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Abstract

For α, β, γ, δ ∈ Z and ν = (α, β, γ, δ), the q-Fibonacci numbers are given by

F ν0 (q) = 0, F ν1 (q) = 1 and F νn+1(q) = qαn−βF νn (q) + qγn−δF νn−1(q) for n > 1.

And define the q-Lucas number Lνn(q) = F νn+1(q)+ qγ−δF ν∗n−1(q), where ν∗ = (α, β−
α, γ, δ − γ). Suppose that α = 0 and γ is prime to n, or α = γ is prime to n. We
prove that

Lνn(q) ≡ (−1)α(n+1) (mod Φn(q))

for n > 3, where Φn(q) is the n-th cyclotomic polynomial. A similar congruence for
q-Pell-Lucas numbers is also established.
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1 Introduction

The Fibonacci numbers Fn are given by

F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1 for n > 1.

The Fibonacci numbers have rich arithmetic properties. For example, if p is a prime, then
we have

Fp ≡
(

5

p

)
(mod p), and Fp−(5

p)
≡ 0 (mod p), (1.1)

where
( )

is the Legendre symbol.
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The Lucas numbers Ln are given by

L0 = 2, L1 = 1 and Ln+1 = Ln + Ln−1 for n > 1.

It is easy to check that Ln = Fn+1 + Fn−1 for n > 1. So in view of (1.1), we get

Lp ≡ 1 (mod p) (1.2)

for each prime p.
Suppose that α, β, γ, δ are integers and ν = (α, β, γ, δ). Define the q-Fibonacci num-

bers F ν
n (q) as

F ν
0 (q) = 0, F ν

1 (q) = 1 and F ν
n+1(q) = qαn−βF ν

n (q) + qγn−δF ν
n−1(q) for n > 1.

In [1, 2], Andrews showed that F
(0,0,1,2)
n (q) and F

(0,0,1,1)
n (q) are respectively correspond to

two kinds of the Rogers-Ramanujan identities. Furthermore, Goyt and Sagan [5] found

that F
(1,0,1,1)
n (q) is related to some set partitions statistics.

Andrews [1] also proved that for prime p ≡ ±2 (mod 5),

F
(0,0,1,2)
p+1 (q) ≡ 0 (mod [p]q),

where [p]q = (1 − qp)/(1 − q) and the above congruence is considered in the polynomial
ring Z[q]. This is a partial q-analogue of (1.1). The complete q-analogues of (1.1) for

F
(0,0,1,2)
n (q) and F

(0,0,1,1)
n (q) are given in [6].

Define the q-Lucas numbers to be

Lνn(q) = F ν
n+1(q) + qγ−δF ν∗

n−1(q),

where ν∗ = (α, β − α, γ, δ − γ). In this note, we shall establish a q-analogue of (1.2).

Theorem 1.1. Let α, β, γ, δ be integers and ν = (α, β, γ, δ). Suppose that α = 0 and γ
is prime to n, or α = γ is prime to n. Then

Lνn(q) ≡ (−1)α(n+1) (mod Φn(q)) (1.3)

for n > 3, where Φn(q) is the n-th cyclotomic polynomial.

In the next section, we shall prove Theorem 1.1 via purely combinatorial techniques.
And in the third section, a similar result for q-Pell-Lucas numbers will be given.

2 The combinatorics of q-Lucas numbers

In fact, before Leonardo Fibonacci, the combinatorics of Fibonacci numbers had been
discussed by the ancient indian scholars, arising from a problem on rhythmic patterns
[4]. Here we shall use the language of set partitions to describe such a combinatorial
interpretation.
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For [n] = {1, 2, 3, . . . , n}, we say π = B1/B2/ · · · /Bk is a partition of [n], provided
that [n] is the disjoint union of B1, B2, . . . , Bk. In particular, we may assume that

minB1 < minB2 < · · · < minBk.

A partition π = B1/ · · · /Bk of [n] is called layered, if π is of the form

[1, a1]/[a1 + 1, a2]/[a2 + 1, a3]/ · · · /[ak−2, ak]/[ak−1 + 1, n].

For example, 123/45/678/9 is a layered partition of [9]. On the other hand, we say a
partition B1/ · · · /Bk is match, provided |Bi| 6 2 for all i. Then the Fibonacci number
Fn+1 is the number of all layered match partitions of [n]. In fact, for s = 1, 2, it is easy to
see that the the number of layered match partitions of [n] with |Bk| = s equals to the the
number of layered match partitions of [n − s]. Thus by induction on n, [n] has exactly
Fn+1 = Fn + Fn−1 layered match partitions.

We say a partition π = B1/ · · · /Bk of [n] is cyclic layered, if π is either layered, or of
the form

([ak−1 + 1, n] ∪ [1, a1])/[a1 + 1, a2]/ · · · /[ak−2, ak−1].
For example, 912/34/5/678 is a cyclic layered partition of [9]. Then for n > 3, the Lucas
number Ln is the number of all cyclic layered match partitions of [n]. In fact, the number
of all layered match partitions of [n] is Fn+1. And the number of the cyclic layered match
partitions of [n] with |B1| = {n, 1} is exactly Fn−1. Hence [n] has Ln = Fn+1 +Fn−1 cyclic
layered match partitions.

For ν = (α, β, γ, δ) and a cyclic layered match partition π = B1/ · · · /Bk of [n], define

σν(π) =
∑
|Bi|=1
Bi={ai}

(αai − β) +
∑
|Bi|=2

ai=maxBi

(γai − δ),

where if B1 = {n, 1}, we set maxB1 = 1, rather than n. Let Ln and Cn respectively
denote the sets of all layered match partitions and all cyclic layered match partitions of
[n]. Suppose that π = B1/ · · · /Bk ∈ Ln. If |Bk| = 1, i.e., Bk = {n}, then

σν(π) = σ(B1/ · · · /Bk−1) + (αn− β).

And if |Bk| = 2, i.e., Bk = {n− 1, n}, then

σν(π) = σν(B1/ · · · /Bk−1) + (γn− δ).

Hence in view of the recurrence relation of F ν
n (q), we get

F ν
n+1(q) =

∑
π∈Ln

qσν(π). (2.1)

Consider π = B1/ · · · /Bk ∈ Cn \ Ln, i.e., B1 = {n, 1}. Then

σν(π) = σν(B2/ · · · /Bk−1) + (γ − δ) = σν∗(B
′
2/ · · · /B′k) + (γ − δ),
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where B′j = {i− 1 : i ∈ Bj}. Thus for n > 3,

Lνn(q) = F ν
n+1(q) + qγ−δF ν∗

n−1(q) =
∑
π∈Ln

qσν(π) + qγ−δ
∑

π′∈Ln−2

qσν∗ (π
′) =

∑
π∈Cn

qσν(π).

Our proof of Theorem 1.1 will follow the way of Sagan [7]. The case n = 2 can be
verified directly:

Lν2(q) = q3α−2β + q2γ−δ + qγ−δ ≡ (−1)3α (mod 1 + q),

by noting that 1 + q divides 1 + qγ if γ is odd. Below suppose that n > 3. Let G = Z/nZ
and think of G as {1, 2, . . . , n}. For an integer x, define (x)n ∈ {1, 2, . . . , n} such that
x ≡ (x)n (mod n). For g ∈ G and π = B1/ · · · /Bk ∈ Cn, define

gπ = (B1 + g)/(B2 + g)/ · · · (Bk + g),

where Bj + g = {(i + g)n : i ∈ Bj}. It is easy to see that this is a group action of G on
Cn. For π ∈ Cn, define the orbit of π

Oπ = {gπ : g ∈ G},

and the stabilizer of π
Sπ = {g ∈ G : gπ = π}.

Clearly Cn can be partitioned into the disjoint union of the orbits. And let On denote the
set of all those orbits. Then

Lνn(q) =
∑
O∈On

∑
π∈O

qσν(π).

Below we shall show that for π ∈ Cn,∑
τ∈Oπ

qσν(τ) ≡ 0 (mod Φn(q)),

provided |Oπ| > 1. Clearly |Oπ| > 1 if and only if |Sπ| is a proper divisor of n. Suppose
that d > 1 is a divisor of n. Then d ∈ Sπ if and only if π is of the form

B1/ · · · /Bk/(B1 + d)/ · · · /(Bk + d)/ · · · /(B1 + n− d)/ · · · /(Bk + n− d).

Let

Aπ = {a : Bi = {a} for some i}, Bπ = {a : Bi = {(a− 1)n, a} for some i}.

Note that for 1 6 g 6 d,

σν(gπ) =
∑
a∈Aπ

(α(a+ g)n − β) +
∑
a∈Bπ

(γ(a+ g)n − δ)

≡
∑
{a}∈Aπ

(α(a+ g)− β) +
∑
a∈Bπ

(γ(a+ g)− δ)

≡ σν(π) + αg|Aπ|+ γg|Bπ| (mod n).
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Hence if Sπ is generated by d,

∑
τ∈Oπ

qσν(τ) =
d∑
g=1

qσν(gπ) ≡ qσν(π)
d∑
g=1

qg(α|Aπ |+γ|Bπ |)

= qσν(π)+(α|Aπ |+γ|Bπ |) · q
d(α|Aπ |+γ|Bπ |) − 1

qα|Aπ |+γ|Bπ | − 1
(mod [n]q).

Since |Bπ| > 1 now, we have |Aπ| + |Bπ| < n. Hence under the assumptions of Theorem
1.1, we always have α|Aπ|+ γ|Bπ| is not divisible by n. Furthermore both |Aπ| and |Bπ|
are multiples of n/d. Hence

qd(α|Aπ |+γ|Bπ |) − 1

qα|Aπ |+γ|Bπ | − 1
≡ 0 (mod Φn(q)).

On the other hand, it is easy to see that the unique π ∈ Cn with |Oπ| = 1 is 1/2/ · · · /n.
So

Lνn(q) ≡ qσν(1/···/n)qα(
n+1
2 )−βn (mod Φn(q)).

Finally, let us explain why

qα(
n+1
2 )−βn ≡ (−1)α(n+1) (mod Φn(q)).

Clearly α
(
n+1
2

)
is divisible by n, if n is odd or α is even. And when n is even and α is

odd, we have

qα(
n+1
2 )−βn ≡ qn/2 = −1 + 1 + qn/2 = −1 +

1− qn

1− qn/2
≡ −1 (mod Φn(q)).

The proof of Theorem 1.1 is concluded.

Suppose that γ = 0 and α is prime to n. Then n divides α|Aπ|+ γ|Bπ| if and only if
|Aπ| = 0, i.e., n is even and π = 12/34/ · · · /(n − 1)n or π = n1/23/ · · · /(n − 2)(n − 1).
So if n is even, then

Lνn(q) ≡ qσν(1/···/n) + qσν(12/···/(n−1)n) + qσν(n1/···/(n−2)(n−1))

= qα(
n+1
2 )−βn + q−δn/2 + q−δn/2 ≡ (−1)α(n+1) + 2(−1)δ (mod Φn(q)).

Hence we have

Theorem 2.1. Suppose that α, β, δ are integers and α is prime to n. Then

L(α,β,0,δ)
n (q) ≡

{
1 (mod Φn(q)), if n is odd,

(−1)α + 2(−1)δ (mod Φn(q)), if n is even,
(2.2)

for n > 2.
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3 q-Pell-Lucas numbers

The Pell numbers Pn are given by

P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1 for n > 1.

And the Pell-Lucas numbers Qn are given by

Q0 = 2, Q1 = 2 and Qn+1 = 2Qn +Qn−1 for n > 1.

Similar to the Fibonacci numbers and the Lucas numbers, we have Qn = Pn+1 +Pn−1 and

Qp ≡ 2 (mod p). (3.1)

Define a marked layered match partition of [n] to be a layered match partition π =
B1/ · · · /Bk of [n] such that some Bi with |Bi| = 1 may be marked. For example, 1/23/4/5
and 1/23/4/5 are two different marked layered match partitions of [5], where a means the
part Bi = {a} are marked. It is not difficult to see that the Pell number Pn+1 is the number
of all marked layered match partitions of [n]. For example, P3 = 5 and all marked layered
match partitions of [2] are 1/2, 1/2, 1/2, 1/2, 12. Similarly, the Pell-Lucas number Qn is
the number of all cyclic marked layered match partitions of [n] for n > 3.

Now for ν = (α, β, γ, δ), define

P ν
0 (q) = 0, P ν

1 (q) = 1 and P ν
n+1(q) = (1 + qαn−β)P ν

n (q) + qγn−δP ν
n−1(q) for n > 1.

In [8], Santos and Sills showed P
(1,1,1,2)
n (q) and P

(1,1,1,1)
n (q) respectively correspond to two

identities of Lebesgue. And the combinatorics of P
(1,1,1,2)
n (q) has been studied by Briggs,

Little and Sellers [3], in which they used the notion of tilings.
Let

Qν
n(q) = P ν

n+1(q) + qγ−δP ν∗
n−1(q),

where ν∗ = (α, β − α, γ, δ − γ). For a marked layered match partition π = B1/ · · · /Bk of
[n], define

Aπ = {a : Bi = {a} for some i and Bi is marked}.
And define

σν(π) =
∑
a∈Aπ

(αa− β) +
∑
a∈Bπ

(γa− δ),

where Bπ is the set of all those a such that {(a− 1)n, a} = Bi for some i. Let Ln and Cn
respectively denote the set of all marked layered match partitions and all marked cyclic
layered match partitions of [n]. Then we have

P ν
n+1(q) =

∑
π∈Ln

qσν(π).

Similarly, for n > 3,

Qν
n(q) =

∑
π∈Cn

qσν(π).

the electronic journal of combinatorics 20(2) (2013), #P29 6



Suppose that α = γ is prime to n. Clearly,

Qν
2(q) = 1 + q3α−2β + q2α−β + qα−β + q2γ−δ + qγ−δ ≡ 1 + (−1)3α (mod 1 + q)

if both α and γ are odd. So we may assume that n > 3. Consider the same action
of G = Z/nZ on Cn as we used before. Evidently for π ∈ Cπ, |Oπ| = 1 if and only if
π = 1/2/ · · · /n or 1/2/ · · · /n. We shall prove that∑

τ∈Oπ

qσν(τ) ≡ 0 (mod Φn(q))

for those π ∈ Cn with |Oπ| > 1. Suppose that d > 1 is a divisor of n and Sπ =
{d, 2d, . . . , n}. Then for 1 6 g 6 d,

σν(gπ) ≡
∑
a∈Aπ

(α(a+ g)− β) +
∑
a∈Bπ

(γ(a+ g)− δ)

≡ σν(π) + αg|Aπ|+ γg|Bπ| (mod n).

Hence we have

∑
τ∈Oπ

qσν(τ) =
d∑
g=1

qσν(gπ) ≡
d∑
g=1

qσν(π)+αg|Aπ |+γg|Bπ | ≡ 0 (mod Φn(q)),

by noting that n/d divides |Aπ|, |Bπ| and n doesn’t divide α|Aπ|+ γ|Bπ|. Thus we obtain

Theorem 3.1. Let α, β, δ be integers and ν = (α, β, α, δ). If α is prime to n, then

Qν
n(q) ≡ 1 + (−1)α(n+1) (mod Φn(q)) (3.2)

for n > 2.
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