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Abstract

The Shannon capacity of a graph G is ¢(G) = supd>1(a(Gd))$, where a(G) is
the independence number of G. The Shannon capacity of the Kneser graph KG,, ,
was determined by Lovdsz in 1979, but little is known about the Shannon capacity
of the complement of that graph when r does not divide n. The complement of the
Kneser graph, KG,, 2, is also called the triangular graph T,,. The graph 7T), has the
n-cycle C), as an induced subgraph, whereby ¢(7},) > ¢(C,,), and these two families
of graphs are closely related in the current context as both can be considered via
geometric packings of the discrete d-dimensional torus of width n using two types
of d-dimensional cubes of width 2. Bounds on ¢(T},) obtained in this work include
c(Tr) = /35 ~ 3.271, c(T13) > /248 ~ 6.283, c(T15) > /2802 ~ 7.276, and
c(Ty1) > V11441 ~ 10.342.
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1 Introduction

The Shannon capacity of a graph plays a central role in the study of the zero-error capacity
of noisy communication channels [10]. The Shannon capacity of a graph G is defined as

c(G) = sup(a(G)1,

d>1

where a(G) is the independence number of G and the graph strong product is assumed
[16].
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The problem of determining the Shannon capacity can be very challenging already for
small graphs. In his celebrated paper of 1979, Lovész [11] proved that ¢(C5) = v/5, where
C,, denotes the cycle with n vertices, but the cases of C,, with n > 7 and odd are still
open [3].

Lovész [11] also determined the Shannon capacity of Kneser graphs. The Kneser graph
KG,, i consists of one vertex for each k-element subset of an n-set, any two vertices being
adjacent exactly when the corresponding subsets are disjoint. Specifically,

c(KGyy) = (7: - i)

Also the Shannon capacity of the complement of the aforementioned graphs has been
studied. The graph K_sz, which is the line graph of the complete graph K, is known as
the triangular graph and denoted by T,. In fact, the problem of determining ¢(C,,) and
¢(T,) are closely connected via the following two versions of a combinatorial packing prob-
lem [5]: Determining a(C?) is equivalent to finding the largest packing of d-dimensional
cubes of width 2 in the d-dimensional discrete torus of width n. Determining a(T¢)
is equivalent to finding the largest packing of d-dimensional cubes of width 2 in the d-
dimensional discrete torus of width n, where the sides of the cubes may consist of two
unconnected parts of width 1. In the latter case, it does not matter whether one talks
about a packing in a torus or a cube. That version can also be formulated as a packing
problem in complete d-partite hypergraphs with n vertices in each partite set [5]. Also
note that the former version is a special case of the latter; indeed, C,, is an induced sub-
graph of T,,. Optimal packings of the two types in the 2-dimensional torus of width 5 are
shown in Fig. 1.
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Figure 1: Packing a torus with connected and unconnected cubes

The problem of determining a(G?) was studied in [1] with G = C,, for general values
and specific small values of n odd and d. A similar study will be carried out in the
current paper when G = T,,. We start off in Section 2 by considering various analytical
bounds, and thereafter discuss two computational methods based on local and exhaustive
search. In particular, it is shown that a(75*) = 27. Variants of the problems considered
in this paper are discussed in Section 3, and the new results obtained are presented
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in tables in Section 4. Among other things it is shown that c¢(T7) > v/35 =~ 3.271,
o(T13) = (/248 ~ 6.283, c(Th5) > V2802 ~ 7.276, and ¢(Th) > V11441 ~ 10.342.

2 Bounds on Packings

2.1 Basic Bounds

In the study of ¢(7},), we define H(d,n) (resp. G(d,n)) to be the number of d-dimensional
unconnected (resp. connected) cubes of width 2 that can be packed into the d-dimensional
torus of Width n. We define G(O n) = H(0,n) = 1 for all n > 2. Obviously, G(d,n) <
H(d,n) and ¢(T},) > /H(d,n). Moreover, H(d,n) = (n/2)% when n is even, so we restrict
to the case of n odd in the sequel For d =1 and d = 2, the values of H(d,n) are known
5, p. 42].

Theorem 1 H(1l,n) = |

3

Theorem 2 H(2,n) = |2 |%]].

The following two theorems give further bounds in the general case. The proofs are
analogous to those for corresponding results on G(d,n) in [1, Lemmata 1 & 2].

Theorem 3 H(dl +d2, ) H(dl, )H(dg,n)

Theorem 4 H(d+1,n) < |2H(d,n)|.

Using Theorems 1 and 4 we get that H(d,n) < (%)%, which further leads to the upper
bound ¢(T},) < §. This bound can also be obtained using techniques from [11].

The followmg theorem is proved by a construction that is not applicable to the case
of G(n,d).

Theorem 5 H(d,n+2) > 3¢, () H(i,n).

Proof Partition the coordinate values in each dimension of the torus into A and B, where
|A] = n and |B| = 2, and require that a side of a cube is either entirely in A or in B.
This divides the packing problem into subcases, which can be solved independently. If
the number of dimensions with values in A is 7, then the instance to be solved is that of
H(i,n). Summing over all cases and recalling that H(0,n) = 1 gives the result. O
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2.2 Upper Bounds via Tabu Search

Packings of cubes provide lower bounds on G(d,n) and H(d,n). We here use tabu search,
a stochastic local search method, in the search for good packings. Tabu search was
introduced in 1986 by Glover and McMillan [7]; for a more extensive treatment of the
method, see [8, 9, 6].

Two different frameworks can be used to search for the packings considered here.
Either one may search for independent sets in certain graphs, or one may search for
packings of cubes in a torus. We have chosen the latter approach, and run Algorithm 1
with an input of the number of cubes to pack, k, the dimension of the torus, d, and the
width of the torus, n. The algorithm is restarted if it does not find a packing within a
given time limit.

Algorithm 1 Search(k,d,n)
1: Generate a random packing P with k£ cubes
2: while Overlap(P) > 0 do
3:  MinQwverlap < oo
for all P’ € Neighbourhood(P) do
if Owverlap(P’) < MinOverlap & ! Tabu(P’) then
MinOverlap < Overlap(P’)
if Overlap(P’) < MinOverlap then
BestNeighbour < {P'}
else
10: BestNeighbour < BestNeighbour U {P’}
11: end if
12: end if
13:  end for
14: P < RandomChoice(BestNeighbour)
15:  Update tabu list
16: end while

In Algorithm 1, a solution is a set of k cubes. The function OQuverlap(P) gives the
total pairwise overlap of all cubes in a solution P. We further define the neighborhood
of a solution as the set of solutions that can be reached by replacing any one of the
)d possible cubes, the

n
2

neighborhood has size k(g)d. The tabu list is implemented in such a way that a new cube
in the solution may not be part of the next T' changes, where typically T < 10.

Using Algorithm 1, we were able to find a packing proving that H(3,7) > 35 (which,
in fact, coincides with the best known upper bound and is therefore the exact value of
H(3,7)).

Another result obtained by Algorithm 1is H(3,13) > 248. To obtain that result we did
not start the search from a random packing but from a packing attaining G(3,13) > 247
and described in [1, Theorem 6], with one additional random cube.

cubes in the solution by any other possible cube. Since there are (
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2.3 Bounds via Exhaustive Search

Exhaustive computer search can be used to find and prove optimality of combinatorial
objects. We shall here illustrate how exhaustive search can be used to prove H(4,5) = 27,
improving on the earlier result of 25 < H(4,5) < 29 obtained by Brouwer and Schrijver
[5].

The concept of symmetry plays a central role in the study of combinatorial objects.
We say that two packings of unconnected cubes are isomorphic if one can be obtained
from the other by a permutation of the sides of the cubes together with permutations of
the n coordinate values for each side. A mapping of this type from a packing onto itself
is an automorphism, and the set of all automorphisms of a packing forms a group, the
automorphism group of the packing.

To determine whether packings are isomorphic and to find the automorphism group, we
transform packings into graphs and use the graph isomorphism program nauty [12]. The
mapping is as follows: Suppose that the packing has k£ unconnected cubes {Cy, Cy, . .., Cx},
where the cube C; is presented as {a;10,ai11} X {20,021} X -+ X {@i 400,041} With
0 < aij;r <n—1. Corresponding to such a packing we generate a graph with vertex set
VoUuViUVRU- - -UVy, where Vo = {09,409, ... v} and V; = {vj,v},... v} _}for 1 <i<d.
For any i, 1 <i < kand j, 1< j<d, weadd edges {v), vgiyjyo} and {v?, vgi’j}l}. Moreover,
edges are added so that for every 7, 1 < i < d, the subgraph induced by V; is complete.

As the problem of finding packings of cubes can be phrased in the framework of finding
independent sets (or cliques) in a particular graph, the Cliquer software [14] can be used
to settle small instances. In this way, a total of 864000 different packings attending
H(3,5) = 12 can be found. However, there are only 2 isomorphism classes of such
packings. The automorphism groups of these packings have orders 16 and 48, and the
result can be validated by the orbit-stabilizer theorem as

ECH N G

T TR 864000.

Theorem 6 H(4,5) = 27.

Proof Assume that H(4,5) > 28. The proof of Theorem 4, which shows that H(3,5) > 12,
relies on the fact that we get five 3-dimensional packings for the five different possibilities of
fixing one dimension and at least one of these packings must be of size at least [28-2/5]| =
12.

Assume that there is a packing of the 4-dimensional torus of width 5 with 28 uncon-
nected cubes of side 2. Without loss of generality, we may fix the value of of the first
dimension to 0 and use one of the two nonisomorphic solutions attaining H(3,5) = 12.
Out of the 5 - 864000 possibilities for fixing and placing a 3-dimensional packing of size
12 in the second dimension, only 4320 coincide in the 2-dimensional intersection of the
3-dimensional subcubes.

Cliquer is finally used to try to extend the 4320 cases to a packing with 28 unconnected
cubes of side 2. No solutions are found, implying that H(4,5) < 28. Several packings of
size 27 were found. So H(4,5) = 27. O
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3 Variants of the Problem

The width of any torus considered so far in this paper is the same in all dimensions.
Obviously, one can generalize this setting and consider tori with non-uniform widths.
The widths of the cubes to be packed may as well be non-uniform and differ from 2.

Beineke [2] proved that the maximum number of unconnected & x [ cubes (the direction
of which matters) that can be packed in an m x n torus is

mint 3 7)) L7 LD

Indeed, packings of 4 x 2 cubes in the n x n torus play a central role in [1, Theorem
6).

Results for higher dimension and various situations can be found in [17, 18]. A further
study of these cases might lead to results that could improve Theorems 5.

One may also consider covering versions of all these packing problems, cf. [15].

4 Results

Best known bounds on H(d,n) for 1 < d < 4 and 5 < n < 21 odd are shown in
Table 1 (trivially H(d,1) = 0 and H(d,3) = 1 for any d). The exact values for d = 1
and d = 2 follow from Theorems 1 and 2, respectively, and are left unmarked. Only
one key is shown for bounds that can be obtained in several ways. Packings attaining
H(3,5) =12, H(3,7) = 35, H(3,13) > 248, and H(4,5) = 27 are provided electronically
in a supplementary file.

For comparison, a table of best known bounds on G(d,n) for 1 <d < 5and 5 < n < 21
odd are shown in Table 2. In this table, only the bounds that have been improved since
[1] have a key.

Key to Tables 1 and 2.
*  Brouwer and Schrijver [5]
b Vesel and Zerovnik [19]
Baumert et al. [1]
¢ Natarajan [13]
¢ Bohman, Holzman, and Natarajan [4]
7  Theorem 4
" Theorem 5
Tabu search, see supplementary file
Exhaustive search, Theorem 6 and supplementary file

The new results in the current work lead to several new bounds on the Shannon
capacity of T,,.

Theorem 7 ¢(T7) > V35 ~ 3.271, ¢(T13) > v/248 ~ 6.283, ¢(T15) > /2802 = 7.276,
and ¢(Ty1) > V11441 ~ 10.342,
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Table 1: Bounds on H(d,n) for 1 <d<4and 5<n <21

m\d 1 2 3 4

5 2 5 a12e 7
73 10 5354 r114-122
9 4 18 c814 r327-3649
11 5 27 ©148¢ r776-8149
13 6 39 2482537  "1551-16449
15 7 52 T384-390¢  T2802-2925¢
17 8 68 €578 €49137
19 9 85 ¢8074 ©76664

21 10 105 91092-1102 "11441-11571¢

Table 2: Bounds on G(d,n) for 1 < d<4and 5<n <21

n\d 1 2 3 4
5 2 5 10 25
73 10 33 v108-115
9 4 18 81 324-363
11 5 27 148 740-814
13 6 39  247° 1521-1605
15 7 52 380390 2704 2925
17 8 68 578 4913
19 9 8 807 7666
21 10 105 10927  11025-11466°
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