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Abstract

This work provides a study on the multidistribution of type B excedances, fixed
points and cycles on the permutations of type B. We derive the recurrences and
closed formulas for the distribution of signed excedances on type B permutations as
well as derangements via combinatorial construction. Based on this result, we obtain
the recurrence and generating function for the signed excedance polynomial and
disclose some relationships with Euler numbers and Springer numbers, respectively.
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1 Introduction

Let Sn be the set of permutations of [n] := {1, 2, . . . , n}. A permutation π of [n] can be
written in one-line notation as π = π1π2 · · · πn, where πi = π(i), i = 1, 2, . . . , n; or as a
disjoint union of its distinct cycles C1, . . . , Ck, i.e., π = C1 · · ·Ck. A cycle C is said to
be in standard form if its smallest element is in the first position. For each π ∈ Sn, the
excedance set and the excedance number of π = π1π2 · · · πn are defined as

Exc(π) = {i ∈ [n] : πi > i} and exc(π) = |Exc(π)|, respectively.

Let Bn be the hyperoctahedral group on [n], where each element in Bn can be regarded
as a signed permutation or a permutation of type B on [n]; in other words, we view each
π ∈ Bn as a function π : [n] → [−n, n] \ {0} such that |π| ∈ Sn and |π|(i) = |π(i)| for
i ∈ [n]. For π = π1π2 · · · πn ∈ Bn, we denote by ī the negative element −i, and use the
natural order for the elements of π, i.e.,

n̄ < n− 1 < · · · < 2̄ < 1̄ < 1 < 2 < · · · < n− 1 < n.
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The cycle decomposition of π ∈ Bn is accomplished by first writing |π| as the disjoint union
of cycles, and then placing bars on the elements which have bars in π. For example, let
π = 3̄ 5 1 7̄ 2 9 6̄ 8̄ 4̄ ∈ B9, we have |π| = 3 5 1 7 2 9 6 8 4 = (1, 3)(2, 5)(4, 7, 6, 9)(8), and thus
the cycle decomposition of π is (1, 3̄)(2, 5)(4̄, 7̄, 6̄, 9)(8̄). The cycle of a type B permutation
is also called a signed cycle. Given a cycle C, denoted by l(C) the length of C, that is
the number of elements in the cycle C.

For a permutation π = π1π2 · · · πn in Sn or Bn, let cyc(π) be the number of cycles
in the cycle decomposition of π. A fixed point of π is an element i such that πi = i,
and further denote by fix(π) the number of fixed points in π; this permutation is called a
derangement if πi 6= i for all i ∈ [n], i.e., a permutation without fixed points. In order to
distinguish, a derangement in Bn is referred as a type B derangement. Denote by the set
of derangements and the set of type B derangements on [n] by Dn and DB

n , respectively.
Let us recall the definition of type B excedances introduced by Brenti [5].

Definition 1. For π ∈ Bn and i ∈ [n], |πi| is said to be a type B excedance of π if πi = ī
or π|πi| > πi, and we denote by excB(π) the number of type B excedances of π.

It is easy to determine the typeB excedance set of π ∈ Bn from its cycle decomposition.
That is, for a cycle (c1, c2, . . . , cm) (m > 2) of π, |ci| is a type B excedance if ci <
ci+1 (1 6 i 6 m), where cm+1 = c1; or i is a type B excedance if (̄i) is a cycle of π.
For example, for the type B permutation π = 3̄ 5 1 7̄ 2 9 6̄ 8̄ 4̄ with cycle decomposition
(1, 3̄)(2, 5)(4̄, 7̄, 6̄, 9)(8̄), we have excB(π) = 5 since 3̄ < 1, 2 < 5, 7̄ < 6̄, 6̄ < 9 and π8 = 8̄.

For π ∈ Sn, the (weighted) signed excedance of π is defined as (−1)cyc(π)xexc(π), and
from the generating function point of view, Brenti [6] derived that∑

π∈Sn

(−1)cyc(π)xexc(π) = −(x− 1)n−1.

Then, Ksavrelof and Zeng [12] presented a combinatorial proof by introducing the enu-
merative polynomial on Sn as follows:

Pn(x, y, z) =
∑
π∈Sn

xexc(π)yfix(π)zcyc(π).

Bagno and Garber [4] generalized this result to colored permutation groups with other
definitions of excedances, and later Bagno et al. [3] defined the excedance number for the
multi-colored permutation group and calculated its multi-distribution with the number
of fixed points and cycles. However, the study on type B excedances remains almost
untouched. In this paper, we will provide a study on the joint distribution of the number
of type B excedances, fixed points and cycles in the permutations of type B. We first
give the following definition of the signed excedance polynomial PB

n (x, y, z).

Definition 2. The type B signed excedance polynomials are given by

PB
n (x, y, z) =

∑
π∈Bn

xexcB(π)yfix(π)zcyc(π) for n > 1, (1)

and we set PB
0 (x, y, z) = 1 when n = 0.
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It is easy to find that PB
n (x, 1, 1) and PB

n (x, 0, 1) correspond to the classical Eule-
rian polynomial of type B ([5, 9]) and the derangement polynomial of type B ([8, 11]),
respectively.

This paper is organized as follows. We construct involutions on type B permutations
and type B derangements to derive the recurrences and explicit formulas for PB

n (x, 1,−1)
and PB

n (x, 0,−1) in Sections 2 and 3, respectively. Based on combinatorial arguments,
we derive the recurrence relation and generating function for PB

n (x, y, z) in Section 4, and
further disclose some relationships between PB

n (−1, 1, 1) and the Euler number, as well
as relationships between PB

n (−1, 0, 1) and the Springer number.

2 Signed excedances on type B permutations

In this section, we will study the signed excedances on type B permutations, and derive
the recurrence and closed form for PB

n (x, 1,−1) as follows.

Theorem 3. For n > 3, we have

PB
n (x, 1,−1) = (x− 1)2PB

n−2(x, 1,−1), (2)

PB
n (x, 1,−1) =

{
−(x+ 1)(x− 1)n−1, if n is odd,

(x− 1)n, if n is even,
(3)

where PB
1 (x, 1,−1) = −(x+ 1), PB

2 (x, 1,−1) = (x− 1)2.

Our proof technique is based on the construction of sign-reversing involutions which
preserve the number of excedances yet change the parity of the number of cycles of a
type B permutation. For our discussion, the weight of the type B permutation π ∈ Bn is
defined as w(π) = (−1)cyc(π)xexcB(π), and the weight of a set is given by the sum over all
weights of the elements in this set.

2.1 Combinatorial proof of the recurrence (2)

We first partition the set Bn into four subsets as follows:

• B1
n := {π ∈ Bn | πn−1 = n− 1 and πn = n̄};

• B2
n := {π ∈ Bn | πn−1 = n− 1 and πn = n};

• B3
n := {π ∈ Bn | πn−1 = n and πn = n− 1}

⋃
{π ∈ Bn | πn−1 = n̄ and πn = n− 1};

• B4
n := Bn \ {B1

n ∪B2
n ∪B3

n}.

It is obvious that the map π 7→ π′′ = π1π2 · · · πn−2 gives a bijection between set B1
n and set

Bn−2 such that w(π) = x2w(π′′). Therefore the weight of B1
n is x2PB

n−2(x, 1,−1). Similarly,
the weights of B2

n and B3
n are PB

n−2(x, 1,−1) and −2xPB
n−2(x, 1,−1), respectively. Thus,

it remains to prove that the weight of B4
n is equal to zero.
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For convenience, we call πi a singleton if πi = i or πi = ī, i.e., πi is in a cycle of length
exactly one. Now we construct a sign-reversing involution ϕ on B4

n by

π 7→ π′ = (πn−1, πn) ◦ π,

and it will be proven to be the desired involution by analyzing the number of type B
excedances and cycles between π and π′. Without loss of generality, assume that πn−1

and πn lie in two different cycles C1 and C2 (C1 6= C2), respectively. We will complete the
proof by considering the following cases according to the lengths of the cycles C1 and C2.

i) For l(C1) = l(C2) = 1, we have π = · · · (n−1) · · · (n̄) · · · or π = · · · (n− 1) · · · (n) · · ·
from π 6∈ B1

n∪B2
n. For the former, it holds that π′ = · · · (n−1, n̄) · · · , while for the latter,

π′ = · · · (n− 1, n) · · · . This gives w(π) = −w(π′).
ii) For l(C1) > 2 and l(C2) = 1, we suppose that n− 1, n̄ appear in π, i.e.,

π = · · · (. . . , a, n− 1, πn−1, . . .) · · · (n̄) · · · .

This yields that π′ = · · · (. . . , a, n− 1, n̄, πn−1, . . .) · · · , and therefore w(π) = −w(π′) from
the fact that a < n− 1 > πn−1 and πn = n̄ in π, yet a < n− 1 > n̄ < πn−1 in π′. Similar
consideration could be made when n is a singleton and n− 1 lies in a cycle of length at
least two.

The catch comes when n is a singleton and n− 1 lies in a cycle of length at least two,
i.e.,

π = · · · (. . . , a, n− 1, πn−1, . . .) · · · (n) · · · .
We could solve this case by introducing π′ = · · · (. . . , a, n− 1, n̄, πn−1, . . .) · · · , and it is
easy to get w(π) = −w(π′). Similar consideration could be made when n̄ is a singleton
and n− 1 lies in a cycle of length at least two, as well as the case l(C1) = 1 and l(C2) > 2.

iii) For l(C1) > 2 and l(C2) > 2, suppose that n−1 and n̄ appear in π simultaneously,
i.e.,

π = · · · (. . . , a, n− 1, πn−1, . . .) · · · (. . . , b, n̄, πn, . . .) · · · ,
which gives π′ = · · · (. . . , a, n − 1, πn, . . . , b, n̄, πn−1, . . .) · · · . Further, we get w(π) =
−w(π′) from the only difference between the excedance set of π and that of π′, i.e.,
n−1 > πn−1, n̄ < πn in π and n−1 > πn, n̄ < πn−1 in π′. Similar analysis could be made
to the other three cases according to the signs of n− 1 and n.

We end this subsection with two illustrative examples. For π = (1̄ 4)(2 7̄ 6)(3̄ 5 8), we
have π7 = 6, π8 = 3̄, ϕ(π) = (3̄, 6) ◦ π = (1̄ 4)(2 7̄ 3̄ 5 8 6), and therefore w(π) = −x4 and
w(ϕ(π)) = x4; for π = (1 3̄ 6)(2 5̄ 8 4)(7̄), we have ϕ(π) = (7̄, 4) ◦ π = (1 3̄ 6)(2 5̄ 8 7̄ 4), and
this gives w(π) = −x3 and w(ϕ(π)) = x3.

2.2 Combinatorial proof of the closed formula (3)

For 1 6 k 6 n, let Ωn,k denote the set of type B permutations π ∈ Bn whose cycle
decompositions consist of a k-cycle such that

(
1 < π(1) < π2(1) < · · · < πk−1(1)

)
and n−k

positive singletons; or a k-cycle
(
1̄ > π(1) > π2(1) > · · · > πk−1(1)

)
and n − k negative

singletons.
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It is easy to see that the weights of the first and second kind k-cycle are −xk−1

and −x, respectively; the weights of the positive and negative singleton are −1 and −x,
respectively. Therefore, we can get the weight of Ωn :=

⋃n
k=1 Ωn,k as

w(Ωn) =
n∑
k=1

(
n− 1

k − 1

)
(−1)n−k+1xk−1 +

n∑
k=1

(
n− 1

k − 1

)
(−1)n−k+1xn−k+1

= −
n−1∑
k=0

(
n− 1

k

)
(−1)n−1−kxk − xn

n−1∑
k=0

(
n− 1

k

)
(−1)n−1−kx−k

= −(x− 1)n−1 − xn(x−1 − 1)n−1

= (x− 1)n−1((−1)nx− 1).

To prove Eq. (3), it remains to construct a sign-reversing involution χ on Ω̄n := Bn\Ωn.
Given π ∈ Ω̄n, if all the elements of π are positive, then we could use the involution

provided in [12] for the permutations in Sn; and if all the elements are negative, we
can use the known involution on |π|, and then change every element to its negative.
Therefore, we only need to consider the case that positive and negative elements appear
in π simultaneously.

We first consider the case when 1 is positive in the cycle decomposition of π. Denote
by ā the smallest element in π, and set mπ = ā. We select another element m′π as follows:
Case 1: if there are no negative elements larger than mπ, then set m′π = 1;
Case 2: if there are at least one negative elements in π larger than mπ, then we denote
by b̄ the smallest element larger than mπ in π, and

i) if πb 6= b̄ and πb 6= mπ, then set m′π = b̄;

ii) if πb = b̄, then find the smallest element larger than b̄ in π, and check the condition
i) until we find the right choice for m′π;

iii) if πb = mπ, then we set mπ = b̄, and check the conditions in Case 1 and Case 2,
until we find the right choice for m′π.

With mπ and m′π in hand, we define

χ(π) := (mπ,m
′
π) ◦ π,

and will show that χ is a sign-reversing involution. Suppose mπ = ā and m′π = b̄, and
thus b̄ > ā. Without loss of generality, assume that mπ and m′π are in different cycles,
i.e.,

π = · · · (b̄, πb, . . . , x) · · · (ā, πa, . . . , y) · · · .

This gives χ(π) = · · · (b̄, πb, . . . , x, ā, πa, . . . , y) · · · . Observe the difference between the
excedance sets of π and χ(π), we see that b̄ < x in π (otherwise, m′π 6= b̄), and thus
ā < x in χ(π). From the choice of b̄, we have if ā > y in π, then b̄ > y in χ(π), and if
ā < y in π then b̄ < y in χ(π). Therefore, we get w(π) = −w(χ(π)), and it is obvious
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that mχ(π) = ā and m′χ(π) = b̄. We can also show that χ is a sign reversing and weight
preserving involution when ā is a singleton or m′π = 1.

If 1̄ appears in π, then we introduce another sign-reversing involution χ′ by first
changing the sign of every element in π to obtain a new permutation −π; then applying
the involution χ on −π; and at last χ′(π) is obtained from χ(−π) by changing the sign
of every element back. By combining the involutions χ and χ′, we see clearly that the
weight of Ω̄n is zero, and this completes the proof.

We take an example to illustrate our proof. For π = (1̄, 2, 5)(3̄, 6, 7, 4̄), we have
−π = (1, 2̄, 5̄)(3, 6̄, 7̄, 4), m−π = 6̄, m′−π = 5̄ and χ(−π) = (1, 2̄, 6̄, 7̄, 4, 3, 5̄). Thus, it holds
that χ′(π) = (1̄, 2, 6, 7, 4̄, 3̄, 5), w(π) = x5 and w(χ′(π)) = −x5.

Table 1 gives an illustration for n = 3. For compactness, we only present those type
B permutations containing positive 1 and at least one negative elements.

π w(π) (mπ,m
′
π) w(χ(π)) χ(π)

(1, 2̄, 3) −x (1, 2̄) x (1)(2̄, 3)

(1, 3, 2̄) −x2 (1, 2̄) x2 (1, 3)(2̄)

(1, 2, 3̄) −x2 (1, 3̄) x2 (1, 2)(3̄)

(1, 3̄, 2) −x (1, 3̄) x (1)(2, 3̄)

(1, 2̄, 3̄) −x (1, 2̄) x (1)(2̄, 3̄)

(1, 3̄, 2̄) −x2 (2̄, 3̄) x2 (1, 2̄)(3̄)

(1, 2̄)(3) x (1, 2̄) −x (1)(2̄)(3)

(1, 3̄)(2) x (1, 3̄) −x (1)(2)(3̄)

(1, 3̄)(2̄) x2 (1, 3̄) −x2 (1)(2̄)(3̄)

Table 1: The involution χ for n = 3.

3 Signed excedances on type B derangements

In this section, we study the signed excedances on type B derangements. By combinatorial
arguments, we derive a recurrence and a closed formula for PB

n (x, 0,−1) as follows.

Theorem 4. For n > 2, we have

PB
n (x, 0,−1) = (2− x)PB

n−1(x, 0,−1)− 2xn−1, (4)

PB
n (x, 0,−1) =

x(2− x)n − xn

x− 1
(5)

= −
n∑
k=1

x

(
n

k

)
(1− x)k−1 − x− x2 − · · · − xn−1, (6)

where PB
1 (x, 0,−1) = −x.
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Recall that DB
n represents the set of all type B derangements on [n]. We denote by

dBo (n) and dBe (n) the number of derangements in DB
n with odd and even number of cycles,

respectively. By setting x = 1 in Eq. (6), we have

Corollary 5. For n > 1, dBo (n)− dBe (n) = 2n− 1.

A similar result for derangements in Sn was given by Chapman [7], i.e., the number
of even and odd derangements in Sn differs by n− 1. This result has been generalized by
introducing the concept of “excedance” in the work of Mantaci and Rakotondrajao [13].

3.1 Combinatorial proof of the recurrence (4)

We first define four subsets of DB
n as follows:

• D1
n := {π ∈ DB

n | the relative positions of n − 1 and n are either (. . . , n, n − 1, . . .)
or (. . . , n− 1, n, . . .) except for the cycle (n, n− 1)};

• D2
n := {π ∈ DB

n | the relative positions of n− 1 and n are either (. . . , n̄, n− 1, . . .)
or (. . . , n− 1, n̄, . . .) except for the cycle (n̄, n− 1)};

• D3
n := {π ∈ DB

n | πn = n̄};

• D4
n := {(1, 2, . . . , n− 1, n), (1, 2, . . . , n− 1, n̄)}.

We could construct a bijection between D1
n and DB

n−1 by deleting the element n from
every permutation in D1

n, and this bijection keeps the weight invariant. This means that
the sets D1

n and DB
n−1 have the same weight PB

n−1(x, 0,−1). Similarly, we can show that
the weight of D2

n is also PB
n−1(x, 0,−1). It is obvious that the weights of D3

n and D4
n are

equal to −xPB
n−1(x, 0,−1) and −2xn−1, respectively. Therefore, it remains to show that

the weight of D
B

n := DB
n \ {D1

n ∪D2
n ∪D3

n ∪D4
n} equals to zero.

We will partition the set D
B

n into two classes according to the image of n − 1 under
the action of π, and construct the sign-reversing involution ψ case by case.

Class A: For each permutation π such that πn−1 6= n and πn−1 6= n̄, we define

ψ(π) := (πn−1, πn) ◦ π.

Without loss of generality, we assume that πn−1 and πn are in different cycles. According
to the signs of n− 1 and n appear in π, we distinguish the following four cases to prove
that ψ is the desired involution.

A1: If n− 1 and n are the elements of π, i.e.,

π = · · · (. . . , a, n− 1, πn−1, b, . . .) · · · (. . . , x, n, πn, y, . . .) · · · ,

then ψ(π) = · · · (. . . , a, n− 1, πn, y, . . . , x, n, πn−1, b, . . . , ) · · · .
We have excB(π) = excB(ψ(π)) from the fact that n − 1 > πn−1, n > πn in π, yet

n− 1 > πn and n > πn−1 in ψ(π).
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A2: If n− 1 and n are the elements of π and πn−1 6= n− 1, i.e.,

π = · · · (. . . , a, n− 1, πn−1, b, . . .) · · · (. . . , x, n, πn, y, . . .) · · · ,

then ψ(π) = · · · (. . . , a, n− 1, πn, y, . . . , x, n, πn−1, b, . . . , ) · · · . From the fact that n− 1 <
πn−1 and n > πn in π, yet n− 1 < πn and n > πn−1 in ψ(π), we have excB(π) =
excB(ψ(π)).

For πn−1 = n− 1, we have ψ(π) = · · · (n− 1, πn, y, . . . , x, n) · · · , and it is easy to see
that excB(π) = excB(ψ(π)) since πn−1 = n− 1 and n > πn in π, yet n− 1 < πn and
n > n− 1 in ψ(π).

A3: If n− 1 and n̄ are the elements of π, i.e.,

π = · · · (. . . , a, n− 1, πn−1, b, . . .) · · · (. . . , x, n̄, πn, y, . . .) · · · ,

then ψ(π) = · · · (. . . , a, n− 1, πn, y, . . . , x, n̄, πn−1, b, . . . , ) · · · .
We have excB(π) = excB(ψ(π)) from the observation n − 1 > πn−1 and n̄ < πn in π,

while n− 1 > πn and n̄ < πn−1 in ψ(π).
A4: If n− 1 and n̄ are the elements of π and πn−1 6= n− 1, i.e.,

π = · · · (. . . , a, n− 1, πn−1, b, . . .) · · · (. . . , x, n̄, πn, y, . . .) · · · ,

then ψ(π) = · · · (. . . , a, n− 1, πn, y, . . . , x, n̄, πn−1, b, . . . , ) · · · .
We have n− 1 < πn−1 and n̄ < πn in π, yet n− 1 < πn and n̄ < πn−1 in ψ(π), thus

excB(π) = excB(ψ(π)).
For πn−1 = n− 1, then ψ(π) = · · · (n− 1, πn, y, . . . , x, n̄) · · · . It holds that n− 1 < πn

from π /∈ D3
n (that is πn 6= n̄). Thus, we have excB(π) = excB(ψ(π)) from the fact

πn−1 = n− 1 and n̄ < πn in π, while n− 1 < πn and n̄ < n− 1 in ψ(π).

Class B: For each permutation π such that πn−1 = n or πn−1 = n̄, the involution ψ
will be defined accordingly based on the signs of n− 2 and n. We assume that πn−2 and
πn are in different cycles without loss of generality.

B1: If n− 2 and n are the elements of π, i.e.,

π = · · · (. . . , x, n− 1, n, πn, . . .) · · · (. . . , y, n− 2, πn−2, . . .) · · · ,

and if πn−2 6= n− 1, then we define ψ(π) := (n− 2, n− 1) ◦ π, i.e.,

ψ(π) = · · · (. . . , x, n− 2, πn−2, . . . , y, n− 1, n, πn, . . .) · · · .

We have excB(π) = excB(ψ(π)) from the observation that x < n−1 and y < n−2 in π, yet
x < n− 2 and y < n− 1 in ψ(π). If x = n, we can also verify that excB(π) = excB(ψ(π))
by similar analysis.

For the case πn−2 = n − 1, we define ψ(π) = (j − 1, j) ◦ π, where j is the largest
element such that πj−1 6= j and its existence is guaranteed from π 6∈ D4

n. Here we omit
the detailed proof since it is rather similar to the proof of the case when πn−2 6= n− 1.
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B2: If n− 2 and n are the elements of π, i.e.,

π = · · · (. . . , x, n− 1, n, πn, . . .) · · · (. . . , y, n− 2, πn−2, . . .) · · · ,

then we define ψ(π) := (πn−2, πn) ◦ π, that is

ψ(π) = · · · (. . . , x, n− 1, n, πn−2, . . . , y, n− 2, πn, . . .) · · · .

For πn 6= n− 2, we can easily obtain excB(π) = excB(ψ(π)) from the obvious fact
n > πn, n− 2 < πn−2 in π, while n > πn−2 and n− 2 < πn in ψ(π).

For πn = n− 2, we have π = · · · (. . . , x, n−1, n, n− 2, πn−2, . . .) · · · , and it holds that
ψ(π) = · · · (. . . , x, n − 1, n, πn−2, . . .) · · · (n− 2) · · · . Thus, excB(π) = excB(ψ(π)) follows
from n > n− 2 < πn−2 in π, while n > πn−2 and πn−2 = n− 2 in ψ(π).

B3: If n− 2 and n̄ are the elements of π, i.e.,

π = · · · (. . . , x, n− 1, n̄, πn, . . .) · · · (. . . , y, n− 2, πn−2, . . .) · · · ,

and if πn−2 6= n− 1, then we define ψ(π) := (n− 2, n− 1) ◦ π, i.e.,

ψ(π) = · · · (. . . , x, n− 2, πn−2, . . . , y, n− 1, n̄, πn, . . .) · · · .

We have excB(π) = excB(ψ(π)) from the fact that x < n−2 < n−1 and y < n−2 < n−1.
If x = n̄, we could also have excB(π) = excB(ψ(π)) from y < n − 2 < n − 1 and
n̄ < n− 2 < n− 1.

For πn−2 = n− 1, we could give a similar argument as that in case B1 by finding the
largest element j s.t. πj−1 6= j and then defining ψ(π) = (j − 1, j) ◦ π.

B4: If n− 2 and n̄ are the elements of π, i.e.,

π = · · · (. . . , x, n− 1, n̄, πn, . . .) · · · (. . . , y, n− 2, πn−2, . . .) · · · ,

then we define ψ(π) := (πn−2, πn) ◦ π, that is

ψ(π) = · · · (. . . , x, n− 1, n̄, πn−2, . . . , y, n− 2, πn, . . .) · · · .

For πn 6= n− 2, we have excB(π) = excB(ψ(π)) from the obvious fact n̄ < πn and
n− 2 < πn−2 in π, while n̄ < πn−2 and n− 2 < πn in ψ(π).

For πn = n− 2, we have π = · · · (. . . , x, n − 1, n̄, n− 2, πn−2, . . .) · · · , it holds that
ψ(π) = · · · (. . . , x, n − 1, n̄, πn−2, . . .) · · · (n− 2) · · · . Thus, excB(π) = excB(ψ(π)) follows
from n̄ < n− 2 < πn−2 and πn−2 = n− 2.

By combining the ψ defined in class A and class B, we obtain the desired sign-reversing

involution on set D
B

n , and the weight of set D
B

n exactly equals to zero. This completes
the proof.

For the special case DB
3 , we have

D1
3 = {(1, 3, 2), (1̄, 3, 2), (1, 2̄, 3), (1̄, 2̄, 3), (1̄)(2̄, 3)},

D2
3 = {(1, 3̄, 2), (1̄, 3̄, 2), (1, 2̄, 3̄), (1̄, 2̄, 3̄), (1̄)(2̄, 3̄)},

D3
3 = {(1, 2)(3̄), (1, 2̄)(3̄), (1̄, 2)(3̄), (1̄, 2̄)(3̄), (1̄)(2̄)(3̄)},

D4
3 = {(1, 2, 3), (1, 2, 3̄)},

and Table 2 exhibits the involution ψ on the set D
B

3 in detail.
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π w(π) transposition w(ψ(π)) ψ(π)

(1̄, 2, 3) −x2 (π1, π3) = (1̄, 2) x2 (1̄)(2, 3)

(1̄, 2, 3̄) −x2 (π1, π3) = (1̄, 2) x2 (1̄)(2, 3̄)

(1, 3, 2̄) −x2 (π2, π3) = (1, 2̄) x2 (1, 3)(2̄)

(1̄, 3, 2̄) −x2 (π2, π3) = (1̄, 2̄) x2 (1̄, 3)(2̄)

(1, 3̄, 2̄) −x2 (π2, π3) = (1, 2̄) x2 (1, 3̄)(2̄)

(1̄, 3̄, 2̄) −x2 (π2, π3) = (1̄, 2̄) x2 (1̄, 3̄)(2̄)

Table 2: The involution ψ on the set D
B

3 .

3.2 Combinatorial proof of the closed formula (6)

We begin with the following theorem, which is a refinement of the formula (6).

Theorem 6. For 0 6 k 6 n, let DB
n,k = {π ∈ DB

n | π has exactly k negative elements}.
Then ∑

π∈DB
n,0

(−1)cyc(π)xexcB(π) = −x− x2 − · · · − xn−1, (7)

and for k > 1, ∑
π∈DB

n,k

(−1)cyc(π)xexcB(π) = −x
(
n

k

)
(1− x)k−1. (8)

Proof. We will focus on the general cases for DB
n,k with k > 1 because Ksavrelof and Zeng

[12] have presented detailed proofs for DB
n,0.

The set of type B permutations with exactly k negative elements is isomorphic to the
set of type B permutations with negative elements 1̄, 2̄, . . . , k̄, we only need to consider
the subset DBn,k of DB

n,k whose elements are derangements with bars only occur on elements

1, 2, . . . , k. Hence, to prove the weight of set DB
n,k is −x

(
n
k

)
(1− x)k−1, it remains to prove

that the weight of set DBn,k is −x(1− x)k−1.
For 1 < k < n, we denote by OBn,k the subset of DBn,k such that:

a) 1̄ and n are in the same cycle, and n lies to the right of 1̄;

b) for 2 6 i 6 k, either i is a singleton, or i lies in the cycle containing 1̄ and stays
immediately right after the largest (in absolute value) element smaller than i of this
cycle;

c) for k < i < n, i stays in the cycle containing 1̄ and follows immediately right after the
element i+ 1.

the electronic journal of combinatorics 20(2) (2013), #P28 10



For example, if n = 5 and k = 2, then OB5,2 only has two permutations: (1̄, 2̄, 5, 4, 3) and
(1̄, 5, 4, 3)(2̄). For k = 1, it is sufficient for the subset OBn,1 of DBn,1 to satisfy the rules a)
and c); and for k = n, it is sufficient for the subset OBn,n of DBn,n to satisfy the rule b).

Note that the weight of the cycle containing 1̄ is always −x by the above construction,
and for the element ī (2 6 i 6 k), it contributes weight 1 − x since ī maybe a singleton
or in the cycle containing 1̄, so the weight of OBn,k (1 6 k 6 n) is −x(1− x)k−1. To prove

that the weight of set DBn,k is −x(1− x)k−1, we will construct a sign-reversing and weight

preserving involution on DBn,k := DBn,k\OBn,k.
For 1 6 k < n, given a permutation π ∈ DBn,k, we define an involution φ on DBn,k as

follows:

Step1 If π−1(1) 6= k + 1, then define φ(π) = (1̄, k + 1) ◦ π; otherwise, go to Step2;

Step2 If there exists a smallest element i (2 6 i 6 k) such that πi 6= i and π−1(i) 6= i− 1,
then we define φ(π) = (πj, πi) ◦ π, where j is the largest integer smaller than i
satisfying πj 6= j; otherwise skip to Step3;

Step3 Define φ(π) = (i, i + 1) ◦ π by finding the smallest element i (k < i < n) such
that π−1(i) 6= i+ 1.

Now we show that φ is a desired involution on DBn,k according to the above three cases.
1) If π−1(1) 6= k+ 1, i.e., π = (. . . , a, 1̄, b, . . .) · · · (. . . , x, k+ 1, y, . . .) · · · , then we have

φ(π) = (1̄, b, . . . , a, k + 1, y, . . . , x) · · ·

and φ(π)−1(1) 6= k + 1. It always holds that excB(π) = excB(φ(π)) by considering the
values of a and x:
i) if a < 1̄, then a < k + 1;
ii) if a > 1̄, then a > k + 1 from a > 0, a 6= k + 1 and k + 1 being the smallest positive
integer in π;
iii) if x > k + 1, then x > 1̄;
iv) if x < k + 1, then x < 1̄ from x < 0 and 1̄ being the largest negative integer in π.

2) If π−1(1) = k + 1 and there exists a smallest i (2 6 i 6 k) s.t. πi 6= i and
π−1(i) 6= i− 1, then π = (1̄, . . . , j, πj, . . . , k + 1) · · · (r̄) · · · (a, . . . , i, πi, . . . , b) · · · , where j
is the largest integer smaller than i satisfying πj 6= j. Therefore,

φ(π) = (1̄, . . . , j, πi, . . . , b, a, . . . , i, πj, . . . , k + 1) · · · (r̄) · · · .

It is easy to see that φ(π)−1(1) = k+ 1, and i < j. We further have φ(π)(i) = πj 6= ī from
the choice of i and φ(π)−1(i) 6= i− 1. By considering the values of πi and πj, we see that
i) if πi < 0 and πj < 0, then j > i > πi and j > i > πj;
ii) if πi < 0 and πj > 0, then j > i > πi and i < j < πj;
iii) if πi > 0 and πj < 0, then i < j < πi and j > i > πj;
iv) if πi > 0 and πj > 0, then i < j < πi and i < j < πj.
Thus it yields that excB(π) = excB(φ(π)).
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3) if π does not satisfy the conditions in Step1 and Step2, then there exists a smallest

integer i (k < i < n) such that π−1(i) 6= i+ 1 from the definition of DBn,k. We assume

π = (1̄, . . . , j, . . . , a, i+ 1, b, . . . , π−1(i), i, i− 1, . . . , k + 1) · · · (r̄) · · · ,

then φ(π) = (1̄, . . . , j, . . . , a, i, i−1, . . . , k+ 1) · · · (i+ 1, b, . . . , π−1(i)) · · · (r̄) · · · . It is easy
to prove that φ(π) also belongs to the third case and i is the smallest integer such that
φ(π)−1(i) 6= i+ 1. On the other hand, we have excB(π) = excB(φ(π)) by considering the
values of π−1(i) and a:
i) if π−1(i) > i, then π−1(i) > i+ 1 since π−1(i) 6= i+ 1;
ii) if π−1(i) < i, then π−1(i) < i+ 1;
iii) if a > 0, then a > i+ 1 > i;
iv) if a < 0, then a < i < i+ 1.

Hence φ is proven to be the desired involution on the set DBn,k with 1 6 k < n.

While for the set DBn,n, the involution φ can be defined as φ(π) = (πj, πi) ◦ π, where i

is the smallest element such that πi 6= i and π−1(i) 6= i− 1, and j is the largest integer
smaller than i satisfying πj 6= j. If no such j exits, then let j = 1.

If j > 1, by the analysis in the case 2) for k < n, we see that φ is also the desired

involution on the set DBn,n.

If j = 1, suppose π = (1̄) · · · (r̄) · · · (a, . . . , i, πi, . . . , b) · · · , then

φ(π) = (1̄, πi, . . . , b, a, . . . , i) · · · (r̄) · · · .

By the choice of i, we see that ī > πi, π1 = 1̄ in π, yet 1̄ > πi, ī < 1̄ in φ(π), thus
excB(π) = excB(φ(π)).

In summary, φ is a sign-reversing and weight preserving involution on the set DBn,k for
all 1 6 k 6 n, and this theorem follows.

We end this section with an example of φ on the set DB4,k (1 6 k 6 4), and we also
list those sets OB4,k for completeness.

i) OB4,1 = {(1̄, 4, 3, 2)}, and the involution φ on subset DB4,1 is:

π w(π) transposition w(φ(π)) φ(π)

(1̄, 2, 3, 4) −x3 (1̄, k + 1) = (1̄, 2) x3 (1̄)(2, 3, 4)

(1̄, 2, 4, 3) −x2 (1̄, k + 1) = (1̄, 2) x2 (1̄)(2, 4, 3)

(1̄, 3, 2, 4) −x2 (1̄, k + 1) = (1̄, 2) x2 (1̄, 3)(2, 4)

(1̄, 4, 2, 3) −x2 (1̄, k + 1) = (1̄, 2) x2 (1̄, 4)(2, 3)

(1̄, 3, 4, 2) −x2 (i, i+ 1) = (2, 3) x2 (1̄, 2)(3, 4)

ii) OB4,2 = {(1̄, 2̄, 4, 3), (1̄, 4, 3)(2̄)}, and the involution φ on subset DB4,2 is:
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π w(π) transposition w(φ(π)) φ(π)

(1̄)(2̄)(3, 4) −x3 (1̄, k + 1) = (1̄, 3) x3 (1̄, 3, 4)(2̄)

(1̄, 3, 4, 2̄) −x3 (1̄, k + 1) = (1̄, 3) x3 (1̄)(2̄, 3, 4)

(1̄, 3, 2̄, 4) −x2 (1̄, k + 1) = (1̄, 3) x2 (1̄)(2̄, 4, 3)

(1̄, 2̄, 3, 4) −x2 (1̄, k + 1) = (1̄, 3) x2 (1̄, 2̄)(3, 4)

(1̄, 4, 3, 2̄) −x2 (1̄, k + 1) = (1̄, 3) x2 (1̄, 4)(2̄, 3)

(1̄, 4, 2̄, 3) −x2 (π1, π2) = (3, 4) x2 (1̄, 3)(2̄, 4)

iii) OB4,3 = {(1̄, 2̄, 3̄, 4), (1̄, 2̄, 4)(3̄), (1̄, 3̄, 4)(2̄), (1̄, 4)(2̄)(3̄)}, the involution φ on DB4,3 is:

π w(π) transposition w(φ(π)) φ(π)

(1̄, 4, 3̄, 2̄) −x3 (1̄, k + 1) = (1̄, 4) x3 (1̄)(2̄, 4, 3̄)

(1̄)(2̄, 4)(3̄) −x3 (1̄, k + 1) = (1̄, 4) x3 (1̄, 4, 2̄)(3̄)

(1̄)(2̄)(3̄, 4) −x3 (1̄, k + 1) = (1̄, 4) x3 (1̄, 4, 3̄)(2̄)

(1̄, 2̄, 4, 3̄) −x2 (1̄, k + 1) = (1̄, 4) x2 (1̄, 2̄)(3̄, 4)

(1̄, 3̄, 4, 2̄) −x2 (1̄, k + 1) = (1̄, 4) x2 (1̄, 3̄)(2̄, 4)

(1̄, 4, 2̄, 3̄) −x2 (1̄, k + 1) = (1̄, 4) x2 (1̄)(2̄, 3̄, 4)

(1̄, 3̄, 2̄, 4) −x2 (π1, π2) = (3̄, 4) x2 (1̄, 4)(2̄, 3)

iv) OB4,4 = {(1̄, 2̄, 3̄, 4̄), (1̄, 2̄, 3̄)(4̄), (1̄, 2̄, 4̄)(3̄), (1̄, 3̄, 4̄)(2̄), (1̄, 2̄)(3̄)(4̄), (1̄, 3̄)(2̄)(4̄),

(1̄, 4̄)(2̄)(3̄), (1̄)(2̄)(3̄)(4̄)}, and the involution φ on subset DB4,4 is:

π w(π) transposition w(φ(π)) φ(π)

(1̄)(2̄)(3̄, 4̄) −x3 (π1, π3) = (1̄, 4̄) x3 (1̄, 4̄, 3̄)(2̄)

(1̄)(2̄, 3̄)(4̄) −x3 (π1, π2) = (1̄, 3̄) x3 (1̄, 3̄, 2̄)(4̄)

(1̄)(2̄, 4̄)(3̄) −x3 (π1, π2) = (1̄, 4̄) x3 (1̄, 4̄, 2̄)(3̄)

(1̄, 4̄, 3̄, 2̄) −x3 (π1, π2) = (1̄, 4̄) x3 (1̄)(2̄, 4̄, 3̄)

(1̄, 2̄, 4̄, 3̄) −x2 (π2, π3) = (1̄, 4̄) x2 (1̄, 2̄)(3̄, 4̄)

(1̄, 3̄, 4̄, 2̄) −x2 (π1, π2) = (1̄, 3̄) x2 (1̄)(2̄, 3̄, 4̄)

(1̄, 3̄, 2̄, 4̄) −x2 (π1, π2) = (3̄, 4̄) x2 (1̄, 4̄)(2̄, 3̄)

(1̄, 4̄, 2̄, 3̄) −x2 (π1, π2) = (3̄, 4̄) x2 (1̄, 3̄)(2̄, 4̄)

4 The recurrence and generating function formula

for the polynomial PB
n (x, y, z)

In this section, we derive the recurrence relation of PB
n (x, y, z) based on combinatorial

arguments, and further present new relationships between the number PB
n (−1, 1, 1) and

Euler number, as well as the relationships between PB
n (−1, 0, 1) and Springer number.
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4.1 Recurrence formula for the polynomial PB
n (x, y, z)

Theorem 7. For n > 1, the polynomial PB
n (x, y, z) satisfies the recursion

PB
n (x, y, z) = [(2n− 2 + z)x+ yz]PB

n−1(x, y, z)

+ 2

[
x(1− x)

∂

∂x
+ x(1− y)

∂

∂y

]
PB
n−1(x, y, z).

Proof. This theorem holds obviously for n = 1 from PB
0 (x, y, z) = 1 and PB

1 (x, y, z) =
xz + yz. For n > 2 and π = π1π2 · · · πn−1 ∈ Bn−1, let π(i) (resp., π(̄i)) be the type B
permutation obtained by inserting n (resp., n̄) just before πi in the cycle decomposition
of π for 1 6 i 6 n− 1, and π(n) (resp., π(n̄)) is the type B permutation derived by adding
a cycle (n) (resp., (n̄)) into π. It is easy to get excB(π(n)) = excB(π) and fix(π(n)) =
fix(π) + 1. For i ∈ [n− 1], we have

excB(π(i)) =

{
excB(π), if πi > i,
excB(π) + 1, if πi 6 i,

fix(π(i)) =

{
fix(π), if πi 6= i,
fix(π)− 1, if πi = i.

For i ∈ [n], we have

cyc(π(i)) =

{
cyc(π), if i < n,
cyc(π) + 1, if i = n.

It is noteworthy that similar results hold for π(̄i), and we have
n∑
i=1

∑
π∈Bn−1

(
xexcB(π(i))yfix(π(i))zcyc(π(i)) + xexcB(π(̄i))yfix(π(̄i))zcyc(π(̄i))

)
=

n−1∑
i=1

∑
π∈Bn−1

(
xexcB(π(i))yfix(π(i))zcyc(π(i)) + xexcB(π(̄i))yfix(π(̄i))zcyc(π(̄i))

)
+

∑
π∈Bn−1

(
xexcB(π)yfix(π)+1zcyc(π)+1 + xexcB(π)+1yfix(π)zcyc(π)+1

)
= 2

∑
π∈Bn−1

{ excB(π)xexcB(π)yfix(π)zcyc(π) + fix(π)xexcB(π)+1yfix(π)−1zcyc(π)

+ (n− 1− excB(π)− fix(π))xexcB(π)+1yfix(π)zcyc(π) }+ (x+ y)zPB
n−1(x, y, z)

= (x+ y)zPB
n−1(x, y, z) + 2

∑
π∈Bn−1

{ (1− x)excB(π)xexcB(π)yfix(π)zcyc(π)

+ x(1− y)fix(π)xexcB(π)yfix(π)−1zcyc(π) + (n− 1)xexcB(π)+1yfix(π)zcyc(π) } .

Now we can derive the recurrence for PB
n (x, y, z) =

∑
π∈Bn

xexcB(π)yfix(π)zcyc(π) as

PB
n (x, y, z) = (x+ y)zPB

n−1(x, y, z) + 2 [ (x− x2)
∂

∂x
PB
n−1(x, y, z)

+ (x− xy)
∂

∂y
PB
n−1(x, y, z) + (n− 1)xPB

n−1(x, y, z) ] .

Thus the theorem follows by collecting similar terms.
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If we weight each type B permutation π ∈ Bn by w(π) = xexcB(π)yfix(π)(−1)cyc(π), then
we have the counting polynomial (−y)kPB

n−k(x, 0,−1) for the total weight of permutations
in Bn with k (0 6 k 6 n) chosen fixed points. From Eq. (5), we further get

PB
n (x, y,−1) =

n∑
k=0

(
n

k

)
(−y)kPB

n−k(x, 0,−1) =
x(2− x− y)n − (x− y)n

x− 1
. (9)

We could also obtain the following proposition from the combinatorial interpretation of
functional composition of exponential generating function[15, Chap. 5].

Proposition 8. For n > 0, we have∑
n>0

PB
n (x, y, z)

tn

n!
=

(
(1− x)e(x+y)t

e2xt − xe2t

)z
. (10)

Proof. Since every type B permutation is generated by cycles, we have∑
n>0

PB
n (x, y, z)

tn

n!
= exp

(∑
n>1

∑
π∈Cn

xexcB(π)yfix(π)zcyc(π) t
n

n!

)

= exp

(
z
∑
n>1

∑
π∈Cn

xexcB(π)yfix(π) t
n

n!

)
=

[
exp

(
−
∑
n>1

∑
π∈Cn

xexcB(π)yfix(π) t
n

n!

)]−z

=

[
exp

(∑
n>1

∑
π∈Cn

xexcB(π)yfix(π)(−1)cyc(π) t
n

n!

)]−z
=

[
1 +

∑
n>1

PB
n (x, y,−1)

tn

n!

]−z
,

where Cn denotes the set of permutations π ∈ Bn with cyc(π) = 1. We complete the
proof by substituting the formula (9) into the last expression and simplifying it with the
formula ex =

∑
n>0 x

n/n!.

The generating function for PB
n (x, y, z) is derived based on the known formula for

PB
n (x, y,−1). From the above analysis that every type B permutation is generated by

cycles, we can also obtain Eq. (10) by the formula∑
n>0

PB
n (x, y, z)

tn

n!
=

[∑
n>0

PB
n (x, y, 1)

tn

n!

]z
.

Exploring the generating function of the derangement polynomials derived by Chow [11]
and Chen et al. [8], we have∑

n>0

PB
n (x, 0, 1)

tn

n!
=

(1− x)ext

e2xt − xe2t
.

Since a type B permutation can be seen as disjoint union of fixed points and derangements,
it is easy to derive∑

n>0

PB
n (x, y, 1)

tn

n!
=

(∑
n>0

yn
tn

n!

)(∑
n>0

PB
n (x, 0, 1)

tn

n!

)
=

(1− x)e(x+y)t

e2xt − xe2t
,

which implies Eq. (10).
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4.2 Relationships between PB
n (−1, 1, 1) and Euler number

An alternating permutation on [n] is defined as a permutation σ = σ1σ2 · · ·σn ∈ Sn such
that

σ1 > σ2 < σ3 > σ4 < · · · σn.
Denote by En the set of alternating permutations in Sn, and En = |En|. It is well-known
that En is the Euler number and its exponential generating function [1] is given by∑

n>0

En
tn

n!
= sec t+ tan t.

In particular, we have

sec t =
∑
n>0

E2n
t2n

(2n)!
and tan t =

∑
n>0

E2n+1
t2n+1

(2n+ 1)!
.

On substituting x = −1, y = 1 and z = 1 into Eq. (10), we have∑
n>0

PB
n (−1, 1, 1)

tn

n!
=

2e2t

1 + e4t
.

Regarding the generating functions of the Euler number and PB
n (−1, 1, 1), we have

Theorem 9. For n > 1,

∑
σ∈Bn

(−1)excB(σ) =

{
0, if n is odd,

(−1)
n
2 2nEn, if n is even.

(11)

Proof. Using the connection between hyperbolic function sech t and the trigonometric
functions sec t, we have∑

n>0

PB
n (−1, 1, 1)

tn

n!
=

2e2t

1 + e4t
= sech(2t) = sec(2it) =

∑
n>0

(−1)n22nE2n
t2n

(2n)!
.

The proof is completed by equating the coefficient of tn

n!
on both sides.

Recall that the Eulerian polynomial of types B is defined by Bn(x) =
∑

π∈Bn
xdesB(π),

where desB(π) = |{i ∈ [0, n − 1] : πi > πi+1}| and π0 = 0. By a combinatorial expansion
of Bn(x), Chow [10] showed that

∑
σ∈Bn

(−1)desB(σ) =

{
0, if n is odd,

(−1)
n
2 2nEn, if n is even.

By the notice that the statistics desB and excB are equi-distributed on Bn, this phe-
nomenon is no coincidence. In what follows, we will give a combinatorial interpretation
for Theorem 9 focusing on the statistic excB.
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We begin with some definitions about alternating cycles. For σ ∈ Sn, an integer
i ∈ [n] is said to be a cycle peak (resp., cycle valley) of σ if σ−1(i) < i > σ(i) (resp.,
σ−1(i) > i < σ(i)). A cycle of the permutation σ ∈ Sn is called an alternating cycle if
every element in this cycle is either a cycle peak or a cycle valley, and the permutation σ
is called cycle-alternating if it is a product of alternating cycles. Denote by Cn the set of
cycle-alternating permutations in Sn.

It is easy to check that the length of an alternating cycle is always even. For a
permutation in Sn with n odd, there exists at least one cycle of odd length, thus there is
no cycle-alternating permutations in Sn. While for even n, the number of cycle-alternating
permutations in Sn equals the number of alternating permutations in Sn.

To see this, let σ = σ1σ2 · · ·σn ∈ En with σm1 < σm2 < · · · < σmk
being its left-

to-right maxima, and then set Ci = (σmi
, σmi+1, . . . , σmi+1−1) for 1 6 i 6 k − 1 and

Ck = (σmk
, . . . , σn). We define η(σ) = C1C2 · · ·Ck as the union of the k disjoint cycles, and

it is obvious that η(σ) is a cycle-alternating permutation. For example, if σ = 3 1 7 4 5 2 8 6,
then its left-to-right maxima are 3, 7, 8, and η(σ) = (3, 1)(7, 4, 5, 2)(8, 6) ∈ C8.

Lemma 10. Given a signed cycle C, let |C| be the cycle obtained from C by changing
every negative element in it into positive. If the cycle |C| is an alternating cycle, then we
have excB(C) = excB(|C|).

Proof. Suppose |C| = (c1, c2, . . . , ck). If C has k negative elements ci1 , . . . , cik , then we
can generate such a cycle C from |C| by adding the minus sign from left to right to those
k negative elements in C.

Let Cj (1 6 j 6 k) be the cycle obtained from |C| by attaching the minus sign to
the elements ci1 , . . . , cij , and set C0 = |C|. We will proceed by induction to show that
excB(Cj) = excB(Cj−1) for 1 6 j 6 k.

For j = 1, if ci1 is a cycle peak, i.e., ci1−1 < ci1 > ci1+1, then ci1−1 > ci1 < ci1+1; if ci1
is a cycle valley, i.e., ci1−1 > ci1 < ci1+1, then ci1−1 > ci1 < ci1+1. It is easy to see that
excB(C1) = excB(|C|).

Suppose that excB(Cj) = excB(Cj−1) holds for all j 6 m− 1 (2 6 m 6 k). Since the
cycle Cm is constructed from the cycle Cm−1 by attaching the minus sign to cim , it suffices
to observe the difference between the excedance sets of cycles Cm−1 and Cm after sign
attachment of cim . We continue our discussion according to the order of cim as follows:

• For a cycle peak cim , we have cim−1 < cim > cim+1 in Cm−1 whereas cim−1 > cim <
cim+1 in Cm if cim−1 6= cim−1 ; otherwise, we have cim−1 < cim > cim+1 in Cm−1

whereas cim−1 > cim < cim+1 in Cm;

• For a cycle valley cim , we have cim−1 > cim < cim+1 in Cm−1 whereas cim−1 > cim <
cim+1 in Cm if cim−1 6= cim−1 ; otherwise, we have cim−1 < cim < cim+1 in Cm−1

whereas cim−1 < cim < cim+1 in Cm.

Therefore, both of them imply that excB(Cm) = excB(Cm−1), i.e., the statement is true for
j = m. We complete the proof from excB(C) = excB(Ck) = excB(C0) = excB(|C|).
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Combinatorial Proof of Theorem 9. For a type B permutation π ∈ Bn with cycle decom-
position π = C1 · · ·Ck, we proceed the proof by distinguishing the parity of n.

For odd n, there exists at least one cycle of odd length in π. Suppose that Ci1 , . . . , Cim
are the odd cycles of π, and choose the odd cycle Cj such that the cycle |Cj| has the
smallest minimum among all the minima of the cycles |Ci1|, . . . , |Cim|. Assume that Cj =
(c1, c2, . . . , cl), and set Cj = (c1, c2, . . . , cl), we define τ(π) = C1 · · ·Cj−1CjCj+1 · · ·Ck.
Since the only difference of the excedance sets between π and τ(π) lies in the cycle Cj,

while excB(Cj) = l− excB(Cj) and (−1)excB(Cj) = −(−1)excB(Cj) for odd l, this yields that
excB(π) and excB(τ(π)) have different parity. Therefore, τ is the desired involution on
Bn, and we complete the first part in Eq. (11).

For even n, it suffices to consider that all the cycles of π = C1 · · ·Ck are of even length,
otherwise we could make similar analysis as above when π contains odd cycles.

If there exist some non-alternating cycles in |π| = |C1| · · · |Ck|, then we denote by
|Cj| = (|c1|, |c2|, . . . , |cl|) the non-alternating cycle which has the smallest minimum
among all the minima of the non-alternating cycles of |π|. Let |ci| be the smallest

element of |Cj| such that it is neither a cycle peak nor a cycle valley. Define Ĉj =

(c1, . . . , ci−1, ci, ci+1, . . . , cl) and we will show that (−1)excB(Cj) = −(−1)excB(Ĉj).
We assume ci > 0 without loss of generality, and denote by a = |ci−1|, b = |ci| and

c = |ci+1| for simplicity. Suppose a < b < c in the cycle |Cj|, it is easy to check:

i) If Cj = (. . . , a, b, c, . . .), then a < b < c in Cj and a > b̄ < c in Ĉj;

ii) If Cj = (. . . , ā, b, c, . . .), then ā < b < c in Cj and ā > b̄ < c in Ĉj;

iii) If Cj = (. . . , a, b, c̄, . . .), then a < b > c̄ in Cj and a > b̄ > c̄ in Ĉj;

iv) If Cj = (. . . , ā, b, c̄, . . .), then ā < b > c̄ in Cj and ā > b̄ > c̄ in Ĉj.

This implies that (−1)excB(Cj) = −(−1)excB(Ĉj), and similar consideration could be
made for the case a > b > c in the cycle |Cj|.

We now consider the remaining situation when all the cycles of |π| are alternating
cycles. Since the cycles of π are obtained from the cycles of |π| by attaching minus signs
for some elements, Lemma 10 shows that the type B excedance number of each cycle
C ∈ π is the same as the corresponding alternating cycle |C| ∈ |π|. For an alternating
cycle C of length 2l, we have excB(C) = l and we can construct a signed cycle C ′ with
|C ′| = C in 22l ways. The second part of Eq. (11) follows from the fact that the number
of cycle-alternating permutations of even length n is En, and each type B permutation σ
with |σ| being cycle-alternating can be constructed by attaching minus signs from |σ| in
2n ways. This completes the proof.

4.3 Relationships between PB
n (−1, 0, 1) and Springer number

A snake of type Bn is an alternating type B permutation σ = σ1σ2 · · · σn ∈ Bn such that

0 < σ1 > σ2 < σ3 > σ4 < · · ·σn.

Arnol’d [2] proved that the number of snakes of type Bn is equal to the n-th Springer
number Sn, which was first introduced by Springer [14] in the study of irreducible root
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systems of type Bn. The generating function of Sn is given by∑
n>0

Sn
tn

n!
=

1

cos t− sin t
. (12)

On the other hand, setting x = −1, y = 0 and z = 1 into Eq. (10) gives∑
n>0

PB
n (−1, 0, 1)

tn

n!
=

2et

1 + e4t
=

cosh t− sinh t

cosh 2t
.

Therefore, we get the following theorem from their generating functions.

Theorem 11. For n > 1, we have∑
σ∈DB

n

(−1)excB(σ) = (−1)b
n+1

2
cSn. (13)

Here we leave an open problem whether there exists a combinatorial interpretation of
Theorem 11.
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