Congruences for q-Lucas numbers

Hao Pan*
Department of Mathematics
Nanjing University
Nanjing 210093, P.R.C.
haopan1979@gmail.com

Submitted: Jul 17, 2012; Accepted: May 7, 2013; Published: May 16, 2013
Mathematics Subject Classifications: 05A18, 05A30, 11B39

Abstract

For $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$ and $\nu=(\alpha, \beta, \gamma, \delta)$, the q-Fibonacci numbers are given by $F_{0}^{\nu}(q)=0, F_{1}^{\nu}(q)=1$ and $F_{n+1}^{\nu}(q)=q^{\alpha n-\beta} F_{n}^{\nu}(q)+q^{\gamma n-\delta} F_{n-1}^{\nu}(q)$ for $n \geqslant 1$.

And define the q-Lucas number $L_{n}^{\nu}(q)=F_{n+1}^{\nu}(q)+q^{\gamma-\delta} F_{n-1}^{\nu_{*}}(q)$, where $\nu_{*}=(\alpha, \beta-$ $\alpha, \gamma, \delta-\gamma$). Suppose that $\alpha=0$ and γ is prime to n, or $\alpha=\gamma$ is prime to n. We prove that

$$
L_{n}^{\nu}(q) \equiv(-1)^{\alpha(n+1)}\left(\bmod \Phi_{n}(q)\right)
$$

for $n \geqslant 3$, where $\Phi_{n}(q)$ is the n-th cyclotomic polynomial. A similar congruence for q-Pell-Lucas numbers is also established.

Keywords: q-Lucas number; q-congruence; cyclic layered match partition

1 Introduction

The Fibonacci numbers F_{n} are given by

$$
F_{0}=0, F_{1}=1 \text { and } F_{n+1}=F_{n}+F_{n-1} \text { for } n \geqslant 1
$$

The Fibonacci numbers have rich arithmetic properties. For example, if p is a prime, then we have

$$
\begin{equation*}
F_{p} \equiv\left(\frac{5}{p}\right)(\bmod p), \text { and } F_{p-\left(\frac{5}{p}\right)} \equiv 0(\bmod p) \tag{1.1}
\end{equation*}
$$

where (-) is the Legendre symbol.

[^0]The Lucas numbers L_{n} are given by

$$
L_{0}=2, L_{1}=1 \text { and } L_{n+1}=L_{n}+L_{n-1} \text { for } n \geqslant 1
$$

It is easy to check that $L_{n}=F_{n+1}+F_{n-1}$ for $n \geqslant 1$. So in view of (1.1), we get

$$
\begin{equation*}
L_{p} \equiv 1(\bmod p) \tag{1.2}
\end{equation*}
$$

for each prime p.
Suppose that $\alpha, \beta, \gamma, \delta$ are integers and $\nu=(\alpha, \beta, \gamma, \delta)$. Define the q-Fibonacci numbers $F_{n}^{\nu}(q)$ as

$$
F_{0}^{\nu}(q)=0, F_{1}^{\nu}(q)=1 \text { and } F_{n+1}^{\nu}(q)=q^{\alpha n-\beta} F_{n}^{\nu}(q)+q^{\gamma n-\delta} F_{n-1}^{\nu}(q) \text { for } n \geqslant 1
$$

In $[1,2]$, Andrews showed that $F_{n}^{(0,0,1,2)}(q)$ and $F_{n}^{(0,0,1,1)}(q)$ are respectively correspond to two kinds of the Rogers-Ramanujan identities. Furthermore, Goyt and Sagan [5] found that $F_{n}^{(1,0,1,1)}(q)$ is related to some set partitions statistics.

Andrews [1] also proved that for prime $p \equiv \pm 2(\bmod 5)$,

$$
F_{p+1}^{(0,0,1,2)}(q) \equiv 0\left(\bmod [p]_{q}\right)
$$

where $[p]_{q}=\left(1-q^{p}\right) /(1-q)$ and the above congruence is considered in the polynomial ring $\mathbb{Z}[q]$. This is a partial q-analogue of (1.1). The complete q-analogues of (1.1) for $F_{n}^{(0,0,1,2)}(q)$ and $F_{n}^{(0,0,1,1)}(q)$ are given in [6].

Define the q-Lucas numbers to be

$$
L_{n}^{\nu}(q)=F_{n+1}^{\nu}(q)+q^{\gamma-\delta} F_{n-1}^{\nu_{*}}(q)
$$

where $\nu_{*}=(\alpha, \beta-\alpha, \gamma, \delta-\gamma)$. In this note, we shall establish a q-analogue of (1.2).
Theorem 1.1. Let $\alpha, \beta, \gamma, \delta$ be integers and $\nu=(\alpha, \beta, \gamma, \delta)$. Suppose that $\alpha=0$ and γ is prime to n, or $\alpha=\gamma$ is prime to n. Then

$$
\begin{equation*}
L_{n}^{\nu}(q) \equiv(-1)^{\alpha(n+1)}\left(\bmod \Phi_{n}(q)\right) \tag{1.3}
\end{equation*}
$$

for $n \geqslant 3$, where $\Phi_{n}(q)$ is the n-th cyclotomic polynomial.
In the next section, we shall prove Theorem 1.1 via purely combinatorial techniques. And in the third section, a similar result for q-Pell-Lucas numbers will be given.

2 The combinatorics of \boldsymbol{q}-Lucas numbers

In fact, before Leonardo Fibonacci, the combinatorics of Fibonacci numbers had been discussed by the ancient indian scholars, arising from a problem on rhythmic patterns [4]. Here we shall use the language of set partitions to describe such a combinatorial interpretation.

For $[n]=\{1,2,3, \ldots, n\}$, we say $\pi=B_{1} / B_{2} / \cdots / B_{k}$ is a partition of $[n]$, provided that $[n]$ is the disjoint union of $B_{1}, B_{2}, \ldots, B_{k}$. In particular, we may assume that

$$
\min B_{1}<\min B_{2}<\cdots<\min B_{k}
$$

A partition $\pi=B_{1} / \cdots / B_{k}$ of $[n]$ is called layered, if π is of the form

$$
\left[1, a_{1}\right] /\left[a_{1}+1, a_{2}\right] /\left[a_{2}+1, a_{3}\right] / \cdots /\left[a_{k-2}, a_{k}\right] /\left[a_{k-1}+1, n\right] .
$$

For example, $123 / 45 / 678 / 9$ is a layered partition of [9]. On the other hand, we say a partition $B_{1} / \cdots / B_{k}$ is match, provided $\left|B_{i}\right| \leqslant 2$ for all i. Then the Fibonacci number F_{n+1} is the number of all layered match partitions of $[n]$. In fact, for $s=1,2$, it is easy to see that the the number of layered match partitions of $[n]$ with $\left|B_{k}\right|=s$ equals to the the number of layered match partitions of $[n-s]$. Thus by induction on $n,[n]$ has exactly $F_{n+1}=F_{n}+F_{n-1}$ layered match partitions.

We say a partition $\pi=B_{1} / \cdots / B_{k}$ of $[n]$ is cyclic layered, if π is either layered, or of the form

$$
\left(\left[a_{k-1}+1, n\right] \cup\left[1, a_{1}\right]\right) /\left[a_{1}+1, a_{2}\right] / \cdots /\left[a_{k-2}, a_{k-1}\right] .
$$

For example, $912 / 34 / 5 / 678$ is a cyclic layered partition of [9]. Then for $n \geqslant 3$, the Lucas number L_{n} is the number of all cyclic layered match partitions of $[n]$. In fact, the number of all layered match partitions of $[n]$ is F_{n+1}. And the number of the cyclic layered match partitions of $[n]$ with $\left|B_{1}\right|=\{n, 1\}$ is exactly F_{n-1}. Hence $[n]$ has $L_{n}=F_{n+1}+F_{n-1}$ cyclic layered match partitions.

For $\nu=(\alpha, \beta, \gamma, \delta)$ and a cyclic layered match partition $\pi=B_{1} / \cdots / B_{k}$ of [n], define

$$
\sigma_{\nu}(\pi)=\sum_{\substack{\left|B_{i}\right|=1 \\ B_{i}=\left\{a_{i}\right\}}}\left(\alpha a_{i}-\beta\right)+\sum_{\substack{\left|B_{i}\right|=2 \\ a_{i}=\max B_{i}}}\left(\gamma a_{i}-\delta\right),
$$

where if $B_{1}=\{n, 1\}$, we set max $B_{1}=1$, rather than n. Let \mathfrak{L}_{n} and \mathfrak{C}_{n} respectively denote the sets of all layered match partitions and all cyclic layered match partitions of $[n]$. Suppose that $\pi=B_{1} / \cdots / B_{k} \in \mathfrak{L}_{n}$. If $\left|B_{k}\right|=1$, i.e., $B_{k}=\{n\}$, then

$$
\sigma_{\nu}(\pi)=\sigma\left(B_{1} / \cdots / B_{k-1}\right)+(\alpha n-\beta) .
$$

And if $\left|B_{k}\right|=2$, i.e., $B_{k}=\{n-1, n\}$, then

$$
\sigma_{\nu}(\pi)=\sigma_{\nu}\left(B_{1} / \cdots / B_{k-1}\right)+(\gamma n-\delta) .
$$

Hence in view of the recurrence relation of $F_{n}^{\nu}(q)$, we get

$$
\begin{equation*}
F_{n+1}^{\nu}(q)=\sum_{\pi \in \mathfrak{I}_{n}} q^{\sigma_{\nu}(\pi)} \tag{2.1}
\end{equation*}
$$

Consider $\pi=B_{1} / \cdots / B_{k} \in \mathfrak{C}_{n} \backslash \mathfrak{L}_{n}$, i.e., $B_{1}=\{n, 1\}$. Then

$$
\sigma_{\nu}(\pi)=\sigma_{\nu}\left(B_{2} / \cdots / B_{k-1}\right)+(\gamma-\delta)=\sigma_{\nu_{*}}\left(B_{2}^{\prime} / \cdots / B_{k}^{\prime}\right)+(\gamma-\delta),
$$

where $B_{j}^{\prime}=\left\{i-1: i \in B_{j}\right\}$. Thus for $n \geqslant 3$,

$$
L_{n}^{\nu}(q)=F_{n+1}^{\nu}(q)+q^{\gamma-\delta} F_{n-1}^{\nu_{*}}(q)=\sum_{\pi \in \mathfrak{L}_{n}} q^{\sigma_{\nu}(\pi)}+q^{\gamma-\delta} \sum_{\pi^{\prime} \in \mathfrak{L}_{n-2}} q^{\sigma_{\nu_{*}}\left(\pi^{\prime}\right)}=\sum_{\pi \in \mathfrak{C}_{n}^{\prime}} q^{\sigma_{\nu}(\pi)} .
$$

Our proof of Theorem 1.1 will follow the way of Sagan [7]. The case $n=2$ can be verified directly:

$$
L_{2}^{\nu}(q)=q^{3 \alpha-2 \beta}+q^{2 \gamma-\delta}+q^{\gamma-\delta} \equiv(-1)^{3 \alpha}(\bmod 1+q),
$$

by noting that $1+q$ divides $1+q^{\gamma}$ if γ is odd. Below suppose that $n \geqslant 3$. Let $G=\mathbb{Z} / n \mathbb{Z}$ and think of G as $\{1,2, \ldots, n\}$. For an integer x, define $(x)_{n} \in\{1,2, \ldots, n\}$ such that $x \equiv(x)_{n}(\bmod n)$. For $g \in G$ and $\pi=B_{1} / \cdots / B_{k} \in \mathfrak{C}_{n}$, define

$$
g \pi=\left(B_{1}+g\right) /\left(B_{2}+g\right) / \cdots\left(B_{k}+g\right)
$$

where $B_{j}+g=\left\{(i+g)_{n}: i \in B_{j}\right\}$. It is easy to see that this is a group action of G on \mathfrak{C}_{n}. For $\pi \in \mathfrak{C}_{n}$, define the orbit of π

$$
\mathcal{O}_{\pi}=\{g \pi: g \in G\}
$$

and the stabilizer of π

$$
\mathcal{S}_{\pi}=\{g \in G: g \pi=\pi\}
$$

Clearly \mathfrak{C}_{n} can be partitioned into the disjoint union of the orbits. And let \mathfrak{O}_{n} denote the set of all those orbits. Then

$$
L_{n}^{\nu}(q)=\sum_{\mathcal{O} \in \mathfrak{O}_{n}} \sum_{\pi \in \mathcal{O}} q^{\sigma_{\nu}(\pi)}
$$

Below we shall show that for $\pi \in \mathfrak{C}_{n}$,

$$
\sum_{\tau \in \mathcal{O}_{\pi}} q^{\sigma_{\nu}(\tau)} \equiv 0\left(\bmod \Phi_{n}(q)\right)
$$

provided $\left|\mathcal{O}_{\pi}\right|>1$. Clearly $\left|\mathcal{O}_{\pi}\right|>1$ if and only if $\left|\mathcal{S}_{\pi}\right|$ is a proper divisor of n. Suppose that $d>1$ is a divisor of n. Then $d \in \mathcal{S}_{\pi}$ if and only if π is of the form

$$
B_{1} / \cdots / B_{k} /\left(B_{1}+d\right) / \cdots /\left(B_{k}+d\right) / \cdots /\left(B_{1}+n-d\right) / \cdots /\left(B_{k}+n-d\right) .
$$

Let

$$
\mathcal{A}_{\pi}=\left\{a: B_{i}=\{a\} \text { for some } i\right\}, \quad \mathcal{B}_{\pi}=\left\{a: B_{i}=\left\{(a-1)_{n}, a\right\} \text { for some } i\right\} .
$$

Note that for $1 \leqslant g \leqslant d$,

$$
\begin{aligned}
\sigma_{\nu}(g \pi) & =\sum_{a \in \mathcal{A}_{\pi}}\left(\alpha(a+g)_{n}-\beta\right)+\sum_{a \in \mathcal{B}_{\pi}}\left(\gamma(a+g)_{n}-\delta\right) \\
& \equiv \sum_{\{a\} \in \mathcal{A}_{\pi}}(\alpha(a+g)-\beta)+\sum_{a \in \mathcal{B}_{\pi}}(\gamma(a+g)-\delta) \\
& \equiv \sigma_{\nu}(\pi)+\alpha g\left|\mathcal{A}_{\pi}\right|+\gamma g\left|\mathcal{B}_{\pi}\right|(\bmod n) .
\end{aligned}
$$

Hence if \mathcal{S}_{π} is generated by d,

$$
\begin{aligned}
\sum_{\tau \in \mathcal{O}_{\pi}} q^{\sigma_{\nu}(\tau)}=\sum_{g=1}^{d} q^{\sigma_{\nu}(g \pi)} & \equiv q^{\sigma_{\nu}(\pi)} \sum_{g=1}^{d} q^{g\left(\alpha\left|\mathcal{A}_{\pi}\right|+\gamma\left|\mathcal{B}_{\pi}\right|\right)} \\
& =q^{\sigma_{\nu}(\pi)+\left(\alpha\left|\mathcal{A}_{\pi}\right|+\gamma\left|\mathcal{B}_{\pi}\right|\right)} \cdot \frac{q^{d\left(\alpha\left|\mathcal{A}_{\pi}\right|+\gamma\left|\mathcal{B}_{\pi}\right|\right)}-1}{q^{\alpha\left|\mathcal{A}_{\pi}\right|+\gamma\left|\mathcal{B}_{\pi}\right|}-1}\left(\bmod [n]_{q}\right)
\end{aligned}
$$

Since $\left|\mathcal{B}_{\pi}\right|>1$ now, we have $\left|\mathcal{A}_{\pi}\right|+\left|\mathcal{B}_{\pi}\right|<n$. Hence under the assumptions of Theorem 1.1, we always have $\alpha\left|\mathcal{A}_{\pi}\right|+\gamma\left|\mathcal{B}_{\pi}\right|$ is not divisible by n. Furthermore both $\left|\mathcal{A}_{\pi}\right|$ and $\left|\mathcal{B}_{\pi}\right|$ are multiples of n / d. Hence

$$
\frac{q^{d\left(\alpha\left|\mathcal{A}_{\pi}\right|+\gamma\left|\mathcal{B}_{\pi}\right|\right)}-1}{q^{\alpha\left|\mathcal{A}_{\pi}\right|+\gamma\left|\mathcal{B}_{\pi}\right|}-1} \equiv 0\left(\bmod \Phi_{n}(q)\right) .
$$

On the other hand, it is easy to see that the unique $\pi \in \mathfrak{C}_{n}$ with $\left|\mathcal{O}_{\pi}\right|=1$ is $1 / 2 / \cdots / n$. So

$$
L_{n}^{\nu}(q) \equiv q^{\sigma_{\nu}(1 / \cdots / n)} q^{\alpha\binom{n+1}{2}-\beta n}\left(\bmod \Phi_{n}(q)\right) .
$$

Finally, let us explain why

$$
q^{\alpha\binom{n+1}{2}-\beta n} \equiv(-1)^{\alpha(n+1)}\left(\bmod \Phi_{n}(q)\right) .
$$

Clearly $\alpha\binom{n+1}{2}$ is divisible by n, if n is odd or α is even. And when n is even and α is odd, we have

$$
q^{\alpha\binom{n+1}{2}-\beta n} \equiv q^{n / 2}=-1+1+q^{n / 2}=-1+\frac{1-q^{n}}{1-q^{n / 2}} \equiv-1\left(\bmod \Phi_{n}(q)\right) .
$$

The proof of Theorem 1.1 is concluded.
Suppose that $\gamma=0$ and α is prime to n. Then n divides $\alpha\left|\mathcal{A}_{\pi}\right|+\gamma\left|\mathcal{B}_{\pi}\right|$ if and only if $\left|\mathcal{A}_{\pi}\right|=0$, i.e., n is even and $\pi=12 / 34 / \cdots /(n-1) n$ or $\pi=n 1 / 23 / \cdots /(n-2)(n-1)$. So if n is even, then

$$
\begin{aligned}
L_{n}^{\nu}(q) & \equiv q^{\sigma_{\nu}(1 / \cdots / n)}+q^{\sigma_{\nu}(12 / \cdots /(n-1) n)}+q^{\sigma_{\nu}(n 1 / \cdots /(n-2)(n-1))} \\
& =q^{\alpha\binom{n+1}{2}-\beta n}+q^{-\delta n / 2}+q^{-\delta n / 2} \equiv(-1)^{\alpha(n+1)}+2(-1)^{\delta}\left(\bmod \Phi_{n}(q)\right) .
\end{aligned}
$$

Hence we have
Theorem 2.1. Suppose that α, β, δ are integers and α is prime to n. Then

$$
L_{n}^{(\alpha, \beta, 0, \delta)}(q) \equiv \begin{cases}1\left(\bmod \Phi_{n}(q)\right), & \text { if } n \text { is odd, } \tag{2.2}\\ (-1)^{\alpha}+2(-1)^{\delta}\left(\bmod \Phi_{n}(q)\right), & \text { if } n \text { is even }\end{cases}
$$

for $n \geqslant 2$.

$3 \quad q$-Pell-Lucas numbers

The Pell numbers P_{n} are given by

$$
P_{0}=0, P_{1}=1 \text { and } P_{n+1}=2 P_{n}+P_{n-1} \text { for } n \geqslant 1
$$

And the Pell-Lucas numbers Q_{n} are given by

$$
Q_{0}=2, Q_{1}=2 \text { and } Q_{n+1}=2 Q_{n}+Q_{n-1} \text { for } n \geqslant 1
$$

Similar to the Fibonacci numbers and the Lucas numbers, we have $Q_{n}=P_{n+1}+P_{n-1}$ and

$$
\begin{equation*}
Q_{p} \equiv 2(\bmod p) \tag{3.1}
\end{equation*}
$$

Define a marked layered match partition of $[n]$ to be a layered match partition $\pi=$ $B_{1} / \cdots / B_{k}$ of $[n]$ such that some B_{i} with $\left|B_{i}\right|=1$ may be marked. For example, $\overline{1} / 23 / \overline{4} / 5$ and $\overline{1} / 23 / 4 / \overline{5}$ are two different marked layered match partitions of [5], where \bar{a} means the part $B_{i}=\{a\}$ are marked. It is not difficult to see that the Pell number P_{n+1} is the number of all marked layered match partitions of $[n]$. For example, $P_{3}=5$ and all marked layered match partitions of $[2]$ are $1 / 2, \overline{1} / 2,1 / \overline{2}, \overline{1} / \overline{2}, 12$. Similarly, the Pell-Lucas number Q_{n} is the number of all cyclic marked layered match partitions of $[n]$ for $n \geqslant 3$.

Now for $\nu=(\alpha, \beta, \gamma, \delta)$, define

$$
P_{0}^{\nu}(q)=0, P_{1}^{\nu}(q)=1 \text { and } P_{n+1}^{\nu}(q)=\left(1+q^{\alpha n-\beta}\right) P_{n}^{\nu}(q)+q^{\gamma n-\delta} P_{n-1}^{\nu}(q) \text { for } n \geqslant 1 .
$$

In [8], Santos and Sills showed $P_{n}^{(1,1,1,2)}(q)$ and $P_{n}^{(1,1,1,1)}(q)$ respectively correspond to two identities of Lebesgue. And the combinatorics of $P_{n}^{(1,1,1,2)}(q)$ has been studied by Briggs, Little and Sellers [3], in which they used the notion of tilings.

Let

$$
Q_{n}^{\nu}(q)=P_{n+1}^{\nu}(q)+q^{\gamma-\delta} P_{n-1}^{\nu_{*}}(q),
$$

where $\nu_{*}=(\alpha, \beta-\alpha, \gamma, \delta-\gamma)$. For a marked layered match partition $\pi=B_{1} / \cdots / B_{k}$ of [n], define

$$
\overline{\mathcal{A}}_{\pi}=\left\{a: B_{i}=\{a\} \text { for some } i \text { and } B_{i} \text { is marked }\right\}
$$

And define

$$
\bar{\sigma}_{\nu}(\pi)=\sum_{a \in \overline{\mathcal{A}}_{\pi}}(\alpha a-\beta)+\sum_{a \in \mathcal{B}_{\pi}}(\gamma a-\delta),
$$

where \mathcal{B}_{π} is the set of all those a such that $\left\{(a-1)_{n}, a\right\}=B_{i}$ for some i. Let $\overline{\mathfrak{L}}_{n}$ and $\overline{\mathfrak{C}}_{n}$ respectively denote the set of all marked layered match partitions and all marked cyclic layered match partitions of $[n]$. Then we have

$$
P_{n+1}^{\nu}(q)=\sum_{\pi \in \overline{\mathfrak{I}}_{n}} q^{\bar{\sigma}_{\nu}(\pi)}
$$

Similarly, for $n \geqslant 3$,

$$
Q_{n}^{\nu}(q)=\sum_{\pi \in \overline{\mathfrak{C}}_{n}} q^{\bar{\sigma}_{\nu}(\pi)}
$$

Suppose that $\alpha=\gamma$ is prime to n. Clearly,

$$
Q_{2}^{\nu}(q)=1+q^{3 \alpha-2 \beta}+q^{2 \alpha-\beta}+q^{\alpha-\beta}+q^{2 \gamma-\delta}+q^{\gamma-\delta} \equiv 1+(-1)^{3 \alpha}(\bmod 1+q)
$$

if both α and γ are odd. So we may assume that $n \geqslant 3$. Consider the same action of $G=\mathbb{Z} / n \mathbb{Z}$ on $\overline{\mathfrak{C}}_{n}$ as we used before. Evidently for $\pi \in \overline{\mathfrak{C}}_{\pi},\left|\mathcal{O}_{\pi}\right|=1$ if and only if $\pi=1 / 2 / \cdots / n$ or $\overline{1} / \overline{2} / \cdots / \bar{n}$. We shall prove that

$$
\sum_{\tau \in \mathcal{O}_{\pi}} q^{\bar{\sigma}_{\nu}(\tau)} \equiv 0\left(\bmod \Phi_{n}(q)\right)
$$

for those $\pi \in \overline{\mathfrak{C}}_{n}$ with $\left|\mathcal{O}_{\pi}\right|>1$. Suppose that $d>1$ is a divisor of n and $\mathcal{S}_{\pi}=$ $\{d, 2 d, \ldots, n\}$. Then for $1 \leqslant g \leqslant d$,

$$
\begin{aligned}
\bar{\sigma}_{\nu}(g \pi) & \equiv \sum_{a \in \overline{\mathcal{A}}_{\pi}}(\alpha(a+g)-\beta)+\sum_{a \in \mathcal{B}_{\pi}}(\gamma(a+g)-\delta) \\
& \equiv \bar{\sigma}_{\nu}(\pi)+\alpha g\left|\overline{\mathcal{A}}_{\pi}\right|+\gamma g\left|\mathcal{B}_{\pi}\right|(\bmod n)
\end{aligned}
$$

Hence we have

$$
\sum_{\tau \in \mathcal{O}_{\pi}} q^{\bar{\sigma}_{\nu}(\tau)}=\sum_{g=1}^{d} q^{\bar{\sigma}_{\nu}(g \pi)} \equiv \sum_{g=1}^{d} q^{\bar{\sigma}_{\nu}(\pi)+\alpha g\left|\overline{\mathcal{A}}_{\pi}\right|+\gamma g\left|\mathcal{B}_{\pi}\right|} \equiv 0\left(\bmod \Phi_{n}(q)\right)
$$

by noting that n / d divides $\left|\overline{\mathcal{A}}_{\pi}\right|,\left|\mathcal{B}_{\pi}\right|$ and n doesn't divide $\alpha\left|\overline{\mathcal{A}}_{\pi}\right|+\gamma\left|\mathcal{B}_{\pi}\right|$. Thus we obtain Theorem 3.1. Let α, β, δ be integers and $\nu=(\alpha, \beta, \alpha, \delta)$. If α is prime to n, then

$$
\begin{equation*}
Q_{n}^{\nu}(q) \equiv 1+(-1)^{\alpha(n+1)}\left(\bmod \Phi_{n}(q)\right) \tag{3.2}
\end{equation*}
$$

for $n \geqslant 2$.

Acknowledgements

I am grateful to the anonymous referee and Professor Catherine H.-F. Yan for their very useful comments and helpful suggestions on this paper.

References

[1] G. E. Andrews. A polynomial identity which implies the Rogers-Ramanujan identities. Scripta Math., 28:297-305, 1970.
[2] G. E. Andrews. Fibonacci numbers and the Rogers-Ramanujan identities. Fibonacci Quart., 42:3-19, 2004.
[3] K. S. Briggs, D. P. Little and J. A. Sellers. Combinatorial proofs of various q-Pell identities via tilings. Ann. Comb., 14:407-418, 2010.
[4] P. Chandra and E. W. Weisstein. "Fibonacci Number." from MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/FibonacciNumber.html.
[5] A. M. Goyt and B. E. Sagan. Set partition statistics and q-Fibonacci numbers. European J. Combin., 30:230-245, 2009.
[6] H. Pan. Arithmetic properties of q-Fibonacci numbers and q-Pell numbers. Discrete Math., 306:2118-2127, 2006.
[7] B. E. Sagan. Congruence properties of q-analogs. Adv. Math., 95:127-143, 1992.
[8] J. Santos and A. V. Sills. q-Pell sequences and two identities of V. A. Lebesgue. Discrete Math., 257:125-142, 2002.

[^0]: *Supported by National Natural Science Foundation of China (Grant No. 11271185).

