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Abstract

For a, 8,7,0 € Z and v = (a, 3,7, 0), the g-Fibonacci numbers are given by
F¥(q) =0, F{(g) =1 and FY,1(q) = ¢*""F(q) + " °F}_1(q) for n. > 1.

And define the g-Lucas number L% (q) = F¥_,(q) +q"°F"*,(q), where v, = (o, B —
a,7,d — ). Suppose that a = 0 and ~ is prime to n, or & = 7 is prime to n. We
prove that

Li(q) = (=1)*™*Y (mod @,(g))

for n > 3, where ®,(q) is the n-th cyclotomic polynomial. A similar congruence for
g-Pell-Lucas numbers is also established.
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1 Introduction
The Fibonacci numbers F;, are given by
FQ = O, F1 =1 and Fn+1 = Fn+Fn_1 for n 2 1.

The Fibonacci numbers have rich arithmetic properties. For example, if p is a prime, then
we have

5
F, = <]—?> (mod p), and Fp_(§) =0 (mod p), (1.1)

p

where (—) is the Legendre symbol.
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The Lucas numbers L,, are given by
Ly=2, Ly=1and L,yy =L, + L, forn>1.
It is easy to check that L, = F,,41 + F,,_ for n > 1. So in view of (1.1), we get
L,=1 (mod p) (1.2)

for each prime p.
Suppose that «, 8,7, are integers and v = (a, 3,7, ). Define the ¢-Fibonacci num-
bers F¥(q) as

FY(q) =0, F{(q)=1and F ,(q) = ¢ PF/(q) + ¢"°F¥_,(q) for n > 1.

In [1, 2], Andrews showed that FT(LO’O’I’Q)(q) and F\"%"Y (¢) are respectively correspond to
two kinds of the Rogers-Ramanujan identities. Furthermore, Goyt and Sagan [5] found

that Fél’o’l’l)(q) is related to some set partitions statistics.
Andrews [1] also proved that for prime p = +2 (mod 5),

FOU (q) = 0 (mod [p],),

where [p], = (1 — ¢”)/(1 — ¢) and the above congruence is considered in the polynomial
ring Z[g]. This is a partial g-analogue of (1.1). The complete g-analogues of (1.1) for
F£0’0’1’2)(q) and F,(LO’O’LI)(Q) are given in [6].

Define the ¢-Lucas numbers to be

Ly(q) = Fy(a) + 0" F(a),
where v, = (a, f — @, 7,0 — 7). In this note, we shall establish a g-analogue of (1.2).

Theorem 1.1. Let o, 3,7,9 be integers and v = («, 3,7,9). Suppose that o = 0 and ~y
s prime ton, or a =y is prime to n. Then

Ly(q) = (=1)*"*Y (mod ®,(q)) (1.3)
for n =3, where ®,(q) is the n-th cyclotomic polynomial.

In the next section, we shall prove Theorem 1.1 via purely combinatorial techniques.
And in the third section, a similar result for g-Pell-Lucas numbers will be given.

2 The combinatorics of g-Lucas numbers

In fact, before Leonardo Fibonacci, the combinatorics of Fibonacci numbers had been
discussed by the ancient indian scholars, arising from a problem on rhythmic patterns
[4]. Here we shall use the language of set partitions to describe such a combinatorial
interpretation.
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For [n] = {1,2,3,...,n}, we say m = By/By/--- /By is a partition of [n], provided
that [n] is the disjoint union of By, Bs, ..., Bg. In particular, we may assume that

min By < min By < - -+ < min By,.
A partition m = By/ -+ /By, of [n] is called layered, if 7 is of the form

[L,a1]/lar + 1, az]/[az + 1, as]/ - - [lak—2, ar]/[ax—1 + 1, 7.

For example, 123/45/678/9 is a layered partition of [9]. On the other hand, we say a
partition By/--- /By is match, provided |B;| < 2 for all i. Then the Fibonacci number
F,+1 is the number of all layered match partitions of [n]. In fact, for s = 1,2, it is easy to
see that the the number of layered match partitions of [n] with |By| = s equals to the the
number of layered match partitions of [n — s]. Thus by induction on n, [n| has exactly
F,.1 = F, + F,_1 layered match partitions.

We say a partition m = By/--- /By, of [n] is cyclic layered, if 7 is either layered, or of
the form

(lag—1 +1,n] UL, a1])/[ar + 1, aa]/ - - /[ak—2, ar—1].

For example, 912/34/5/678 is a cyclic layered partition of [9]. Then for n > 3, the Lucas
number L, is the number of all cyclic layered match partitions of [n]. In fact, the number
of all layered match partitions of [n] is F}, 1. And the number of the cyclic layered match
partitions of [n] with |B;| = {n, 1} is exactly F,_;. Hence [n] has L, = F,, 11+ F,_; cyclic
layered match partitions.

For v = (a, 8,7,0) and a cyclic layered match partition m = By/--- /By, of [n], define

O'I/(ﬂ-) = Z (Oéai - ﬁ) + Z (Pyaz - 5)7
|Bi|=1 |Bi|=2
B;={a;} a;=max B;

where if By = {n, 1}, we set max B; = 1, rather than n. Let £, and &, respectively
denote the sets of all layered match partitions and all cyclic layered match partitions of
[n]. Suppose that 7 = By/--- /By € £,. If |By| =1, i.e., By = {n}, then

o,(r) =0(By/ - /Bk_1) + (an — ).
And if |B| =2, i.e., B, = {n — 1,n}, then
5u(1) = 0, (Baf -+ | B) + (m — ).

Hence in view of the recurrence relation of F(q), we get

Fa(a) = Z g™, (2.1)

7'('62”

Consider m = By /--- /By, € €, \ £,, i.e., By = {n,1}. Then

ou(m) =0y(By/ -+ [Bi-1) + (v = 0) = 00 (By/ -+ / By) + (v = 9),
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where B} = {i —1: i € B;}. Thus for n > 3,
Lia) = F(a) + @ Fe@) = D a7 @ +q" Y g =3 ¢
TELn m'eln—2 Tely

Our proof of Theorem 1.1 will follow the way of Sagan [7]. The case n = 2 can be
verified directly:

L5(q) =P + ¢ ° + ¢ = (=1)* (mod 1 + g),

by noting that 1+ ¢ divides 1 4 ¢7 if «y is odd. Below suppose that n > 3. Let G = Z/nZ
and think of G as {1,2,...,n}. For an integer z, define (z), € {1,2,...,n} such that
x = (z), (mod n). For g € G and 7 = B,/ --- /By € &,, define

gr = (Bi+9)/(B2+9)/--- (B + 9),

where B; + g = {(i+ ¢), : i € B;}. It is easy to see that this is a group action of G' on
¢,. For m € €, define the orbit of 7

O, ={gn: g € G},

and the stabilizer of 7

Sr={9eG: gn=nm}.

Clearly €, can be partitioned into the disjoint union of the orbits. And let ©,, denote the
set of all those orbits. Then

DI

= q

0eO, meO
Below we shall show that for 7 € €,

Z qay(T) =0 (mOd (I)n(Q>>’

TGOTA‘

provided |O,| > 1. Clearly |O,| > 1 if and only if |S,| is a proper divisor of n. Suppose
that d > 1 is a divisor of n. Then d € &; if and only if 7 is of the form

By/---/Bp/(By+d)/ - /(Bx+d)/ - /(Bi+n—4d)/ - /(B +n—d).
Let
= {a: B; ={a} for some i}, B;={a: B;={(a—1),,a} for some i}.
Note that for 1 < g < d,

o (gr) =Y (ala+g)n—B)+ > (v(a+g)n — o)

a€Ax a€Br
= > (aatg) =B+ (a+g)—0)
{a}eAxr a€Br

= 0,(7) + aglA| +19|B,| (mod n).
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Hence if S, is generated by d,

S e = zd: g = govm) 3 gotelAn B
g=1

7€ g=1

U

d(o] Ax| v |Bx]) _
_ oy (m)+(al Al +r1Bal) . € ! 1

q A= BA — |

(mod [n],).

Since |B;| > 1 now, we have |A,| + |B;| < n. Hence under the assumptions of Theorem
1.1, we always have a|A,| + v|B;| is not divisible by n. Furthermore both |A,| and |B,|
are multiples of n/d. Hence

d(al Axl+1Bal) _ 1
oA TB 1

q

=0 (mod ®,(q)).

On the other hand, it is easy to see that the unique 7 € &, with |O,| =1is1/2/--- /n.
So

n+1)

L% (q) = ¢/ mge("s) =P (mod @,(q)).

Finally, let us explain why

S
2
—
3
w3
N
®
3
Il

(=12 (mod @,(q)).

Clearly a( H) is divisible by n, if n is odd or « is even. And when n is even and « is
odd, we have

qa( ;rl)*fgn = qn/2 =—1+1+ Qn/Q =1+ 1_—;1/2 =-1 (mOd (I)n(q))

The proof of Theorem 1.1 is concluded. [

Suppose that 7 = 0 and « is prime to n. Then n divides a|A,| + v|B,| if and only if
|A:| =0, 1ie,niseven and 7 =12/34/---/(n —1)n or m =nl/23/---/(n —2)(n — 1).

So if n is even, then
L(q) = ¢/ 4 qev(2/=/(n=1)n) | gou(nl/-/(n=2)(n-1))
_ o ("5 ~8n 4g 2 g = (_1>a(n+1) +2(— ) (mod ®,(q)).
Hence we have

Theorem 2.1. Suppose that o, 8,0 are integers and « is prime to n. Then

0,300) .+ — ) 1 (mod @,(q)), if n is odd,
L8 a)(q)—{( 1) 1 2(—1)8 (mod By(q)). if n is cven, (2.2)

forn > 2.
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3 @g-Pell-Lucas numbers

The Pell numbers P, are given by
P(]:O, Plzland Pn+1:2Pn+Pn_1 forn> 1.
And the Pell-Lucas numbers @),, are given by

Qo=2, Q1 =2and Q11 =20, +Qp_1 forn > 1.

Similar to the Fibonacci numbers and the Lucas numbers, we have Q),, = P, + P,,_1 and

Qp = 2 (mod p). (3.1)
Define a marked layered match partition of [n] to be a layered match partition = =
By/ -+ /By, of [n] such that some B; with |B;| = 1 may be marked. For example, 1/23/4/5
and 1/23/4/5 are two different marked layered match partitions of [5], where @ means the
part B; = {a} are marked. It is not difficult to see that the Pell number P, is the number
of all marked layered match partitions of [n]. For example, P; = 5 and all marked layered
match partitions of [2] are 1/2, 1/2, 1/2, 1/2, 12. Similarly, the Pell-Lucas number Q,, is
the number of all cyclic marked layered match partitions of [n] for n > 3.
Now for v = («, 3,7, 0), define

Py(q) =0, P/(qg)=1and P/ ,(q) = (14+ ¢ ")P(q) +¢q"" °P¢_,(q) for n > 1.

In [8], Santos and Sills showed Pﬁl’l’m)(q) and P,gl’l’l’l)(q) respectively correspond to two
identities of Lebesgue. And the combinatorics of PT(Ll’l’l’Z)(q) has been studied by Briggs,
Little and Sellers [3], in which they used the notion of tilings.

Let

Qn(q) = Pliala) + P (q),
where v, = (o, f — a,7y,9 — 7). For a marked layered match partition 7 = B/ -+ /By, of

[n], define B
A, ={a: B; = {a} for some i and B; is marked}.

And define
Fu(m) =3 (aa—B)+ 3 (ra—0),

(IEZTF CLEB”

where B; is the set of all those a such that {(a — 1),,a} = B; for some i. Let £, and €,
respectively denote the set of all marked layered match partitions and all marked cyclic
layered match partitions of [n]. Then we have

Pra(e) = Z ™.

Similarly, for n > 3,
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Suppose that a = v is prime to n. Clearly,
Qg(C]) =14+ an—QB + q2a—ﬂ + qa—ﬁ + q2'y—5 + q'y—5 =14+ (_1)3a (mod 1 +(])

if both @ and v are odd. So we may assume that n > 3. Consider the same action
of G = Z/nZ on €, as we used before. Evidently for 7 € €., |O,| = 1 if and only if
m=1/2/--+/nor1/2/---/n. We shall prove that

Z ¢ =0 (mod ®,(q))

7'6077

for those 7 € €, with |O,| > 1. Suppose that d > 1 is a divisor of n and S, =
{d,2d,...,n}. Then for 1 < g < d,

a.(gm) = (alat+g)—B)+ Y (va+g) —9)

GEXW a€Bxr
=0,(m) + ag|A:| + vg|Bx| (mod n).

Hence we have

d d

Z qa(T) _ any(gw) — Z qay(w)mg\m\ﬂgl&l =0 (mod ®,(q)),

7€0, g=1 g=1
by noting that n/d divides |A,|, |B,| and n doesn’t divide a|A;| 4+ |Bx|. Thus we obtain

Theorem 3.1. Let o, 3,6 be integers and v = («, 5, , ). If « is prime to n, then
Qu(q) = 14 (=1)*"* (mod ®,(q)) (3.2)

forn > 2.
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