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Poznań, Poland

rucinski@amu.edu.pl

Andrzej Żak †
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Abstract

For 1 6 ℓ < k, an ℓ-overlapping cycle is a k-uniform hypergraph in which,
for some cyclic vertex ordering, every edge consists of k consecutive vertices and
every two consecutive edges share exactly ℓ vertices. A k-uniform hypergraph H

is ℓ-Hamiltonian saturated, 1 6 ℓ 6 k − 1, if H does not contain an ℓ-overlapping

Hamiltonian cycle C
(k)
n (ℓ) but every hypergraph obtained from H by adding one

more edge does contain C
(k)
n (ℓ). Let sat(n, k, ℓ) be the smallest number of edges in an

ℓ-Hamiltonian saturated k-uniform hypergraph on n vertices. Clark and Entringer
proved in 1983 that sat(n, 2, 1) = ⌈3n2 ⌉. In this paper we prove that sat(n, k, ℓ) =
Θ(nℓ) for ℓ = 1 as well as for all k > 5 and ℓ > 0.8k.

1 Introduction

The notion of a hypergraph cycle can be ambiguous. In this paper we are not concerned
with the Berge cycles as defined by Berge in [1] (see also [12]). Instead, given integers
1 6 ℓ < k, we define an ℓ-overlapping cycle as a k-uniform hypergraph in which, for some
cyclic ordering of its vertices, every edge consists of k consecutive vertices, and every two
consecutive edges (in the natural ordering of the edges induced by the ordering of the
vertices) share exactly ℓ vertices. The notion of an ℓ-overlapping path is defined similarly.
Note that the number of edges of an ℓ-overlapping cycle with s vertices is s/(k − ℓ) (and
thus, s is divisible by k − ℓ). The two extreme cases of ℓ = 1 and ℓ = k − 1 are referred
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to as, respectively, loose and tight cycles (paths). We denote an ℓ-overlapping cycle on s

vertices by C
(k)
s (ℓ).

An ℓ-overlapping Hamiltonian cycle in a n-vertex k-graph H is any subhypergraph
of H isomorphic to C

(k)
n (ℓ). If H contains an ℓ-overlapping Hamiltonian cycle then H

itself is called ℓ-Hamiltonian. A tight Hamiltonian cycle was introduced in the seminal
paper by Katona and Kierstad [16] under the name of a Hamiltonian chain. Since the
appearence of [16], ℓ-Hamiltonian cycles have been studied intensively in the context of
Dirac-type properties (for a survey see [17]), Ramsey properties (e.g., in [13, 14]), random
hypergraphs ([10, 6, 7]). However, the saturation problem for Hamiltonian cycles in
hypergraphs is mentioned only in a survey paper by Katona [15].

Given a k-uniform hypergraph H (or, shortly, a k-graph) and a k-element set e ∈ Hc,
where Hc is the complement of H, we denote by H + e the hypergraph obtained from H
by adding e to its edge set. A k-graph H is ℓ-Hamiltonian saturated, 1 6 ℓ 6 k − 1, if H
is not ℓ-Hamiltonian but for every e ∈ Hc the k-graph H + e is such. The largest number
of edges in an ℓ-Hamiltonian saturated k-graph on n vertices, that is, the Turán number
for the cycle C

(k)
n (ℓ), denoted by ex(n,C

(k)
n (ℓ)), has been determined recently in [11]. It

turned out that

ex(n,C(k)
n (ℓ)) =

(

n− 1

k

)

+ ex(n− 1, P ),

where P = P (k, l) is the (k − 1)-uniform, (ℓ − 1)-overlapping path with ⌊ k
k−ℓ

⌋ edges. In

particular, for graphs (k = 2) the largest size of a Hamiltonian saturated graph is
(

n−1
2

)

+1.
This value is realized by a unique graph consisting of a clique on n − 1 vertices and a
pedant vertex. Note that this is the only Hamiltonian saturated graph with minimum
degree 1.

In this paper we are interested in the other extreme. For n divisible by k − ℓ, let
sat(n, k, ℓ) be the smallest number of edges in an ℓ-Hamiltonian saturated k-graph on n
vertices. In the case of graphs, Clark and Entringer proved in 1983 that sat(n, 2, 1) = ⌈3n

2
⌉

for n large enough.
For k-graphs with k > 3 it seems to be quite hard to obtain such precise results.

Therefore, the emphasis is put on the order of magnitude of sat(n, k, ℓ). It was observed
in [15] that sat(n, k, k−1) = Ω(nk−1). After some preliminary results in [8, 9], the second
author showed recently that for k > 2, sat(n, k, k − 1) = Θ(nk−1), see [18]. Here we
extend that result to ℓ-overlapping Hamiltonian cycles for several other values of ℓ. Our
main result is the following.

Theorem 1.1. For all k > 3 and ℓ = 1, as well as for all 4
5
k 6 ℓ 6 k − 1

sat(n, k, ℓ) = Θ(nℓ).

We conjecture that Theorem 1.1 holds for all k and 1 6 ℓ 6 k − 1.
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2 Preliminaries

The next two sections contain proofs of the upper bound in Theorem 1.1. Here we give a
simple proof of the lower bound.

Proposition 2.1. For all k > 2 and 1 6 ℓ 6 k − 1

sat(n, k, ℓ) = Ω(nℓ).

Proof. If H is an ℓ-saturated k-graph with n vertices and m edges then for every nonedge
e ∈ Hc there is an edge f ∈ H such that |e ∩ f | = ℓ (in fact, there are two such edges f ,
since e has to close an ℓ-overlapping cycle). But for every f ∈ H, the number of k-element
subsets e which satisfy |e ∩ f | = ℓ is exactly

(

k

ℓ

)(

n− k

k − ℓ

)

.

Thus, every f ∈ H can intersect this way at most
(

k
ℓ

)(

n−k
k−ℓ

)

nonedges e. Hence,

((

n

k

)

−m

)

6 m×

(

k

ℓ

)(

n− k

k − ℓ

)

which implies that m = Ω(nℓ).

In the rest of the paper we assume that G is a graph on the vertex set {1, . . . , n}. Let
c(G) denote the number of components of G. Given a subset T ⊆ V (G), let G[T ] be the
subgraph of G induced by T .

Fact 2.2. Let k, ℓ, and ∆ be constants. If ∆(G) 6 ∆ then the number of k-element
subsets T ⊆ V (G) with c(G[T ]) 6 ℓ is O(nℓ).

Proof. The number of k-element subsets T ⊆ V (G) with c(G[T ]) 6 ℓ is at most

(

n(k − 1)!∆k−1
)ℓ

= O(nℓ).

Given a graph G and an integer sequence a = (a1, . . . , an), the a-blow-up of G is the
k-graph H with

V (H) =
n
⋃

i=1

Ui, |Ui| = ai,

H =
⋃

ij∈G

K(k)(Ui ∪ Uj)

where K(k)(U) is the complete k-graph on U and the sets Ui are pairwise disjoint. If
ai = a for all i = 1, . . . , n, then we simply write a-blow-up instead of a-blow-up. For a
subset S ⊂ V (H), let

tr(S) = {i ∈ V (G) : Ui ∩ S 6= ∅}.
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Furthermore, set
c(S) = c (G[tr(S)]) .

The following result is an immediate corollary of Fact 2.2.

Corollary 2.3. Let a1, . . . , an, k, ℓ, and ∆ be constants. If ∆(G) 6 ∆ and H is an a-
blow-up of G then the number of k-element subsets S ⊆ V (H) with c(S) 6 ℓ is O(nℓ).

2.1 Hamiltonian cycle saturated graphs

The proofs of the upper bounds in Theorem 1.1 are constructive. The starting points
of our constructions are sparse Hamiltonian saturated graphs, also known as maximally
non-Hamiltonian graphs. Probably the best known Hamiltonian saturated graphs of min-
imumm size are Isaac’s snarks Jk which are 3-regular, connected, bridgeless graphs with
chromatic index four, and the number of vertices n = 4k. In a series of papers Clark,
Crane, Entringer and Shapiro [3, 4, 5] constructed Hamiltonian saturated graphs (by a
modification of Isaac’s snarks) with minimum possible size for all sufficiently large n.

Theorem 2.4 ([5]). For all even n > 36 as well as all odd n > 53 there exists a Hamil-
tonian saturated graph of order n and size ⌈3n/2⌉.

In order to obtain the right order of magnitude for sat(n, k, ℓ) for all values of ℓ con-
sidered in the paper, we will need Hamiltonian saturated graphs with bounded maximum
degree. (Due to the asymptotic nature of our result, the numerical value of the bound does
not matter to us.) By analyzing the construction in [5] one can see that the Hamiltonian
saturated graphs obtained there do have bounded maximum degree. An alternative way,
which we prefer, is by combining Theorem 2.4 with the following result of Bondy.

Theorem 2.5 ([2]). Let G be a Hamiltonian saturated graph with n > 7 vertices. If for
some 0 6 m 6 n the graph G has m vertices of degree 2, then |E(G)| > (3n + m)/2.

Corollary 2.6. For all n > 52 there exists a Hamiltonian saturated graph G of order n
with ∆(G) 6 5.

Proof. By Theorem 2.4 for all n > 52 there exists a Hamiltonian saturated graph G with
n vertices and at most (3n+1)/2 edges. Clearly, δ(G) > 2. Hence, by Theorem 2.5, there
is at most one vertex of degree 2 in G, and, consequently, no vertex of degree greater
than 5.

3 The loose case : ℓ = 1

In this Section we prove Theorem 1.1 for ℓ = 1. We begin with a simple lemma.

Lemma 3.1. If a graph G is not Hamiltonian then the (k − 1)-blow-up H of G is not
1-Hamiltonian.
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Proof. Suppose that H contains a 1-Hamiltonian cycle CH = {e1, . . . , en}. Define f :
CH → G by f(es) = {i, j} ∈ G, where es ∈ H[Ui ∪ Uj]. Since |H[Ui ∪ Uj] ∩ CH | 6 1 for
all 1 6 i < j 6 n, the mapping f is one-to-one. Furthermore, CG = {f(es), s = 1, . . . , n}
is a connected, spanning subgraph of G. Moreover, δ(CG) > 2. Indeed, fix i ∈ {1, . . . , n},
recall that |Ui| = k − 1, and observe that every subset of k − 1 vertices of CH intersects
at least two edges of CH . Thus, CG is a Hamiltonian cycle in G, a contradiction.

In view of Proposition 2.1, in order to prove Theorem 1.1 for ℓ = 1 it suffices to
construct for every sufficiently large N divisible by k − 1, a 1-Hamiltonian saturated k-
graph H with N vertices and O(N) edges. Let H1 be a (k− 1)-blow-up of a Hamiltonian
saturated graph G with n vertices, n = N

k−1
, and ∆(G) = O(1). (By Corollary 2.6 G

exists.) By Lemma 3.1, H1 is not 1-Hamiltonian and |V (H)| = N . Set V = V (H1) and
let

H2 =

{

e ∈

(

V

k

)

: tr(e) is a clique in G

}

.

Since for every e ∈ H1 the set tr(e) spans an edge of G, we have H1 ⊆ H2. Finally, let
H be a maximal k-graph on the vertex set V such that H1 ⊆ H ⊆ H2 and H is not
1-Hamiltonian. By Corollary 2.3, |H| 6 |H2| = O(N). The following lemma completes
the proof of Theorem 1.1 in the case ℓ = 1.

Lemma 3.2. For every e ∈ Hc, H + e is 1-Hamiltonian.

Proof. By the maximality of H we may restrict our attention to only those e for which
tr(e) is not a clique. Fix one pair {i, j} 6∈ G such that tr(e) ⊃ {i, j}. Without loss
of generality (w.l.o.g.) we may assume that i = 1 and j = 2. Since G is Hamiltonian
saturated, G + {1, 2} has a Hamiltonian cycle containing the edge {1, 2}. Let CG be a
Hamiltonian cycle in G + {1, 2} corresponding, w.l.o.g., to a cyclic ordering (1, . . . , n).
Set rs = |e ∩ Us|, s = 1, 2, . . . , n. We build a 1-Hamiltonian cycle CH = {e1, . . . ., en} in
H by ‘tracing’ CG. In doing so, we make sure that the last vertex of each edge ei belongs
to the set Ui+1 and that Ui+1 ⊆ e1 ∪ ei ∪ ei=1.

Formally, we construct CH as follows. (See Fig. 1 for an illustration.)

• Let e1 = e and choose v1 ∈ e1 ∩ U1 and v2 ∈ e1 ∩ U2.

• Further, let e2 ∈ H[U2 ∪ U3] with e1 ∩ e2 = {v2} and |e2 ∩ U2| = k − r2. Note that

|e2 ∩ U3| = k − |e2 ∩ U2| = r2 6 k − 1 − r3 = |U3 \ e1|

and U2 ⊂ e1 ∪ e2. Choose v3 ∈ e2 ∩ U3.

• Subsequently, for 3 6 t 6 n−1, let et ∈ H[Ut∪Ut+1] with et−1∩et = {vt}, et∩e1 = ∅,
and |et ∩ Ut| = k −

∑t
s=2 rs. Note that

|et ∩ Ut+1| =
t

∑

s=2

rs 6 k − 1 − rt+1 = |Ut+1 \ e1|,

because
∑n

s=1 rs = k and r1 > 1. Moreover, Ut ⊂ e1 ∪ et ∪ et+1. Set vt+1 ∈ et ∩Ut+1.
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• Finally, let en ∈ H[Un ∪ U1] with en−1 ∩ en = {vn}, |en ∩ Un| = k −
∑n

s=2 rs, and
en \ Un = (U1 \ e1) ∪ {v1}. Note that

|en ∩ U1| =
n

∑

s=2

rs = k − r1 = 1 + |U1 \ e1|

and U1 ⊂ en ∪ e1.

Thus, indeed, CH = {e1, . . . , en} is a 1-Hamiltonian cycle in H.

Figure 1: An illustration to the proof of Lemma 3.2: n = 5, k = 4

4 The case ℓ > 4k/5

In this Section we prove our main result, that is, Theorem 1.1 for ℓ >
4
5
k. Let a =

(a1, . . . , an), where

2k − ℓ + 1 6 ai 6 4ℓ− 2k + 1, i = 1, . . . , n. (1)

Note that under our assumption on ℓ we do have 2k − ℓ + 1 6 4ℓ− 2k + 1, and that for
all 1 6 ℓ 6 k − 1,

ai 6 2ℓ− 1. (2)

Let G be an n-vertex Hamiltonian saturated graph with n sufficiently large and ∆(G) =
O(1), guaranteed by Corollary 2.6, and let H1 be the a-blow-up k-graph of G with

V = V (H1) =
n
⋃

i=1

Ui, where |Ui| = ai, i = 1, . . . , n.
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Observe that for each e ∈ H1, the set tr(e) is either a vertex or an edge of G and thus
c(e) = 1. Given a set S ⊆ V , let

min(S) = min{i : i ∈ tr(S)} = min{i : Ui ∩ S 6= ∅}.

Further, let H2 be
{

e ∈

(

V

k

)

: |e ∩ Umin(e)| > k − l + 1, c(e) > k − l + 1 and |e ∩ Umin(e)| + c(e) > l + 2

}

.

Since for every e ∈ H2 we have c(e) > k − ℓ + 1 > 2, the k-graphs H1 and H2 are
edge-disjoint.

Lemma 4.1. H1 ∪H2 is not ℓ-Hamiltonian.

Proof. Suppose that H1 ∪H2 contains an ℓ-Hamiltonian cycle CH .

Case 1. Assume first that CH ⊆ H1 and define a subgraph CG of G as the set of all
2-element traces tr(e) of the edges e of CH . Formally,

CG = {tr(e) : e ∈ CH and |tr(e)| = 2}.

We are going to arrive at a contradiction by showing that CG is a Hamiltonian cycle in
G. Since, clearly, CG is a connected, spanning subgraph of G, it is enough to prove that
CG is 2-regular.

Let us fix i ∈ {1, . . . , n}. As CH has to enter and leave the set Ui at some point, there
exist an edge e ∈ CH and an index j 6= i such that tr(e) = {i, j}. Let P be a longest
ℓ-overlapping path in CH (a segment of CH) containing e and with

⋃

f∈P tr(f) = {i, j}.
Further, let e′, e′′ be the two edges of CH which intersect V (P ) each in ℓ vertices and set
A′ = e′ ∩ V (P ) and A′′ = e′′ ∩ V (P ) (see Fig. 2). Since on the one hand tr(A′) ⊆ {i, j}
while, on the other hand, A′ ⊂ e′ and |tr(e′) ∩ {i, j}| = 1 (and the same is true for A′′)
we have |tr(A′)| = |tr(A′′)| = 1. However, tr(A′) 6= tr(A′′). Indeed, if, say, A′ ∪ A′′ ⊆ Ui

then, by (2), we would have A′ ∩ A′′ 6= ∅ and consequently

e ⊆ V (P ) ⊆ A′ ∪ A′′ ⊆ Ui,

a contradiction with the choice of e.
In conclusion, if for some e ∈ CH we have tr(e) = {i, j} then there is a set A ⊂ Ui

with |A| = ℓ which on the cycle CH is connected to e by an ℓ-overlapping path consisting
of vertices from Ui ∪ Uj only. Moreover, the edge, say e′, extending A along CH in
the opposite direction (away from e) satisfies tr(e′) = {j′, i}, where j′ 6= i, j, and so
NCG

(i) ⊇ {j, j′}. To show that CG is indeed 2-regular, suppose to the contrary that there
exist edges e1, e2, e3 ∈ CH with tr(es) = {i, js}, s = 1, 2, 3, where j1, j2, j3 are mutually
distinct and different from i. Let As, s = 1, 2, 3, be the sets described above (with respect
to es). Since |As| = ℓ, again by (2), the sets A1, A2, A3 intersect pairwise. Assume
w.l.o.g that A1 is located (along CH) between e1 and e2. Then A3 cannot intersect A1, a
contradiction. (See Fig. 3 for an illustration of this proof.)
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Figure 2: An illustration to the proof of Lemma 4.1: k = 7, ℓ = 5, |Ui| = |Uj| = 10, the
path P consists of 3 “quadrangular” edges.

Case 2. Assume that CH contains a segment of more than k2 consecutive edges from
H2 (that is, an ℓ-overlapping path in CH ∩ H2). Let e1, . . . , es−1, s > k2 + 1, be such a
segment. Recall that |e ∩ Umin(e)| > k − ℓ + 1 for every e ∈ H2, while |et ∩ et+1| = ℓ for
all t = 1, . . . , s − 2. These two facts imply that min(et) = min(et+1) for t = 1, . . . , s − 2,
and so |et ∩Ui| > k− ℓ+ 1 for some i ∈ [1, n] and all t = 1, . . . , s− 1. On the other hand,
observe that a vertex can belong to at most k edges of CH . Hence,

|Ui| > |(e1 ∪ · · · ∪ es−1) ∩ Ui| >
1

k
(s− 1)(k − ℓ + 1) >

2

k
(s− 1) > 2k > |Ui|,

a contradiction.

Case 3. Assume that H2 ∩ CH 6= ∅ but the longest segment in CH of consecutive edges
from H2 has length at most k2. Let e1, . . . , es−1, 2 6 s 6 k2 + 1, be such a segment.
Then em ∈ H1 and es ∈ H1. As in Case 2, |et ∩ Ui| > k − ℓ + 1 for some i ∈ [1, n]
and all t = 1, . . . , s − 1. Consequently, em ∩ Ui 6= ∅ as well as es ∩ Ui 6= ∅. By the
definition of H1, each of tr(em) and tr(es) is either the singleton {i} or an edge of G
containing vertex i and thus, c(em) = c(es) = 1. In view of this and the inequality
c(e1) > k− ℓ + 1 we have (e1 \ em) ∩Ui = ∅. Analogously, (es−1 \ es) ∩Ui = ∅. Moreover,
in fact c(e1) = c(es−1) = k − ℓ + 1. Therefore, by the third criterion in the definition of
H2,

|Ui ∩ (e1 ∩ em)| = |Ui ∩ e1| > ℓ + 2 − (k − ℓ + 1) = 2ℓ− k + 1

and, similarly,
|Ui ∩ (es−1 ∩ es)| > 2ℓ− k + 1.

Observe that for large n, em ∩ es = ∅. Indeed, if em ∩ es 6= ∅, then, necessarily
e1 ⊆ es ∪ em, and consequently, c(e1) = 1 – a contradiction with the definition of H2.
Hence, we have

|Ui| > |Ui ∩ (e1 ∩ em)| + |Ui ∩ (es−1 ∩ es)| > 4ℓ− 2k + 2,

a contradiction with (1).
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Figure 3: An illustration to the proof of Lemma 4.1

Let

H3 =

{

e ∈

(

V

k

)

: c(e) 6 ℓ

}

.

Recall that for all e ∈ H1 we have c(e) = 1, while for all e ∈ H2 we have c(e) 6 ℓ.
Thus, H1 ∪H2 ⊆ H3. Finally, let H be a maximal k-graph on the vertex set V such that
H1 ∪H2 ⊆ H ⊆ H3 and H is not ℓ-Hamiltonian. By Corollary 2.3,

|H| 6 |H3| = O(N ℓ). (3)

We will next show that H is ℓ-Hamiltonian saturated.

Lemma 4.2. For every e ∈ Hc, H + e is ℓ-Hamiltonian.

Proof. By the definition of H the thesis holds for each e with c(e) 6 ℓ. Hence, we may
assume that c(e) > ℓ + 1. We will build an ℓ-overlapping Hamiltonian cycle

CH = (e1, . . . , em) = (u1, . . . , uN), m =
N

k − ℓ
,

in H+e using the Hamiltonian saturation of G. As the general proof is a bit complicated,
we will first assume that ℓ = k− 1, in which case the construction can be simplified. This
way, avoiding tedious details, we will be able to exhibit the main ideas quite clearly.

The tight case : ℓ = k − 1. We have k + 2 6 aj = |Uj| 6 2k − 3 for all j = 1, . . . , n.
Since c(e) > k, the set tr(e) is, in fact, an independent k-element set in G. Let

tr(e) = {i < jk−1 < · · · < j1}
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and e = (u1, . . . , uk), where u1 ∈ Ui and u1+t ∈ Ujt for t = 1, . . . , k − 1. We construct
first a tight path P ⊆ H2 + e extending e in both directions, so that the two ends A
and B of P are (k− 1)-tuples contained in, respectively, Ui and Ujk−1

. To do so, let uk+t,
t = 1, . . . , k−2, be any vertices of Ujk−1

different from uk, whereas uN−t, t = 0, 1, . . . , k−3,
be any vertices of Ui different from u1. Then

P = (uN−k+3, . . . , uN , u1, . . . , u2k−2).

(See Fig. 4 for an illustration of this construction.)

Figure 4: The construction of P in the tight case: k = 5, all |Uj| = 7.

To see that P is a tight path in H + e with ends A = (uN−k+3, . . . , uN , u1) and
B = (uk, . . . , u2k−2), note that for each q = 2, . . . , k − 1 the edge eq = (uq, . . . , uq+k−1)
satisfies: min(eq) = jk−1, |eq∩Ujk−1

| = q, c(eq) = k−q+1, and thus eq ∈ H2. Similarly, for
q = 0, . . . , k−3, the edges em−q = (uN−q, . . . , uN , u1, . . . , uk−q−1), for which min(em−q) = i,
also belong to H2.

Recall that ijk−1 6∈ G and thus, by the Hamiltonian saturation of G there is a Hamil-
tonian path Q from i to jk−1 in G. We connect the ends of P , that is, the sets A and B, by
a tight path P ′ in H1 ⊆ H, tracing the path Q in G in such a way that every time Q visits
a vertex v of G we add to P ′ all vertices of U ′

v = Uv \V (P ). Since, |U ′

v| > |Uv|− 1 > k− 1
(with some margin), we can always do so by using only the edges of H1.

General case. For ℓ 6 k − 2 the situation becomes more complicated and the above
simple construction of the ℓ-overlapping path P fails. For instance, if uk−1 and uk are in
the same component of G[tr(e)] and k− 2 is divisible by k− ℓ, then c(e(k−2)/(k−ℓ)+1) = 1,
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and so e(k−2)/(k−ℓ)+1 6∈ H2. Nevertheless we manage to follow the same idea by slightly
modifying the above construction.

Recall that c(e) > ℓ + 1. Let j1 > j2 > · · · > jℓ > i = min(e) be some ℓ + 1 elements
of tr(e), belonging to different components of G[tr(e)] and including i = min(e). Further,
let e1 = e = (u1, . . . , uk), where u1 ∈ Ui and uk−ℓ+t ∈ Ujt , t = 1, . . . , ℓ, while u2, . . . , uk−ℓ

remain unspecified.
Our plan is, again, first to construct a path P ⊆ H2 + e extending e in both directions

(Part 1), and then to complete CH by connecting the ends of P by a path P ′ ⊆ H1 (Part
2). The path P ′ will follow a Hamiltonian path Q in G which together with the pair
{i, jℓ} forms a Hamiltonian cycle in G + {i, jℓ}.

Part 1. Let integers q and r be defined by

(q + 1)(k − ℓ) + r = k, 1 6 r 6 k − ℓ. (4)

The ℓ-path P will consist of 3q + 5 edges, em−2q, . . . , eq+4, and thus, of k + (3q + 4)(k− ℓ)
vertices, uN−k+2r−ℓ+1, . . . , uN , u1, . . . , u4k−2ℓ−r. The edges are determined by the vertices
as they begin at every (k− ℓ)th vertex. (Note that k + ℓ− 2r = (2q + 1)(k− ℓ), and thus
e1, the (2q + 2)nd edge of P does coincide with e.)

We now list all the vertices of P , that is, for each index x we specify the set Uj from
which we (arbitrarily) select a vertex ux.

1. For N − k + 2r − ℓ + 1 6 x 6 N − k + 2r we select ux ∈ Ui; thus, P begins with ℓ
vertices of Ui; we denote their set by I1.

2. For N − k + 2r + 1 6 x 6 N − k + ℓ we select ux ∈ Ujt , where t = x− (N − k) − 1;
this segment of P has exactly one vertex from each set Uj2r+t

, t = 0, . . . , ℓ− 2r− 1;
we denote this set by M1 (“M” like in mixed).

3. For N − k + ℓ + 1 6 x 6 N we select ux ∈ Ui; thus, P returns to Ui for k− ℓ steps;
we denote this set enlarged by u1, the first vertex of e1, by I2.

4. The next k vertices of P are the vertices of e = e1, namely u1, . . . , uk; we set
X = {u2, . . . , uk−ℓ} and M2 = {uk−ℓ+1, . . . , uk−1} (we know nothing about the
elements of X).

5. For k + 1 6 x 6 2k − ℓ we select ux ∈ Ujℓ ; thus, P traverses through some k − ℓ
vertices of Ujℓ ; we denote this set enlarged by uk, the last vertex of e1, by L1.

6. For 2k − ℓ + 1 6 x 6 4k − 3ℓ − r we select ux ∈ Ujt , where t = x − 2k + ℓ; this
segment of P has exactly one vertex from each set Ujt , t = 1, . . . , 2k − 2ℓ − r; we
denote this set by M3.

7. For 4k−3ℓ−r+1 6 x 6 4k−2ℓ−r we select ux ∈ Ujℓ ; thus, P ends with ℓ vertices
from Ujℓ ; we denote their set by L2.
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Figure 5: The construction of the ℓ-path P

The construction of the path P is illustrated in Fig. 5.
Let us now estimate how many vertices of each set Uj are used by the above constructed

path P . Set rj = |V (P ) ∩ Uj|, j = 1, . . . , n.

Fact 4.3. ri 6 2k − ℓ, rjℓ 6 2k − ℓ and rj 6 k − ℓ + 2 for all j 6∈ {i, jℓ}.

Proof. Note that since c(e1) > ℓ + 1, |e1 ∩ Uj| 6 k − ℓ for each j ∈ [1, n]. In addition, P
uses ℓ+ (k− ℓ) = k vertices of both, Ui and Ujℓ , and at most two vertices of each set Ujt ,
t = 1, . . . , ℓ− 1.

Fact 4.4. Every edge of P belongs to H2 + e.

Proof. Let us split the edges of P into those appearing “before e” (b.e.) and “after e”
(a.e.) Formally, set

P = Be ∪ {e} ∪ Ae,

where Be = {em−2q, . . . , em} and Ae = {e2, . . . , eq+4} (recall that e1 = e). We will give
the proof first for the a.e. edges and then for the b.e. edges. Set

I = I1 ∪ I2 M = M1 ∪M2 ∪M3 L = L1 ∪ L2.

Let f ∈ P − e.

Case f ∈ Ae: In this case, f ∩X = ∅ and min(f) = jℓ. Consequently, f ∩Umin(f) = f ∩L
and our first goal (c.f. the definition of H2) is to show that

|f ∩ L| > k − ℓ + 1. (5)

Observe that either f ⊃ L1, in which case (5) is true, or f ⊂ L ∪M3 and so,

|f ∩ L| = k − |M3| = k − (2k − 2ℓ− r) = 2ℓ− k + r > k − ℓ + 1,

because r > 1 and ℓ > 2
3
k. Thus (5) holds again.

As a next step we will show that

c(f) > k − ℓ + 1. (6)

Note that

|f ∩M | = |f ∩ (M2 ∪M3)| 6 k − |L1| = k − (k − ℓ + 1) = ℓ− 1.
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Hence, the elements of f ∩M2 and f ∩M3 come from different sets Uj , j ∈ {1, . . . , ℓ− 1}
and, consequently, c(f) = |f ∩M | + 1, where we add 1 because of Ujℓ (recall that the set
{j1 . . . , jℓ} is independent in G). If f ⊃ M3 then

c(f) > |M3| + 1 = (2k − 2ℓ− r) + 1 > k − ℓ + 1,

since r 6 k − ℓ. Otherwise, f ∩ L2 = ∅ and

c(f) = k − |L1| + 1 = ℓ > k − ℓ + 1

and (6) holds again. Since, clearly,

|f ∩ Umin(f)| + c(f) = |f | + 1 = k + 1 > ℓ + 2,

f ∈ H2, and so Ae ⊆ H2.

Case f ∈ Be: In this case, min(f) = i. Consequently, f ∩ Umin(f) = f ∩ I and our first
goal is to show that

|f ∩ I| > k − ℓ + 1. (7)

Observe that the first (that is, with the smallest index) vertex of f coincides with, or is
to the left of the first vertex of I2. Thus, f ⊃ I2 or

|f ∩ I| > k − |M1| = k − ℓ + 2r > k − ℓ + 2,

and in either case (7) holds.
As a next step we will prove that

c(f) > k − ℓ + 1. (8)

Note that

|f ∩M | = |f ∩ (M1 ∪M2)| 6 k − |I2| − |X| = k − 2(k − ℓ) 6 ℓ− 1.

Hence, the elements of f ∩M1 and f ∩M2 come from different sets Uj , j ∈ {1, . . . , ℓ− 1}
and, again, c(f) = |f ∩M | + 1. If f ∩ I1 = ∅ then

|f ∩M | > k − |I2| − |X| = k − 2(k − ℓ) > k − ℓ,

because ℓ > 2
3
k. If f ⊃ M1 then

|f ∩M | > |M1| = ℓ− 2r > k − ℓ,

because r 6 k − ℓ and ℓ > 3
4
k. Otherwise, that is, when f ∩ I1 6= ∅ but f 6⊃ M1,

|f ∩M | = k − |f ∩ I1| > k − ℓ.

Thus, (8) holds in all cases.
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It remains to prove that

|f ∩ Umin(f)| + c(f) > ℓ + 2. (9)

Recall that min(f) = i and |f ∩ Ui| = |f ∩ I|, while c(f) = |f ∩M | + 1. Since, clearly,

|f ∩ I| + |f ∩M | + |f ∩X| = |f | = k,

we have

|f ∩ Umin(f)| + c(f) > k + 1 − |f ∩X| > k + 1 − (k − ℓ− 1) = ℓ + 2.

Hence, f ∈ H2 and, consequently, Be ⊆ H2. This completes the proof of Fact 4.4.

Part 2. Recall that {i, jl} is not an edge of G. Hence, by the Hamiltonian saturation
property of G, there is a Hamiltonian path Q from jℓ to i in G. As in the loose (ℓ = 1) and
tight (ℓ = k − 1) cases treated earlier, we build the rest of CH by ‘tracing’ Q. Each time
we visit a vertex x ∈ V (Q) we consecutively include to CH all vertices from Ux \V (P ) (in
any order). This way we create an ℓ-path P ′ consisting of k-tuples eq+5, . . . , em−2q−1.

Note that by Fact 4.3 and the lower bound in (1), we have

|Ux \ V (P )| = |Ux| − rx > (2k − ℓ + 1) − (k − ℓ + 2) = k − 1 (10)

for each x ∈ V (Q)\{i, jℓ}. Hence, |tr(ej)| 6 2, for all j = q+5, . . . ,m−2q+1. Moreover,
for each such j with |tr(ej)| = 2 the pair tr(ej) is an edge of G. Therefore, ej ∈ H1, for
j = q + 5, . . . ,m − 2q + 1. In conclusion, CH = P ∪ P ′ is an ℓ-Hamiltonian path in
H1 ∪H2 + e ⊆ H + e, which completes the proof of Lemma 4.2.

The conclusion of the proof of Theorem 1.1. In order to prove Theorem 1.1 for
ℓ >

4
5
k we need to construct, for every sufficiently large N divisible by k − ℓ, an ℓ-

Hamiltonian saturated k-graph H with N vertices and O(N ℓ) edges. Assume first that
ℓ > 4

5
k. As then 2k− ℓ+ 2 6 4ℓ− 2k + 1 we may use as the sizes ai = |Ui| both numbers,

2k − ℓ + 1 and 2k − ℓ + 2. It is well known that every number N > N0 = N0(k, ℓ) (the
Frobenius number) can be expressed as a sum of these two numbers. For an N divisible
by k − ℓ, let us fix one such partition

N = a1 + · · · + an, 2k − ℓ + 1 6 ai 6 2k − ℓ + 2,

and let H be as in Lemma 4.2. Then, by (3), H indeed is an ℓ-Hamiltonian saturated
k-graph with N vertices and O(N ℓ) edges.

In the critical case ℓ = 4
5
k, we need to refine our previous estimates a bit. Assume

that for some integer p > 1, we have k = 5p and ℓ = 4p. Then, by (4), r = p, and so,
2r = 2p > 2k − 2ℓ− r = p. Thus, every index j ∈ {j1, . . . , jℓ−1} appears at most once in
the set M1 ∪M3, and consequently, we can improve the bound on rj from Fact 4.3 down
to k − ℓ + 1. This implies, in turn, that the crucial estimate |Ux| − rx > k − 1 from Part
2 of the construction of the cycle CH in the proof of Lemma 4.2 (see (10)) remains valid
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even for sets Ux with |Ux| = 2k − ℓ. Note that the lower bound in (1) was not used in
any other part of the proof. We may thus complete the proof as before, expressing N this
time as

N = a1 + · · · + an, 2k − ℓ 6 ai 6 2k − ℓ + 1.

5 Remarks and open problems

Note that in the case ℓ = k − 1 our Theorem 1.1, as stated, covers only k > 5. However,
in the proof of Lemma 4.2 we could have k 6 aj = |Uj| = k + 1. Indeed, then we still
have |U ′

j| > |Uj| − 1 > k − 1, while the punch-line inequality in the proof of Lemma 4.1,
that is, |Ui| 6 k + 1 6 4ℓ − 2k + 1 = 2k − 3 holds already for k > 4. So, in fact, our
proof of Theorem 1.1 works also in the case k = 4, ℓ = 3. Moreover, for k = 3, by fixing
|Uj| = 3 for all j, the proofs of both lemmas, Lemma 4.1 and Lemma 4.2, go through and
yield that sat(3n, 3, 2) = Θ(n2). As we mentioned in the Introduction, it has been proved
in [18], via a different construction, that sat(n, k, k − 1) = Θ(nk−1) for all k > 3.

A big open problem is to extend our result to all 1 6 ℓ 6 k − 1, that is, to prove the
following conjecture.

Conjecture 5.1. For all 1 6 ℓ 6 k − 1, k > 2, sat(n, k, ℓ) = Θ(nℓ).

The smallest open case is k = 4, ℓ = 2.
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