only if σ is switching equivalent to the elementary
orientation of G.

3 An orientation of Pm�G with the maximum skew

energy

In this section, first, we will define an orientation of the product graph Pm�G and
determine its skew spectrum. As applications of this orientation, we then give new families
of oriented graphs with the maximum skew energy.

Let
−→
G be any orientation of G and let

←−
G be the converse of

−→
G which is the oriented

graph obtained from
−→
G by reversing the orientation of each arc. We define an oriented

graph (Pm�G)o of Pm�G as follows.
Let V (G) = {v1, v2, · · · , vn} be the vertex set of G. Take m copies of G, denoted by

G1, G2, . . . , Gm, where V (Gi) = {v(i)1 , v
(i)
2 , · · · , v(i)n } is the vertex set of Gi, i = 1, 2, . . . ,m.

If we add the set of edges {v(i)j v
(i+1)
j |1 6 j 6 n} between every pair of graphs Gi and Gi+1,

for i = 1, 2, . . . ,m − 1, then the resulting graph is Pm�G. We define the oriented graph−→
G i of Gi in Pm�G to be

−→
G if i is odd and the converse

←−
G otherwise, and the direction
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of edges of the form v
(i)
j v

(i+1)
j (1 6 j 6 n, 1 6 i 6 m− 1) in Pm�G are from v

(i)
j to v

(i+1)
j .

Hence we obtain an oriented graph of Pm�G, denoted by (Pm�G)o. See Figure 3 below.

-
-
-

-
-
-

-
-
-

−→
G 1

←−
G 2

−→
G 3

-
-
-

-
-
-

−→
Gm−1

−→
Gm

Figure 3: The oriented graph (Pm�G)o of Pm�G

Lemma 3.1 Let A and B be real matrices and let P,Q be orthogonal matrices. If B =
PAQ, then A and B have the same singular values.

Proof. The lemma follows immediately from BBT = (PAQ)(PAQ)T = PAATP T .

Lemma 3.2 Let σ be an orientation of G and let the skew eigenvalues of Gσ be the
non-zero values ±λ1i, . . . ,±λri and n − 2r 0’s. Let the eigenvalues of the path Pm be

µ1, µ2, . . . , µm. Then the skew eigenvalues of the oriented graph (Pm�G)o are ±i
√

λ2
i + µ2

j ,

i = 1, 2, . . . , r, j = 1, 2, . . . ,m, and µji with multiplicities n− 2r, j = 1, 2, . . . ,m.

Proof. With suitable labeling of the vertices of Pm�G, we can obtain that the skew
adjacency matrix of (Pm�G)o is the following:

S((Pm�G)o) =



















S(Gσ) I 0 · · · 0 0
−I −S(Gσ) I · · · 0 0
0 −I S(Gσ) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · (−1)m−2S(Gσ) I

0 0 0 · · · −I (−1)m−1S(Gσ)



















Now multiplying the first column, then the third and fourth row, then the fourth and
fifth column, then the seventh and eighth row, etc. of the partition matrix S((Pm�G)o)
by −1, we obtain a matrix

M =



















−S(Gσ) In 0 · · · 0 0
In −S(Gσ) In · · · 0 0
0 In −S(Gσ) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −S(Gσ) In
0 0 0 · · · In −S(Gσ)



















.

By Lemma 3.1, S((Pm�G)o) and M have the same singular values.
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If we denote by A(Pm) the adjacency matrix of the path Pm, that is,

A(Pm) =



















0 1 0 · · · 0 0
1 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 1 0



















,

then M = −Im ⊗ S(Gσ) + A(Pm) ⊗ In. Note that MT = Im ⊗ S(Gσ) + A(Pm) ⊗ In and
MMT = −Im⊗S(Gσ)2+A(Pm)

2⊗In. Thus the eigenvalues of MMT are λ(Gσ)2+µ(Pm)
2,

where λ(Gσ)i ∈ Sp(Gσ) and µ(Pm) ∈ Sp(Pm). Then the skew spectrum of (Pm�G)o

follows.

Corollary 3.3 Let σ be an orientation of G and the skew eigenvalues of Gσ be non-zero
λ1i, . . . , λri and n− 2r 0’s. Then the skew eigenvalues of the oriented graph (P2�G)o are
±i

√

λ2
i + 1, i = 1, 2, . . . , r, and ±i with multiplicities n− 2r.

As an application of Lemma 3.2, we can obtain some formula for the number of perfect
matchings of a pfaffian graph. If the oriented graph (Pm�G)o is a Pfaffian then the number
of perfect matchings of Pm�G is the square root of the determinant of the skew adjacency
matrix, and the determinant of a matrix is the product of its eigenvalues. See [9, 10] for
more details.

We recall the following result from [1].

Theorem 3.4 [1] Let σ be an orientation of a graph G of order n. Then E(Gσ) 6 n
√
∆

and equality holds if and only if S(Gσ)TS(Gσ) = ∆In.

From above theorem, it follows that if E(Gσ) = n
√
∆ then G must be ∆-regular and

σ has the maximum skew energy among all orientations of G. A natural question is posed
in [1]: Which k-regular graphs on n vertices have orientations σ with E(Gσ) = n

√
k, or

equivalently, S(Gσ)TS(Gσ) = kIn ? Adiga et al. showed that a 1-regular graph with n ver-
tices has an orientation with S(Gσ)TS(Gσ) = In if and only if n is even and G is n

2
copies

of K2, and a 2-regular graph with n vertices has an orientation with S(Gσ)TS(Gσ) = 2In
if and only if n is a multiple of 4 and G is a union of n

4
copies of C4, see [1]. Tian proved

that there exists a k-regular graph with n = 2k vertices having an orientation σ with
S(Gσ)TS(Gσ) = kIn for all k > 3. (See [8] and Example 3.6 below). The following Exam-
ple 3.7 provides a new class of k-regular graphs of order n = 2k−1 having an orientation
σ with S(Gσ)TS(Gσ) = kIn for all k > 3.

Theorem 3.5 Let Gσ be an oriented k-regular graph of G on n vertices with the maximum
skew energy E(Gσ) = n

√
k. Then the oriented graph (P2�G)o of P2�G has the maximum

skew energy E((P2�G)o) = 2n
√
k + 1.
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Proof. Since Gσ has the maximum skew energy E(Gσ) = n
√
k. In other words,

S(Gσ)TS(Gσ) = kIn, where n is the number of vertices of G. By a suitable labeling
of the vertices of P2�G, the skew adjacency matrix of (P2�G)o has the following form:

S((P2�G)o) =

(

S(Gσ) In
−In −S(Gσ)

)

.

Thus

S((P2�G)o)TS((P2�G)o) =

(

−S(Gσ) −In
In S(Gσ)

)(

S(Gσ) In
−In −S(Gσ)

)

=

(

S(Gσ)TS(G) + In 0
0 S(Gσ)TS(Gσ) + In

)

=

(

(k + 1)In 0
0 (k + 1)In

)

= (k + 1)In.

(a): K4

-

-

6

?

6

R

(b): An orientation of K4

−→
G r−1

←−
G r−1

-

-

-

(c): An orientation of Gr.

	

Figure 4: The orientations of a family of k-regular graphs with the maximum skew energy

Example 3.6 Let H1 = P2, H2 = P2�H1, · · · , Hd+1 = P2�Hd. Then Hd is hypercube of
dimension d. Since P2 has an orientation with skew energy 2, using above theorem, we
can obtain an orientation of the hypercube Hd with the maximum skew energy 2d

√
d for

d > 2. See also the Algorithm 1 in [8].

Example 3.7 Let G1 = K4, G2 = P2�K4, · · · , Gr = P2�Gr−1. In [1], an orientation of
K4 with skew energy 4

√
3 is given, see (b) of Fig. 4. Thus, we can obtain an oriented

graph
−→
G r of Gr with the maximum skew energy 2r+1

√
r + 2. This also provides a family

of k-regular graphs of order n = 2k−1 having an orientation with skew energy n
√
k for

k > 3.

There are two non-isomorphism 3-regular graphs G1 and G2 on 6 vertices, the orien-
tations on them depicted in Fig. 5 have the same skew spectrum ±2i,±2i,±i. Moreover
they have the maximum skew energy among all orientations of G1 and G2, respectively,
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Figure 5: Orientations of two non-isomorphic 3-regular graphs on 6 vertices having the
same skew spectra.

but their skew energies are less than 6
√
3. So there is no 3-regular graph on 6 vertices

having an orientation with skew energy 6
√
3.

Recall that the characteristic polynomial of S(Gσ) is as in (2.4). In [5], the following
integral formula for the skew energy of Gσ was given:

E(Gσ) =
1

π

∫ ∞

−∞

1

t2
log(1 +

⌊n
2
⌋

∑

k=1

c2kt
2k)dt. (3.1)

It follows from above integral formula that E(Gσ) is an increasing function of c2k(G
σ),

k = 0, 1, · · ·, ⌊n
2
⌋. Consequently, if Gσ

1 and Gτ
2 are oriented graphs of G1 and G2,

respectively, for which

c2i(G
σ
1 ) > c2i(G

τ
2) for all ⌊

n

2
⌋ > i > 0 (3.2)

then E(Gσ
1 ) > E(Gτ

2). (3.3)

Equality in Eq. (3.3) is attained only if Eq. (3.2) is an equality for all ⌊n
2
⌋ > i > 0.

Lemma 3.8 If G has an orientation σ such that every even cycle is oddly oriented, then
Gσ has the maximal skew energy among all orientations of G.

Proof. Let o be the orientation of G such that all even cycles are oddly oriented and let
σ be any orientation of G. By Eq. (2.5), we have

c2i(G
σ) =

∑

L′∈EL(Gσ)2i

(−2)pe(L′)2po(L
′)
6

∑

L′∈EL(Gσ)2i

2pe(L
′)+po(L′)

6
∑

L∈EL(Go)2i

(−2)pe(L)2po(L) = c2i(G
o).

Thus E(Gσ) 6 E(Go).

If in Gσ, every even cycle is evenly oriented, we do not know if Gσ has the minimal
skew energy among all orientations of G.

Which graphs have an orientation σ such that all even cycles are oddly oriented?
Fisher and Little gave a characterization for such graphs as follows:
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Theorem 3.9 ([3] A graph has an orientation under which every cycle of even length is
oddly oriented if and only if the graph contains no subgraph which is, after the contraction
of at most one cycle of odd length, an even subdivision of K2,3.

For bipartite graphs, in [11], Zhang and Li show that there exists an orientation of a
bipartite graph G such that all even cycles are oddly oriented if and only if G contains
no even subdivision of K2,3. Moreover, If a bipartite graph contains no even subdivision
of K2,3 then it must be planar. The following lemma provides a family of graphs having
an orientation under which every cycle of even length is oddly oriented.

Lemma 3.10 [10] Let T be a tree and σ be an arbitrary orientation of T. Then the
oriented graph (P2�T )o has every even cycle oddly oriented.

Corollary 3.11 Let T be a tree. Then the oriented graph (P2�T )o has the maximal skew
energy among all orientations of P2�T.

Let σ is an orientation of G such that Gσ has the minimum (maximum, respectively)
skew energy among all orientations of G. It is a natural question that which orientations
of P2�G yield the minimum (maximum, respectively) skew energy? One may think
the oriented graph P2�Gσ ( (P2�Gσ)o, respectively) would be a candidate. The following
example shows that this is not true for the minimum skew energy. We conjecture (P2�Gσ)o

has the maximum skew energy among all orientations of P2�G if Gσ has the maximum
skew energy among all orientations of G.
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Figure 6: Two orientations of P2�C4.

Example 3.12 Let G = P2�C4 (G is the hypercube Q3, in fact) and Ce
4 be an oriented

graph of C4 such that C4 is evenly oriented. Then Sp(Ce
4) = {2i,−2i, 0, 0}, E(Ce

4) = 4 has
the minimum skew energy among all orientations of C4. The left orientation in Figure 6,
which is P2�Ce

4 has skew energy 12 but the right orientation has skew energy (about 11.5)
less than 12.
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