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Abstract

We prove that the circular chromatic index of a cubic graph G with 2k vertices
and chromatic index 4 is at least 3 + 2/k. This bound is (asymptotically) optimal
for an infinite class of cubic graphs containing bridges. We also show that the
constant 2 in the above bound can be increased for graphs with larger girth or
higher connectivity. In particular, if G has girth at least 5, its circular chromatic
index is at least 3 + 2.5/k. Our method gives an alternative proof that the circular
chromatic index of the generalised type 1 Blanuša snark B1

m is 3 + 2/3m.

1 Introduction

Circular colourings have become an active research area in the last decade. Meanwhile,
various interesting connections between circular colourings and other areas of graph theory
and theoretical computer science have been revealed: circular colourings can be equiv-
alently defined via graph homomorphisms, balanced orientations, or tensions; circular
chromatic number is dual to a certain invariant studied for periodic scheduling problems.
More on this can be found in the surveys [20] and [21].

This article focuses on circular edge-colourings of cubic graphs. Basic properties of
circular edge-colorings are covered in Section 2; in this section we also introduce our new
approach for determining a lower bound on circular chromatic index. The essence of this
approach is captured in Proposition 1.

Cubic graphs constitute one of the most important classes of graphs because various
important conjectures such as the Cycle Double Cover Conjecture and the Tutte’s 5-
flow conjecture have been reduced to graphs with maximum degree 3. It transpired that
many conjectures hold trivially for cubic graphs that have a 3-edge-colouring, hence the
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difficulty consists in proving them for cubic graphs with chromatic index 4. We call such
uncolourable graphs snarks (for our purpose, they may contain bridges).

The aim of this article is to establish a lower bound on the circular chromatic index
of a snark depending on its order. An outline of previous results concerning circular
chromatic index of snarks is given in Section 3 and the established bounds are presented
in Sections 4, 5, and 6. The most important of the bounds is the following: if G is a snark
with 2k vertices and girth at least 5, then the circular chromatic index of G is at least

3 +
2.5

k
.

If we further assume that G does not contain a special subgraph (see Lemma 10 for the
details), the bound improves to 3 + 2.6/k. The better bound leads to a completely new
way of proving that the generalised type 1 Blanuša snark with 2k vertices has circular
chromatic index 3 + 2.6/k, as established in [13]. The advantage of our proof is that we
avoid tedious and long case analysis that is essential in the original proof.

2 Circular edge-colourings

A circular r-edge-colouring of a graph G is an assignment c of colours, that is, real
numbers from the interval [0, r), to the edges of G in such a way that for any pair of
adjacent edges e and f we have 1 6 |c(e) − c(f)| 6 r − 1. The circular chromatic index
of a graph G, denoted by χ′c(G), is the infimum of all r such that G admits a circular
r-edge-colouring. In fact, the infimum can be replaced by minimum [20]. One can easily
check that any “usual” edge-colouring of a graph (with colours being integers from the
set {0, 1, . . . , r − 1}) is also a circular edge-colouring, hence the circular chromatic index
is a natural refinement of the chromatic index. Precisely, χ(G) = dχ′c(G)e; a proof of this
and many other basic properties of circular colourings used in this paper can be found in
[20].

The problem of determining if a given rational number is the circular chromatic index
of a given graph is known to be NP-hard [20]. In practice, it is tough even for cubic
graphs on 30 vertices. As a consequence, there are only a few classes of graphs with
known circular chromatic index (see [21] for some details).

When attempting to determine the circular chromatic index of a particular graph G,
one naturally starts with some general bounds that restrict the set of possible values of
χ′c(G). Obviously, to find an upper bound for χ′c(G) we just need to find a circular edge-
colouring of G. However, to establish a lower bound χ′c(G) > r, one needs to prove that
there is no circular r′-edge-colouring for any r′ < r, and at present we have no efficient
methods for this problem (neither theoretical nor computational, see [7]). Here a decent
lower bound might be useful. Such a bound on circular flow number has been given in
[12] in terms of the order of the graph; we will also follow this approach. (For more details
on the relationship between circular flows and circular colourings we refer the reader to
the articles [8, 17].)
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Let G be a graph with maximum degree ∆ and chromatic index ∆ + 1. Then

χ′c(G) > ∆ +
2

|V (G)|
. (1)

This bound is based on a lemma from [20]: if p and q are two coprime integers and
χ′c(G) = p/q for a graph G with chromatic index ∆(G) + 1, then the denominator q
does not exceed |V (G)|/2. In fact, the denominator cannot exceed the size of the largest
matching in G (see [9, Theorem 3]).

The bound given above is trivial and is of no practical use. Fortunately, it is possible
to exploit the structure of matchings in a graph and to derive a better bound. As we will
show later, some further improvements are possible for graphs with larger girth or larger
cyclic edge-connectivity.

The concept of circular colouring was introduced by Vince in [18]. The definition used
by Vince is a bit different from the above-given definition, but they are equivalent (see
[20] for a proof). Since Vince’s definition is rather useful for our work, we present it here.
A (p, q)-edge-colouring of a graph G is an assignment c of colours, that is, integers from
the set {0, 1, 2, . . . , p − 1}, to the edges of G in such a way that for any pair of adjacent
edges e and f we have q 6 |c(e) − c(f)| 6 p − q. The circular chromatic index is the
infimum of all fractions p/q such that G admits a (p, q)-edge-colouring.

The set of colours of a (p, q)-edge-colouring is {1, 2, . . . , p}, with colours taken modulo
p. A set of r consecutive colours will be called a segment of length r. For example, the set
{p − 1, p, 1, 2} is a segment of length 4. We say that a segment colours m edges if there
are exactly m edges coloured by the colours constituting the segment. By the subgraph
of a graph G induced by a set of edges S ⊆ E(G) we mean the subgraph of G induced
by all endvertices of the edges in S. The main idea of our approach is captured in the
following simple proposition.

Proposition 1. Let G be a cubic graph with 2k vertices, chromatic index 4 and a (3v +
u, v)-edge-colouring. Let t and m be positive integers. If any segment of length tu colours
at least m edges, then

u

v
>

3m

3tk −m
.

Therefore, χ′c(G) > 3 +m/tk.

Proof. Each colour belongs to tu segments of length tu. Since G has 3k edges and there
are 3v + u different segments of length tu, the average number of edges coloured by such
a segment is

3k · tu
3v + u

.

The average value is at least as big as the minimal value, which is at least m in our
situation. A simple manipulation of this inequality gives the desired lower bound for the
fraction u/v and, consequently, for χ′c(G).

Remark 2. Note that the segments in Proposition 1 need not to be contiguous: we can
replace them by sets of colours of size tu such that each colour appears in tu of them.
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Proposition 1 reduces the problem of proving the lower bound to proving that a seg-
ment of a given length colours sufficiently many edges. The latter problem is easier to
approach. For instance, Lemma 4 shows that a segment of length u colours at least two
edges, and then Proposition 1 with t = 1 and m = 2 yields the lower bound 3 + 2/k.
Although we focus on cubic graphs in this article, our methods can be generalised to
graphs of larger maximum degree in a straightforward way; see [3] for an example.

3 Circular chromatic index of cubic graphs

The circular chromatic index provides a measure that can be used to say “how far” a
cubic graph is from being 3-edge-colourable. All 3-edge-colourable cubic graphs have
circular chromatic index 3, thus they are not exciting at all from our point of view.
We are interested in snarks , connected cubic graphs with chromatic index 4. Usually
it is required that a snark is bridgeless, that is, 2-edge-connected, but we will keep the
definition as broad as possible. We allow our graphs to have multiple edges but exclude
graphs with loops. More about snarks and their history can be found in the survey [19];
the article [15] is devoted to a discussion of various aspects of triviality of snarks. The
most common requirements imposed on a non-trivial snark are girth at least 5 and cyclic
edge-connectivity at least 4.

The circular chromatic index of a snark lies in the set (3, 11/3] ∪ {4}. The upper
bound of 11/3 for bridgeless snarks was proved by Afshani et al. [1]. The values of
circular chromatic index have been determined for Isaac snarks [6], Goldberg snarks [4],
a few classes of graphs that are trivial in some sense (for instance, see [16]), generalised
Blanuša snarks [13, 5], and the cubic graphs that have been constructed to show that
any rational number from the interval (3, 10/3) is equal to the circular chromatic index
of some cubic graph [11].

An improvement of the lower bound (1) on circular chromatic index of snarks was
established in [14]: a snark on 2k vertices has circular chromatic index at least

3 +
2

k
. (2)

In this article, we focus on lower bounds in the form χ′c(G) > 3+c/k, where k = |V (G)|/2
and c is a constant. It is often true that such a bound holds for all but finitely many
snarks, hence we will adopt an asymptotical approach described later.

The proof of the bound (2) and also our subsequent proofs are based on the following
observation: a cubic graph is 3-edge-colourable if and only if it has two disjoint perfect
matchings (1-factors). Hence a cubic graph is a snark if and only if it does not have two
disjoint 1-factors. This does not exclude graphs with bridges, and parallel edges are also
naturally included in this equivalent definition of a snark.

In Section 4 we prove a slight improvement of the bound (2) and show that it is tight
for an infinite class of graphs with girth 2 and cyclic edge-connectivity 1. If we want
to improve the bound further, we have to restrict ourselves to a subclass of the class of
snarks, for instance, we can assume larger girth or larger cyclic edge-connectivity. As we
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will see in Sections 5 and 6, both these ways allow us to improve the bound. In our proofs
we need some auxiliary technical results; we have grouped them in an appendix to avoid
disrupting the exposition.

4 A lower bound for snarks of given order

We will usually write the value of the circular chromatic index of a snark in the form
3 + u/v, where u and v are coprime positive integers. Since all cubic graphs are 4-edge-
colourable, we assume u 6 v. There exist snarks with circular chromatic index 4; they
were completely characterised by Afshani et al. in [1]. Since we are working on the lower
bound, snarks with circular chromatic index 4 are of no interest to us and we will assume
u < v throughout the article.

The following theorem gives a lower bound slightly better than the bound (2).

Theorem 3. Let G be a snark on 2k vertices. Then

χ′c(G) > 3 +
2

k − 1
.

This bound is tight for any odd k > 3.

The proof of Theorem 3 consists of three parts. First, we prove that a segment of length
u colours at least two edges and obtain a lower bound on χ′c(G) from Proposition 1. Then
we improve the obtained bound using a number-theoretic argument (Lemma 13). Finally,
we construct a class of graphs for which the improved lower bound is attained.

Lemma 4. Let G be a snark with 2k vertices. In any (3v + u, v)-edge-colouring of G,
every segment of length u colours at least two edges.

Proof. Consider a segment of length u. We divide the remaining 3v colours into three
consecutive segments of length v. The edges coloured by any of these three segments form
a matching. If two of the matchings created in this way are perfect, we have two disjoint
1-factors, contradictory to the assumption that G is a snark. Hence at most one of these
matchings has k edges and the remaining two have at most k − 1 edges. Together there
are at most k + 2(k − 1) = 3k − 2 edges coloured by the 3v colours. Since G is cubic, it
has 3k edges; therefore, our segment of length u colours at least two edges.

Proof of Theorem 3. Let G be a snark on 2k vertices with circular chromatic index 3+u/v.
Since the infimum in the definition of circular chromatic index is attained, there exist a
(3v + u, v)-edge-colouring of G. According to Lemma 4, any segment of length u colours
at least two edges. By using Proposition 1 for t = 1 and m = 2, we obtain that

u

v
>

2

k − 2
3

. (3)

One of the basic properties proved in [20] asserts that if a snark on 2k vertices has
circular chromatic index p/q with p and q coprime, then there exist a (p, q)-edge-colouring
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Figure 1: A (3m+ 1,m)-edge-colouring of the graph Hm.

of this snark and for any such (p, q)-edge-colouring we have p 6 3k and q 6 k. Hence we
are interested only in fractions p/q with q 6 k. Moreover, note that the smallest snark
(according to our definition) has 6 vertices, hence the assumption k > 2 in Lemma 13 is
always satisfied. Lemma 13 put together with the inequality (3) gives the lower bound of
Theorem 3. It remains to prove that this bound is tight.

We construct a class of graphs {Hm}∞m=1; the bound is tight for any graph in this
class. Let H ′m be a graph composed of two copies of the cycle Cm+1 with one vertex of
the first copy joined to a vertex of the second copy. The graph Hm is constructed from
H ′m by replacing each vertex of degree two in H ′m by a digon (two vertices joined by a
pair of parallel edges).

The graph Hm with 4m + 2 vertices has k = 2m + 1. To complete the proof of
Theorem 3, we need to find a (3k−1, k−1)-edge-colouring of the graph Hm. An equivalent
(3m+1,m)-edge-colouring of Hm is given in Fig. 1. The edges not included in the digons
are subsequently coloured by the colours 0, 1, 2, 3, . . . ,m along the circle—every digon
allows us to shift the colour by 1.

The bound (2) is a consequence of Lemma 4 and Proposition 1 that does not depend
on Lemma 13 which is of number-theoretic nature and reveals almost nothing about the
structure of edge-colourings of snarks. Moreover, the improvement achieved by using
Lemma 13 is a minor one and is totally negligible from the asymptotic point of view
which we will adopt in Section 6. Nevertheless, Lemma 13 is included here to illustrate
that the asymptotic bounds obtained in this paper can be improved to exact bounds (with
some more or less tedious effort).

Both the bounds (1) and (2) are of the form 3+b/k, where b is a constant. It is natural
to ask for the bound with the largest possible constant b. A consequence of Theorem 3
is that the largest possible such constant is b = 2. However, since the bound is tight for
snarks with girth 2 and cyclic edge-connectivity 1 which are usually considered trivial,
it is reasonable to expect that the bound of Theorem 3 can be improved for non-trivial
snarks with girth at least 5. We show one such improvement in the following section.
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5 A lower bound for snarks of girth at least five

We start this section by showing why the assumption of larger girth is useful. Consider
two different 1-factors of a snark. In how many edges must these 1-factors differ? If we
exclude snarks with parallel edges, the 1-factors must differ in at least two edges. If we
assume that the girth of our snark is at least five, then the 1-factors must differ in at least
three edges. We can use this observation to improve the lower bound for graphs of girth
at least 5.

Lemma 5. Let G be a snark with 2k vertices and with girth at least 5. In any (3v+u, v)-
edge-colouring of G, every segment of length 2u colours at least five edges and

u

v
>

15

6k − 5
=

2.5

k − 5
6

.

Proof. We know that any two disjoint segments of length v colour together at most 2k−1
edges, otherwise we would have two disjoint 1-factors.

First, we prove that any segment of length v− u colours at most k− 3 edges. Assume
that there is a segment of length v − u constituted by colours, say, 1, . . . , v − u, which
colours k− 2 edges. Since any segment of length u colours at least two edges (Lemma 4),
the edges coloured by the colours 3v + 1, 3v + 2, . . . , 3v + u, 1, . . . , v − u form a perfect
matching and there are exactly two edges coloured by the colours 3v + 1, . . . , 3v + u.
Similarly, the edges coloured by the colours 1, . . . , v form a perfect matching and there
are exactly two edges coloured by the colours v−u+1, . . . , v. Thus there are two 1-factors
in G that differ in only two edges, contradicting the assumption that G has girth at least
5.

Assume now that a segment of length 2u colours at most four edges. This segment can
be split into two neighbouring segments of length u, each of them colouring precisely two
edges. Let these two segments be, say, 3v, 3v+1, . . . , 3v+u−1 and 3v+u, 1, 2, . . . , u−1.

The remaining 3v − u colours colour 3k − 4 edges. There are three ways how to
split 3v − u consecutive colours into two segments of length v and one segment of length
v− u. We have proved that a segment of length v− u colours at most k− 3 edges, hence
the remaining 2k − 1 edges are coloured by the two segments of length v, and this is
possible only if one of them colours k edges and the other one colours k − 1 edges. The
three possible ways of splitting the 3v − u colours into segments are summarized in the
following tables telling how many edges are coloured by a particular segment. Because of
the symmetry we may assume that the segment u, . . . , v + u− 1 colours k edges and the
segment 2v, . . . , 3v − 1 colours k − 1 edges.

colours u, . . . , v + u− 1 v + u, . . . , 2v − 1 2v, . . . , 3v − 1
edges k k − 3 k − 1

colours u, . . . , v + u− 1 v + u, . . . , 2v + u− 1 2v + u, . . . , 3v − 1
edges k k − 1 k − 3
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colours u, . . . , v − 1 v, . . . , 2v − 1 2v, . . . , 3v − 1
edges k − 3 k k − 1

By putting it all together, we obtain

colours 3v, . . . , 3v + u− 1 3v + u, 1, . . . , u− 1 u, . . . , v − 1
edges 2 2 k − 3

colours v, . . . , v + u− 1 v + u, . . . , 2v − 1 2v, . . . , 2v + u− 1
edges 3 k − 3 2

colours 2v + u, . . . , 3v − 1
edges k − 3

The edges coloured by the colours u, . . . , v+ u− 1 form a perfect matching A and the
edges coloured by v, . . . , 2v − 1 form another perfect matching B. Therefore, every edge
of G is on each end incident with some edge from A and some edge from B.

In particular, each edge coloured by one of the colours 3v+u, 1, 2, . . . , u−1 is on each
end incident with some edge coloured by a colour from v, . . . , v + u − 1 (recall that the
colours of two adjacent edges differ by at least v). Similarly, each edge coloured by one of
the colours 2v, . . . , 2v+u− 1 is on each end incident with some edge coloured by a colour
from v, . . . , v+u−1. Let H be the subgraph of G induced by the seven edges coloured by
colours 3v+u, 1, 2, . . . , u− 1, v, v+ 1, . . . , v+u− 1, 2v, 2v+ 1 . . . , 2v+u− 1. Each vertex
of H is incident to one of the three edges coloured by the segment v, v + 1, . . . , v + u− 1;
thus H has exactly six vertices. Since ∆(H) 6 3 and H has seven edges, it is easy to see
that H contains a cycle of length at most four, and this contradicts the assumption on
the girth of G. Hence any segment of length 2u colours at least five edges.

The desired inequality then follows from Proposition 1 with t = 2 and m = 5.

Theorem 6. Let G be a snark on 2k vertices with girth at least 5. Then

χ′c(G) > 3 +
2.5

k
.

The restriction on girth allowed us to improve the lower bound on circular chromatic
index. In the next section, we improve the lower bound even more.

6 Snarks with larger girth or higher connectivity

Before showing that higher cyclic connectivity leads to an improved lower bound, we give
a general formulation of our problem.

Problem 7. What is the largest constant b(g, λc) such that the inequality

χ′c(G) > 3 +
b(g, λc)

k

holds for all but finitely many snarks G with 2k vertices, girth at least g and cyclic
edge-connectivity at least λc?
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The results that have been proven so far can be summed up as b(2, 1) = 2 and b(5, λc) >
2.5 for any λc. The class of generalised type 1 Blanuša snarks contains a snark on 8m+ 2
vertices with circular chromatic index 3 + 2/3m for every positive integer m (see [13] for
the proof). This shows that b(5, 4) 6 8/3 = 2.6. Despite our effort we have not found
any snark which would give a better upper bound on the constant b(5, 4). We conjecture
that b(5, 4) = 2.6. This conjecture is supported by the following two theorems.

Theorem 8. Let G be a bridgeless snark on 2k vertices with girth at least 7. Then

χ′c(G) > 3 +
2.6

k
.

Theorem 9. Let G be a cyclically 5-edge-connected snark on 2k vertices (k > 8). Then

χ′c(G) > 3 +
2.6

k
.

Since a cubic graph with girth at least 7 has more then 16 vertices, Theorem 8 is an
immediate consequence of Lemma 10 and Proposition 1 for t = 3 and m = 8. Lemma 10
with Proposition 1 also implies Theorem 9 because a cyclically 5-edge-connected snark G
has girth at least 5. In fact, the assumption k > 8 in Theorem 9 can be also left out since
the only cyclically 5-edge-connected snark with at most 16 vertices is the Petersen graph
with 10 vertices and circular chromatic index 11/3.

Lemma 10. Let G be a bridgeless snark with 2k vertices (k > 8) and with girth at least
5. Then at least one of the following statements is true:

• In any (3v+ u, v)-edge-colouring of G such that u/v < 1/2, every segment of length
3u colours at least 8 edges;

• G has a cycle-separating edge-cut of size at most 4 with one component H of size
12 and girth at most 6;

• G has a cycle-separating edge-cut of size at most 4 with one Hamiltonian component
H of size 10 and girth at most 5.

Proof. Let G have a (3v+u, v)-edge-colouring with u/v < 1/2. We prove that if a segment
of length 3u colours at most 7 edges, then G contains a cycle of length at most 10 and an
edge-cut of size at most 4 such that this edge-cut separates at least two components with
cycles.

If 3u consecutive colours colour 7 edges, we can divide the 3u colours into three
consecutive segments d1, d2, and d3 of length u. As a consequence of Lemmas 4 and 5,
these segments colour two, three, and two edges respectively. Without a loss of generality
we may assume that

d1 = {1, 2, . . . , u}, d2 = {u+ 1, u+ 2 . . . , 2u}, d3 = {2u+ 1, 2u+ 2, . . . , 3u}.
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Let

a = {3u+ 1, 3u+ 2, . . . , v + u},
x = {v + u+ 1, v + u+ 2, . . . , v + 3u},
b = {v + 3u+ 1, v + 3u+ 2, . . . , 2v + u},
y = {2v + u+ 1, 2v + u+ 2, . . . , 2v + 3u},
c = {2v + 3u+ 1, 2v + 3u+ 2, . . . , 3v + u}.

The segments a, b, c have length v − 2u; the segments x and y have length 2u. The sets
of edges coloured by the segments a, b, c, d1, d2, d3, x, y are denoted by A, B, C, D1, D2,
D3, X, Y , respectively.

First, we prove that any of the segments a, b, and c colours at least k − 6 edges. The
edges coloured by any v consecutive colours form a matching, therefore v consecutive
colours can colour at most |V (G)|/2 = k edges. Since G is a snark, it has no two disjoint
perfect matchings, therefore any two segments of length v together colour at most 2k− 1
edges. If we put together segments x, b, y, and c, we obtain a segment of length 2v, which
colours at most 2k − 1 edges. Since the segments d1, d2, and d3 colour together 7 edges
and G has 3k edges, the remaining at least k − 6 edges must be coloured by the segment
a. This holds for the segment c by symmetry. And the same approach can be also used
for the segment b: if we group a with x and y with c, we get two segments of length v,
which together colour at most 2k− 1 edges. Consequently, b colours at least k− 6 edges.

Lemma 5 implies that any segment of length v − 2u colours at most k − 5 edges.
Moreover, if two of the segments a, b, and c coloured k − 5 edges, we would have two
disjoint perfect matchings in G, contradicting the assumption that G is a snark. Since
the situation is symmetric with respect to replacing a by c and vice versa, we need to
distinguish only three cases regarding the number of edges coloured by a, b, c.

Case 1: each of the segments a, b, c colours precisely k − 6 edges. By counting
the edges we obtain 3k = 7 + |A| + |X| + |B| + |Y | + |C|, so |X| + |Y | = 11. Therefore,
at least one of the segments x and y, say, x, colours at least 6 edges. Since y colours at
least five edges (Lemma 5), we know that |X| = 6 and |Y | = 5.

Consider the set A∪X. This set of edges is a perfect matching, hence each edge from
D2 ∪D3 has both ends incident to an edge of A∪X. However, no edge from D2 ∪D3 can
be adjacent to an edge of A – it would violate the condition that any two adjacent edges
have colours that differ by at least v. Let H be the subgraph of G induced by X. The
graph H has 12 vertices and we have shown that H has at least |X| + |D2| + |D3| = 11
edges. We show that there are even more edges belonging to H.

Consider the set X ∪B, which is a perfect matching of G. Therefore, each edge from
Y has both ends adjacent to an edge from X ∪B. Since it cannot be adjacent to an edge
from B, it is on both ends adjacent to an edge from X. In other words, it belongs to H.
Thus H has at least 16 edges.

As a subgraph of a cubic graph G, the graph H is subcubic, that is, it has vertices of
degree at most 3. Therefore, there are at most 12 · 3− 16 · 2 = 4 edges separating H from
the rest of G. Moreover, H contains a cycle of length at most 6 by Lemma 15.
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Consider the edge-cut S separating H from the rest of G. The graph G − H has
at most two components. If one of those components contained at most two vertices,
then there is only one component in G − H because G is bridgeless, so V (G − H) 6 2.
However, |V (G−H)| = 2k− 12 > 4, a contradiction. Thus according to Lemma 14, S is
cycle-separating.

Case 2: the segment a colours k − 5 edges and b and c colour k − 6 edges. The
argument in Case 2 goes along the same line as in Case 1. Since |A| = k − 5, we have
|X| = 5. The set A ∪ D2 ∪ D3 is a perfect matching, therefore the set Y ∪ B contains
at most k − 1 edges. Consequently, |Y | = 5. The set A ∪ X is a perfect matching of
G, therefore the edges from D2 ∪ D3 are at both ends adjacent to edges of X. So the
subgraph H of G induced by X contains at least 10 edges and has 10 vertices. In fact,
edges from the set D2 ∪D3 ∪X form a cycle of length 10, so H is Hamiltonian.

Consider the set M = X ∪ B. It is a matching with k − 1 edges. The set Y is a
matching, therefore the 5 edges in Y have 10 mutually distinct endpoints. So there are
at most two endpoints that are not incident to an edge of M . Thus at least 3 edges of Y
have both endpoints incident to an edge of M . Since no edge from Y is adjacent to an
edge of B, the three afore-mentioned edges of Y belong to H, thus H contains at least
13 edges. A simple calculation regarding the bounded degrees of the vertices of H shows
that H is separated by at most four edges from the rest of G. Moreover, the cycle C has
at least three chords, thus there is a cycle of length at most 5 in H.

Consider the edge-cut S separating H from the rest of G. The graph G − H has at
most two components. If one of those components contained at most two vertices, then
there is only one component in G − H because G is bridgeless, so —V (G − H)| 6 2.
However, |V (G−H)| = 2k− 10 > 6, a contradiction. Thus according to Lemma 14, S is
cycle-separating.

Case 3: the segment b colours k − 5 edges and a and c colour k − 6 edges.
This case is essentially the same as Case 2. From |B| = k − 5, we immediately obtain
|X| = |Y | = 5. So X ∪ B is a perfect matching of G; consequently, any edge from Y is
adjacent at both ends to an edge from X (it is not adjacent to any edge of B because
the edges from B have colours that are too close to the colours of the edges from Y ).
So the subgraph H of G induced by X contains a cycle of length 10, where edges of this
cycle alternately belong to X and Y . At least three of the edges from D2 ∪ D3 must
belong to H, because A ∪X is a matching with k − 1 edges in G. So H has 10 vertices
and contains at least 13 edges, therefore there are at most four edges separating H from
G − H. Moreover, H is Hamiltonian and has girth at most 5. The argument showing
that G−H contains a cycle is the same as in Case 2.

Remark 11. A careful analysis of the proof of Lemma 10 shows that in a snark G with
2k vertices and girth at least 6 each system d1, d2, d3, x, y of 7u colours colours at least
18 edges. Therefore, according to Proposition 1 used in spirit of Remark 2, χ′c(G) >
3 + 18/7k > 3 + 2.5714/k.
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7 Concluding remarks

Lemma 10 put together with Proposition 1 gives a tight lower bound on the circular
chromatic index of generalised type 1 Blanuša snarks (their index was first determined
in [13]). Indeed, according to Corollary 17, the snark B1

m with 2k = 8m + 2 (k > 9)
vertices from this class contains no 4-edge-cut separating a Hamiltonian component with
10 vertices or a component with 12 vertices. Thus any segment of length 3u in a (3v+u, v)-
edge-colouring of B1

m colours at least 8 colours and then χ′c(B
1
m) > 3 + 24/(9k − 8).

The actual value of χ′c(B
1
m) is 3 + 24/(9k − 9). It is an easy exercise to prove that

there are no fractions p/q with denominator at most k lying between the above-given
values. Finally, assume that B1

m has circular chromatic index p/q = 27k/(9k − 8), where
p and q are coprime. The greatest common divisor d of 27k and 9k − 8 belongs to
{1, 2, 3, 4, 6, 8, 12, 24}. Since d divides 9k− 8 = 36m+ 1, d is odd, so d is at most 3. Then
p > 27k/d > 9k, and this contradicts the well-known fact that each of the p colours is used
in every (p, q)-edge-colouring of the graph B1

m with only 3k edges (see [2, Proposition
2]).

One may ask if the derived bounds can be practically used to determine the circular
chromatic index of a given snark. The answer is that the derived bounds may be very
helpful in certain cases, but it depends very heavily on the snark itself. On the one
hand, the circular chromatic index p/q of the Petersen graph is greater than 7/2 due to
Theorem 6, and since the numerator p does not exceed 15 (the number of edges), the
fraction p/q has to be 11/3. On the other hand, for instance, most of the snarks on 26
vertices have circular chromatic index 10/3, which is far from the bounds we have proved.
The derived bounds can be used to exclude some fractions from the set of possible values
of circular chromatic index, but it is still not easy to determine which of the remaining
fractions is the right one.

In addition to proving some bounds for particular values of the function b(g, λc), we
propose a conjecture about its behaviour.

Conjecture 12. The function b(g, λc) is non-decreasing in both its parameters g and λc.
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Appendix: Auxiliary results

Lemma 13. Let k be an integer greater then 2. There is no fraction p/q with denominator
not exceeding k, which satisfies the inequalities

2

k − 2
3

6
p

q
<

2

k − 1
. (4)

Proof. We prove the lemma by contradiction. Assume that there is a fraction p/q satis-
fying (4) such that q 6 k.

If p > 3 then
2

k − 1
>
p

q
>

3

q
,

hence 2k > 2q > 3(k − 1), contradicting the assumption k > 2.
If p ∈ {1, 2} then 2q/p is an integer. The inequalities (4) imply that 2q/p lies in the

interval (k − 1, k − 2/3]; that is impossible for an integer.

Lemma 14. Let G be a cubic graph. Every edge-cut S of size at most 4 is cycle-separating
unless one of the components of G− S has at most two vertices.

Proof. Let C be one of the components of G−S and let m = |V (C)|. If C is acyclic then
it has at most m− 1 edges. On the other hand, the sum of the degrees of the vertices of
C is at least 3m − 4. Therefore, 3m − 4 6 2|E(C)| 6 2(m − 1), so m 6 2. Hence each
component of G− S with more than two vertices contains a cycle.

Lemma 15. Let H be a subcubic graph (that is, ∆(H) 6 3) with 12 vertices and at least
16 edges. Then H contains a cycle of length at most 6.

Proof. First, note that H must contain a cycle because any forest on 12 vertices has at
most 11 edges. Let C be a shortest cycle of H. Let D = G−C. Assume that the number
k of vertices of C is at least 7.

Since C is a shortest cycle, it has no chords. Moreover, no vertex from D has more
than one neighbour on C. Therefore, the number of edges separating C from D is at most
12 − k. Since 12 − k 6 5, the graph D does not contain a cycle; therefore, it is a forest
and has at most 12− k − 1 = 11− k edges.

Put together, the number of edges in the graph H is at most k + 12 − k + 11 − k =
23−k 6 16. Since H has precisely 16 edges, the equality is achieved in all the inequalities
we have used; hence k = 7, each of the 5 vertices of D has exactly one neighbour on C,
and there are four edges in D. Let uv be an edge of D. Let u′ and v′, respectively, denote
the neighbour of u and v lying on C. Then u′ and v′ have to be at distance at least 4 along
the circle C, otherwise we will have a cycle of length at most 6 formed by the path u′uvv′

and the shortest path from u′ to v′ belonging to C. However, this is a contradiction, since
any two vertices on C are at distance at most 3. Therefore, H contains a cycle of length
at most 6.
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The result of Lemma 15 cannot be improved; there are exactly two subcubic graphs
H with 12 vertices, 16 edges and girth 6.

The purpose of the following lemma is to characterise all possible cycle-separating
4-edge-cuts in generalised Blanuša snarks. Let B denote the block obtained from the
Petersen graph by removing two adjacent vertices; the block B has 4 dangling edges. The
graph B1

m is composed of m copies of B, we will call them building blocks , arranged in a
sequence in such a way that a pair of dangling edges of the first and the last copy of B
are joined to a copy of complete graph on two vertices. We refer the reader to the article
[13] for more details about the construction of generalized type 1 Blanuša snarks.

We say that a 4-edge-cut S in the snark B1
m is obvious if each building block of B1

m is
contained in a component of B1

m − S.

Lemma 16. Every cycle-separating 4-edge-cut S in B1
m is obvious.

Proof. Let G = B1
2k and let S be a cycle-separating 4-edge-cut of G. Note that there are

two disjoint cycles C0 and C1 such that each of them passes through exactly 3 vertices
of each building block of G. The rest of G contains only edges joining C0 to C1 and
components isomorphic to a subcubic graph H containing two adjacent vertices and 4
dangling edges. Each of the components of G − S has to contain an edge both from C0

and from C1: if a component K contained edges neither from C0 nor C1, it would not
contain a cycle; if it contained only edges from Ci and no edges from C1−i, the edge-cut
S would have to contain at least 5 edges since K would contain at least one 5-cycle.

Therefore each of the cycles C0 and C1 has to be cut in exactly two places, otherwise
it is contained in only one component of G − S. It is of no use to cut an edge of C0 or
C1 that belongs to a building block B, because the copy of H contained in this block
would serve as a replacement for the edge we have cut and we would have to add another
edge to the cut S. Hence we can confine ourselves to cutting edges outside of building
blocks. That means that each building block B remains whole in a component of G− S;
contracting each block B allows us to immediately see that we have to cut both the edges
separating two neighbouring building blocks if we cut one of them. So the cut S must be
obvious.

Similar ideas can be used to prove that each cycle-separating 4-edge-cut in B1
2k+1 is

obvious.

It is clear from Lemma 16 that each component of B1
m separated by a cycle-separating

4-edge-cut has 8, 10, or more than 16 vertices. So there are no components with 12
vertices. There is essentially only one way to create a component with 10 vertices but
this component is not Hamiltonian since it is isomorphic to the Petersen graph with two
edges removed.

Corollary 17. No 4-edge-cut S in B1
m separates a component with 12 vertices or a Hamil-

tonian component with 10 vertices.
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